
Intelligent Actuator, Inc. Product Training

SEL Notes and Topics

 Intelligent Actuator, Inc. Introduction & Basic Training

2

Table of Contents – Part One

Product Line 3

System Interface 3

I/O, Wiring, BCD 4

Specifications / Architecture 6

Encoder Operation 8

Programming Semantics 10

Practice Programming I 11

Command Structure 13

Numbers and Variables 13

Programming Logic 14

Teaching Pendant 16

Table of Contents - Part Two .

Maintenance, Service, & Repair 17

Cables 18

Controllers 18

More Variables 19

Pointers 20

More SEL Commands 20

Programming Examples 23

Special Commands 24

Cycle Time 27

Program Flow 29

Troubleshooting 29

Parameters 31

Palletizing 34

 Intelligent Actuator, Inc. Introduction & Basic Training

3

Product Line Overview (from bottom up)

• RC: “Point Mode” only. No programming. Control serially or via I/O.
Priced from ~$900.

• DS: Programmable, typically single-axis. Supplanted SA series. Priced
from ~$1250. Two-axis systems lack interpolated motion.
May also be used with the X-SEL or SEL-GDS multi-axis controllers.

• Super SEL A&B: 20W-200W. The predecessor to the Super SEL E&G, the
Super SEL A&B are available in AC or DC versions. Super SEL B can
multitask up to 16 programs with expandable I/O (up to 288). No option
for 2ch Serial Communication.

• Super SEL E&G: 20W-400W, controls actuators up to 2500mm (ballscrew),
3000mm (belt) in length. AC or DC versions.

• X-SEL: 20W-750W, latest & greatest SEL controller. Features improved
memory, processing, drivers, troubleshooting capability, as well as various
network communication options. AC motor version only.

• SCARA: Newer unit, cheaper than competitors, with 80% of competitor
functionality. Units run about $20,000 complete (list). 24 I/O standard,
expandable up to 96. 0.76 sec. cycle time. X-SEL based SCARA in
development.

System Interface

• No tuning needed. Controller, actuator(s), brackets, cables & software
included.

• DS has 15 user inputs, 6 user outputs. 8 dedicated inputs, 2 dedicated

outputs.

• Super SEL-E (1 axis) has 24 I/O standard, expandable up to 96.

• Super SEL-G (2-8 axes) has 24 I/O standard, expandable up to 288.

• X-SEL (1-4 axes) has 32 inputs and 16 outputs, expandable to 4 I/O slots.

• Systems are compact, flexible, easy to use, and powerful.

• PC Software or Teaching Pendant may be used to interface.

 Intelligent Actuator, Inc. Introduction & Basic Training

4

• Teach pendant great for teaching points and portability.

• Some commands unavailable on teach pendant.

• Serial protocol used in both teaching pendant and software.

• RS232 option allows for greater networking flexibility, at nominal additional

cost for the option and cable ($200).

I/O & Wiring

• 24VDC optically isolated I/O (except DS).

• Surge protection is present on the DS, but not on Super SEL.

• 20mA continuous output, 100mA / point maximum rated, depending on
duty cycle.

•
If more power is needed, external relays or PLCs must be used.

• NPN is the standard I/O setup; PNP is available upon request.

o NPN – “Sinking”. 0V turns on input, “on” output is 0V. Goes “low”.

o PNP – “Sourcing”. 24V turns on input, “on” output is 24VDC “high”.

• Must supply 24VDC to I/O on SEL E/G, IH-SEL, and expansion SEL A/B.

• No ground loops, and dedicated controller power supply.

• Installation and noise concerns. (Consult p. 7-11, etc.)

o Surge killers for AC inductive loads.

o Clamping diode for DC inductive loads.

o Precautions taken for noisy environments will solve common noise

related problems.

o Noise introduced to the controller via power supply and I/O.

 Intelligent Actuator, Inc. Introduction & Basic Training

5

o Wiring diagrams for I/O. Input / output introduction. (Consult p. 29)

o DS allows for 1000 programming steps, 32 programs, 500 points,
and 8 multitasks.

o Super SEL allows for 3000 programming steps, 64 programs, 2000

points, and 16 multitasks.

o X-SEL allows for 6000 programming steps, 64 programs, 3000 points,
and 16 multitasks.

 Intelligent Actuator, Inc. Introduction & Basic Training

6

BCD Inputs

• Used for external start of programs. Thumbwheel usually used, IA I/O can

also be used to dial in program numbers.

• Dedicated inputs for BCD program entry.

• Can only re-use these inputs (7-13) on X-SEL after program has begun.

• Example: we want to “launch program #15”.

• Dial in, pulse external start (000), program starts.
• Dedicated e-stop terminal, and must be a normally closed contact.

(See X-SEL “7. Other Parameters” for e-stop recovery options)

Specifications / Architecture (X-SEL)

• X-SEL uses a Hitachi SH-4 32-bit RISC (reduced instruction set chip)

processor.

• 150 Million Instructions/Second (MIPS), Servo uses 240000 samples/sec, or

every 4µsec.

• All work on encoder feedback for positioning. “Checks and balances”.

• Servo CPU for servo control and Main CPU for calculating, running programs,

memory, I/O.

• Allows for 16 programs to be run at one time, in parallel (multitasking).

1 5

0 0 1 0 1 0 1

PRG#

BCD INP#

40 20 10

13 12 11

 8 4 2 1

 10 9 8 7

 Intelligent Actuator, Inc. Introduction & Basic Training

7

• 1 msec time slice maximum for each program running in parallel.

• Program control does not wait for certain commands to finish executing before

jumping to the next program’s command.

• Faster time slice for the following: WTON/WTOF, MOVP, MOVL, PATH, ARC,

CIR, TIMW.

Main CPU

Servo CPU #1

Driver
Board. #1

Servo CPU #2

Driver
Board. #2

Axis 1

IA Controller

 slide motor

encoder

 motor

 slide slide

IA System Architectur

I / O SELNET

RS232

#3 #4
encoder feedback
e
n
c
o
d
e
r

f
e
e
d
b
a
c
k
encoder

Axis 2

e Diagram

 Intelligent Actuator, Inc. Introduction & Basic Training

Encoder Operation (SEL-G)

• X-SEL - 17 bit incremental encoder, 14 bit control resolution, 16384 pulses/rev

• “3-phase, Optical Incremental Encoder” allows for relative positioning (loses
position when power is cut, cable is damaged; good because home value is based
off of encoder).

• Z-phase is based on aligning motor coils with Z-pulses.

• A/B-phase sensors are used for position feedback. Controller must know where

the actuator is while moving in order to control drivers.

• After over current limit is sensed, the motor rotates until the z-pulse is sensed to
“zero” position (0.000 mm).

• Motion then occurs using the A/B pulses, feedback, and servo drivers.

• Quadrature (see diagram) allows for an effective resolution 4 times that of the
encoder count (384 or 768 pulses per revolution).

A/B – phase
(384 or 768)

Z – phase
(1-4 notches)

Example encoder assembly: IS unit w/ 16 pitch ballscrew

A

B 1 0 0 1

 1 1 0 0

 A B
1 0 0

2 0 1

3 1 0

4 1 1

8

“Quadrature”:
four distinct
states (90° out
of phase).
Encoder
Pulses

 Intelligent Actuator, Inc. Introduction & Basic Training

9

Absolute Encoder Homing

The absolute encoder homing menu

• This menu, “Abs. Encoder reset”, is located under the “Controller” menu.

This menu will take you through the homing procedure for each axis. Press
each button once and the red arrow will indicate the next step. Please note
the “Reset controller” text. Once the homing procedure is complete, reset
the controller with the “Software Reset” under the “Controller” menu.

• The controller now knows the location of the actuators until the actuators
are unplugged from the controller.

• The X-SEL demo is set up for use with absolute encoders, which are located
on the actuator. The battery is conveniently located on the front of the
controller (one battery for each axis). This means that whenever the
actuator is disconnected from the controller, the absolute encoders lose
power. This will require you to home the actuators.

 Intelligent Actuator, Inc. Introduction & Basic Training

10

Programming semantics

• SEL is a mnemonic language in which all commands hint at the actual
process.

• “HOME” homes the actuator(s), “MOVP” performs a point to point move,

etc.

• Over 100 commands for programming flexibility.

• Can perform numerous tasks using only a handful of commands:

 HOME – used to send the actuator to its home position.

 VEL – sets the velocity within the program for point-to-point moves, etc.

MOVP – moves each axis involved at a designated velocity to the chosen
point. The axes are not related in movement (may end at different times).

MOVL – moves the actuator to the specified position number by adjusting
acceleration, velocity, and axes to arrive in the shortest path (linear
interpolation). Both axes complete the move at the same time.

BTON – turns output / flag on.

BTOF – turns output / flag off.

WTON – waits for input/flag to turn on.

WTOF – waits for input/flag to turn off.

TIMW – sets a timer that pauses the program for a specified time.

TAG – sets a placeholder for a GOTO loop.

GOTO – returns the program control to the tag number specified, thus
creating a simple loop.

• “Axis Pattern” is used for certain commands (i.e. HOME 10011100). Works
from right to left in increasing axis number (p. 114, 115).

• (Example program on board)

 Intelligent Actuator, Inc. Introduction & Basic Training

• Program is based on the following diagram:

Point #
14
15

Software Lab

 Introdu

• Check o

• Open so

• FILE me

• Some m
When un

• Demons

6

7

1500
11

Acc Vel Axis
 25.68
 120

 I

ction

ut simple 6-line program (use

ftware (RS-232 cable must be

nu works with files on the har

enus work with the controller
available the menus will be g

trate the PROGRAM control (p

MOVL
(X, Y, ACC, VEL)

MOVP
(X, Y)

14

15

00

75

Example (plotted ver

Example Point Table
1500

450
1350
1 Axis 2 …Axis n
6 125.1
 76.55

s very few commands).

 connected to be “on-line”)

d drive or floppy disk.

itself (note: not available off-line).
rayed out.

lay, pause, step-by-step and break).

sion)

 Data

 Intelligent Actuator, Inc. Introduction & Basic Training

12

Point Table

• Enter points in the point table (POINT, Edit, then specify range)

• Can also set ACCeleration and VELocity values in the point table. These

values will override those settings in the program for moves made to that
point.

• These points can either be typed in directly, or taught by jogging/manual
move.
(Note: must turn servo on, home once, then turn servo off to manually teach
points. Controller needs to know where the actuator is!)

• There is also a “Safety Velocity Specified” menu on the “on-line menu”.

Programming

• Enter sample program, write to controller, then run.

• Actuator should home, then move back and forth between the two points

entered.

• Point data can be changed “on the fly” while the program is running. This
is helpful for fine-tuning points or alterations to your system while running
code.

• Simply open up point table (if you have closed it). Highlight the point you

wish to change, enter the new value, and write to controller.
(Note: point(s) must be within the range of the actuator or an error will occur.)

 Intelligent Actuator, Inc. Introduction & Basic Training

13

Command Structure

• Can get more complex from our 6-line example.

• Pick and place example (three points).

Numerals and Symbols

• Most information needed is on p. 106 of SE

• All on/off items within the SEL controller ha

• INPUTS: 000-299

• OUTPUTS: 300-599

• FLAGS: 600-999

• Flags are “internal I/O”; turned on or off.

• Some flags are program-only; some can be

• VARIABLES: 1-399 &1001-1399 (½ intege

• Real variables and all calculations use floati
(p.107).

 15

N 15

Y

X

pick

place

“bad part” bin

0

0

Conditions:
15 “on” = good part
15 “off” = bad part
HOME 1 1

VEL 100

TAG 1

MOVL 1

BTON 310

MOVL 2

MOVL 3

BTOF 310

GOTO 1
L E/G manual.

ve unique numbers.

 shared between programs.

r, ½ real)

ng-point methodology

 Intelligent Actuator, Inc. Introduction & Basic Training

• COLUMNS: used for storing ASCII strings for SELNET communications.

• “LOCAL” flag/variable/column: only used within a given program and

reset to 0 or blank at end of program, E-stop, or power-off.

• “GLOBAL” flag/variable/column: can be read by any other program
running in parallel (multitasking) and these global items maintain their
value upon end of program, E-stop, and power off (as long as the
backup battery is still good!).

• “ VIRTUAL INPUTS & OUTPUTS” 7000-7299 & 7300-7599

• “SYMBOLS” allow all addresses in the controller to be named for easier

programming and troubleshooting. The 1000 possible defined symbols
can be used 5000 times. Can also name/define constants.

Programming Logic

• The first 3 (or 2) columns in the command structure can be utilized to
create conditional lines of code.

• “Conditional Statement”: If the condition specified is true, that line of

code will be executed. If not, the program will skip to the next line – it
does not wait for the condition to become true.

• This functionality makes the SEL language a truly powerful language.

• The condition may be an input, output, or flag.

• The “N” column is used to specify “NOT” or an off (logic 0) condition.

• The “E” or “A/O” column is used for expanding the condition set with

logical AND/OR statements with the ability for AND/OR blocks.

• The result can be “ladder-like” as shown. Similar to ladder logic.

• The command column for all but the last expansion condition must be

blank.

Step A/O Cond Comd Operand 1 Operand 2 Post Comments
1 N 900 If 900 isn’t on
2 A N 901 GOTO 1 And 901 isn’t on, goto 1
3 902 If 902 is on,
4 O N 903 GOTO 2 Or 903 is not, goto 2.
5 EXIT (Above conditions weren’t met
6 So, exit the program)
14

 Intelligent Actuator, Inc. Introduction & Basic Training

15

• By combining the different conditional statements, code can be

compressed greatly.

Conditions Example

 Intelligent Actuator, Inc. Introduction & Basic Training

16

Teaching Pendant

• Name comes from the ability to teach points while standing above the
work area.

• Rarely used, but affordable and portable.

• Works on same RS-232 port as software does, using same protocols.

 Intelligent Actuator, Inc. Introduction & Basic Training

17

Maintenance

• SA: Ballscrew goes through motor assembly. Can replace DS encoder
assembly, but SA is a “throwaway” actuator. Greasing is necessary for
DS & SA.

• IS / ISP: Ballscrew goes through motor assembly with IS Series as well.

Encoder located on end. Grease gun used on fittings, lithium grease
used on ballscrew.

• AS: Motor/Encoder assembly is all enclosed. Coupling mechanism used

between motor and ballscrew. Homing is done differently.

• AS homing involves the coupling as well. Must tighten down motor,

loosen coupling to obtain difference between home and 1st position, then
re-tighten the coupling.

• B Grease used in maintenance, C class used in clean room units from

the factory. THK AFB grease crosses over specs for both ballscrew and
linear guide grease, therefore, this grease can be used on both, in non-
clean room situations.

• Substitutions can be made for THK AFB grease. Please ask us if you can

substitute for a specific brand (i.e. Shell, Mobil, etc.).

• Spray lubricant is acceptable when the ballscrew cover cannot be

removed. Careful! Too much lubricant will run down to the bottom and
pool on the brake assembly causing damage to the brake.

• Ballscrew grease is applied by hand to the ballscrew. Even distribution

of the ballscrew grease is accomplished by moving the slide back and
forth. This should be applied until the ballscrew is greasy on all sides.

• Grease fittings are inserted to lubricate the guide rails. This grease is

applied until grease appears out of the sides.

Service and repairs

• Both the Chicago and LA offices have replacement parts and perform
service. Call for part availability, pricing and troubleshooting questions.

 Intelligent Actuator, Inc. Introduction & Basic Training

18

• Common electrical parts: Main CPU, Motor CPU, Drivers, I/O, boards,
and backup lithium batteries.

• Common actuator parts: Motor & Encoder, Brushes, Pulleys, Ballscrews,

Belts, Linear Guides, and Couplings.

• Besides greasing, re-alignment of the actuator may need to be done if

the slide is “binding”.

• The more information provided upon sending in a repair, the quicker the

turnaround on a replacement or repaired unit.

Cables

• Many different options for cables and cable assemblies.

• The motor/encoder cables are now robot cables.

• The correct cable will vary from system to system based on different
factors.

• Thorough specifications of cabling needs must be done when ordering

additional cables or replacements.

• Other miscellaneous cables available are the RS-232 cable

replacements, RS-232 with E-stop, brake and limit switch cables, SCARA
accessory cabling, and so forth.

Controllers

• Controllers are configurable to meet the specific needs of the system.

• The main adaptable controller features are:

 -Amount of I/O

 -Wattage of drivers

 -Number of axes able to be controlled

 -Limit Switch option

 Intelligent Actuator, Inc. Introduction & Basic Training

19

 -RS232 option

 -High speed I/O

• The combinations are numerous, but check for your system’s
feasibility.

• Also, changes to your system may induce noise that was not present

before.

More variables

• As before, “local” variables are used only within the program.

• And “global” variables can be shared between programs.

• The same goes for flags and columns.

• An SEL “REAL” variable has the range of –99,999.99 to 999,999.99; with
the decimal point able to “float” within the 8-digit number (floating point
math).

• An SEL “INTEGER” variable has the range of –99,999,999 to 99,999,999

and cannot accommodate decimal points.

• Real used often in point table manipulation.

• Using these variables with math and trig functions allow for a large amount
of calculation possibilities.

Pointers

• Pointers are used for “indirect addressing” between variables.

• Pointers and counters used in combination with simple loops simplifies
code greatly:

 LET 1 10 /* let variable 1 = 10

 Intelligent Actuator, Inc. Introduction & Basic Training

20

TAG 1 /* set placeholder 1
ADD 1 5 /* add 5 to variable 1
MOVL *1 /* move to point determined by
 /* the value present in variable 1.

 GOTO 1 /* jump back to tag 1 and repeat

• The program above will increment the point that the actuator(s) move to

by 5 each time through the loop, and move to that point.

• The use of the pointer *1 cuts down on programming lines, which saves
space, time, and confusion.

• More advanced pointers will be used later on in training.

More SEL Commands

• Walkthrough of the additional commands available.

• Standard commands are grouped by purpose on p.119-120.

• Expansion commands are grouped by purpose on p.162.

• Some popular additional commands are as follows:

OFST – adds an offset value to the original value when before the actuator
moves (p. 122).

HOLD – decelerate and stops motion when a designated input turns on,
continues motion when input turns back off again (p. 124). Not OSHA
compliant.

CIR – actuator executes a circular motion starting at the current position
and passing points 1 and 2 using interpolation (p. 128).

PATH – continuous move between the starting point and ending point
using B-spline interpolation through a number of points. Actuator will try
to “reach” points in-between, but not necessarily intersect them (p.129).

ARC – uses similar calculations methods as CIR and PATH to create an arc
through two points.

 Intelligent Actuator, Inc. Introduction & Basic Training

21

JFWN – jogs the actuator forward upon the activation of a chosen input (p.
130).

JFWF – jogs the actuator forward upon the deactivation of a chosen input
(p.131).

IN – read in binary numbers through I/O or flag (p. 136).

OUT – output binary numbers through I/O or flag (p. 137).

EXPG / ABPG – start other program / abandon other program (p. 140).

BGSR / EDSR – begin subroutine / end subroutine (p. 141).

PGET – read determined position data from the point table location into
local variable (p. 157).

PRED – read current coordinates of the axis specified into point table
location (p. 159).
-Additional commands for math functions, subroutines, point table, IF-
THEN-ELSE loops, DO-WHILE loops, bit masking and SELNET.

More X-SEL Commands

OUTR – PLC output turns off when condition turn off.

BTPN – Similar as BTON but is pulsed on.(op1 = flag/output, op2 = time)

TIMR – PLC timer relay turn on local flag with delay. (op1 = flag, op2 =
time)

SSPG – Effectively holds another program. OP1 = program to hold

RSPG – Releases the hold on another program

CHVL – Specifies a velocity for specific axis. OP1=Axis Pattern,
OP2=Velocity

PSPL – Similar to path but will actually hit the points with better velocity
control

 Intelligent Actuator, Inc. Introduction & Basic Training

22

PUSH – The Push movement can only work on a single axis at a time.
There is no spec data on the push force yet. Notice that the push can be
pushed back without error. OP1=Point

PAPR – To be used before the PUSH command. OP1=Distance from end
point to start pushing. OP2=Velocity

CIR2 – Same and CIR on the Sel-G

ARC2 – Same as ARC on the Sel-G

ARCD – Arc based on angle. Operand 1 is the end point, operand 2 the
angle(degrees)

ARCC – Arc based on radius. Operand 1 is the radius, operand 2 the
angle(degrees)

The X-SEL has additional commands that were not available on earlier
versions of the Super SEL controllers.

 Intelligent Actuator, Inc. Introduction & Basic Training

23

Pointer Example

• Have a part on a pallet that needs 14 different holes drilled.

• A “safe” position is designated for the actuator to wait while the part is
being swapped out.

• Input “16” is wired to an external cycle start button.

• Input “15” is wired to the drill activation switch.

• Output “311” is wired to an external lamp that indicates when the cycle
is done.

• Since we have 14 points to move to, and external devices attached to
I/O, we need to use a combination of comparison statements, loops,
pointers and output for this system to properly work.

x

• Could also use a global variable in so we know where we left off in case

of a broken drill bit, power loss, etc.

• This would save time and money in having to re-do a part or restart the
entire cycle.

Safe location

1 14

HOME 11
VEL 100
LET 20 1

 TAG 1
 MOVP *20
 BTON 310
 WTON 15
 BTOF 310
 ADD 20 1
 CPEQ 20 15 900
N 900 GOTO 1

 BTON 311
 MOVP 50
 WTON 16
 BTOF 311
 LET 20 1
 GOTO 1

50

 Intelligent Actuator, Inc. Introduction & Basic Training

24

• This global variable could be used within our present loop and only be

reset when the part is complete. Would increment and “keep track” as
we drill holes.

OFST (offset) Example:

• We have 144 points on a pallet, but don’t want to teach all the points.

• Best plan of attack: teach one row (or column), and offset the rest.

IN/OUT Example:

• We have five stations in a row working off a conveyor belt that is indexing
parts. The first station is the inspection station and the last is the sorting
station (discards bad parts).

• Best plan of attack: use flags to set up a shift register.

Multi-tasking Example:

• We have an inkjet head (single axis) to dispense within a certain length of
a sheet that is indexed.

• Best Plan of attack: Multi-task two programs, a motion program and a

motion-monitoring program.

-2.5 mm offset between columns.

-Teach first row (far left)

-Offset the rest before performing
task on points.

x

y

 Intelligent Actuator, Inc. Introduction & Basic Training

25

Special Commands

• MOVD / MVDI: Move position / Incremental move (DS only).

• MVPI / MVLI: Incremental PTP move / Incremental interpolated move.

• VELS: Sets max X,Y velocity as a % of rated during PTP move. (SCARA)

• ACCS: Sets max. X, Y acceleration as a % of rated during PTP move.
(SCARA)

• JUMP: Executes arch motion move between two points (SCARA)

• LEFT: Moves SCARA into left arm work envelope. (SCARA)

• RIGH: Moves SCARA into right arm work envelope. (SCARA)

• PTPD: Forbid the SCARA to make reversed arm move. (SCARA)

• PTPE: Permit the SCARA to make a reversed arm move. (SCARA)

 Intelligent Actuator, Inc. Introduction & Basic Training

26

Symbols

• A new feature is the ability to name just about everything in the program
(points, programs, inputs, outputs, virtual inputs, virtual outputs, flags,
tags, subroutines …etc-9 characters max). This can make troubleshooting
or altering a program much easier. To place a name, open the “Edit
Symbol” under the “Symbol” menu. Once you have labeled your points or
variables you can set up a program that may look similar to this:

• Remember that to make a name or change, it must be done in the
Symbols-edit menu. On the current versions of the software the names can
only be seen in Symbol-edit screen. The software will not automatically

 Intelligent Actuator, Inc. Introduction & Basic Training

27

show you the names in any other menus. Also, note that the names are
case sensitive, allowing you to use the same name with different casing.

Cycle Time

• Back of the SA catalog has good equations for determining cycle time.

• Excel spreadsheet with timing is available.

• Settling time is 0.15 sec for ballscrews, 0.20 for belts.

• This settling time is required in order to maintain the specified 0.2mm
repeatability.

• If this tight repeatability is not needed, the “position end band” parameter
can be increased to allow slightly sloppier positioning. The use of
commands PBND, QRTN can also shorten cycle time.

• This method has been known to decrease settling time to as low as 0.05
sec.

• In cases where there are multiple movements, the decrease in individual
settling time adds up dramatically.

• Multitasking programs also save time by executing non-motion dependent
functions in parallel such as turning on/off outputs, grippers, etc.

• GTTM is a command used for determining cycle time by taking an initial
“snapshot” of the system timer at both the beginning and end of the cycle.

• By subtracting the beginning sample from the end sample, the final cycle
time is determined.

• Can use WTON, WTOF, and WTNT with a time added to only allow the

program to wait for an input or flag for a set amount of time.

 Intelligent Actuator, Inc. Introduction & Basic Training

ACC and VEL vs. cycle time

• For short moves, acceleration is the most important characteristic.

• For long moves, velocity is the most important.

• S-curve, as seen below, “rounds” the edges for smoother motion. (SCRV).

• High acceleration does not necessarily mean faster cycle! The overshoot
involved with a large acceleration value will cause increased settling time
and longer overall cycle times

• Typical motion profile:

• The PATH command becomes very important in reducing cycle time
because there is no complete stop in the move through the different points,
only deceleration.

• Interpolated moves look 3 points ahead (PATH, CIR, ARC) which is
beneficial for dispensing applications. “Back to Back” PATH or CIR or ARC,
allows for the output to turn on at the end of the path. In example below,
the glue turns on at point 1 and off at point 19. The outputs are reverse
logic in that when output 305 turns on, the glue turns off, and when 305
turns off, the glue turns on.

vel

time

XX

X

X

X

X
X

X X X X X
X

X

X

X

X
X

X
X

X
XXX

Glue will
not puddle
up
as easy
with these
last three
points
close
together.

MOVP 1
BTOF 305
PATH 1 19 305

*Output 305
turns on at 19.
This was set
up as reverse

Glue turns on at pt. 1
(BTOF 305)

X

15
16
178
1

logic, so the
glue turns off.
1

X
20
28

X “S
21
19
afe” point

 Intelligent Actuator, Inc. Introduction & Basic Training

29

Program Flow

• Subroutines are “functions” within a program.

• Multitask programs are completely separate programs that can be made to
run in parallel.

• Each separate program running in parallel can have its own subroutines
that are executed when certain events occur or certain conditions are met.

• To control program flow, flags are used in conjunction with conditional

statements, logical comparisons, and so forth.

• The most simple method used to control program execution is using a
logical comparison with a simple loop, as seen before.

Troubleshooting

� A: communication/programming error codes

� B: CPU instruction processing error

� C: programming error

� D: axis errors (driver or encoder)

� E: CPU/IO error.

• Other common problems:

� Positioning off due to changes in environment affecting hard stop.

� Positioning off a fixed amount due to bad encoder or connection.

� Screen blank or memory problems from noise interference.

• If software related errors occur, check the programming or I/O.

• If hardware errors occur, check the lubrication, workspace or payload to

see if anything has been changed or needs maintenance.

• There is an extensive error list that is very useful

 Intelligent Actuator, Inc. Introduction & Basic Training

30

• There is a list of errors that have occurred on the controller as shown

below:

Error History Menu

 Intelligent Actuator, Inc. Introduction & Basic Training

31

Parameters

• Step through parameter list and explanations. Also listed in the manual.

• Changing many parameters on list will void warranty (results in pushing
system beyond rated limits).

• Changing parameters correctly can benefit system, as mentioned with
position end band vs. cycle time.

• Gain settings are often the culprit where noisy actuators are concerned.

• The parameters are also used to alter the characteristics of I/O, fault
recovery and other program control features.

Fault Recovery Examples

 Emergency stop options (used with parameter “OTHER #10” set to 0,1,2)

• The default e-stop situation.

If the e-stop is triggered all programs will stop immediately and turn
outputs off. Once the e-stop is released the controller will return to the
“ARDY” state (automatic mode ready state).

• E-stop requiring reset.

If the e-stop is triggered all programs will stop immediately and turn
outputs off. Once the e-stop is released the controller will go to an alarm
state indicating the controller must be reset. Using the soft rest input is
useful in this case (Input #1 see parameter “I/0 #31). Using this input will
require it to be on for one second. Please note, if this parameter is used the
controller will always reset when the input #1 is on for more than one
second.

• E-stop with program recovery.

If the e-stop is triggered all MOTION programs will pause and outputs
remain on. Once the e-stop is released the controller will display “- rS”
indicating input #5 will continue program where it last left off. This will
require the parameter “I/0 #35 to be set to 1.

 Intelligent Actuator, Inc. Introduction & Basic Training

32

There are some notes to keep in mind. If the system is moved during e-
stop, the system will be moved to where it left off (one axis at a time)
before continuing with the program. Also, the e-stop will only stop motion
programs, not non-motion programs. The last note is that the controller
can run a non-motion program during e-stop. This program will continue to
run after e-stop recovery.

Enable options (used with parameter “OTHER #11” set to 0,1,2)

• The default enable situation.

If the disable is triggered all programs will stop immediately and turn
outputs off. Once the e-stop is released the controller will return to the
“ARDY” state (automatic mode ready state).

• Enable requiring reset.

If the disable is triggered all programs will stop immediately and turn
outputs off. Once the disable is released the controller will go to an alarm
state indicating the controller must be reset. Using the soft rest input is
useful in this case (Input #1 see parameter “I/0 #31”). Using this input will
require it to be on for one second. Please note, if this parameter is used the
controller will always reset when the input #1 is on for more than one
second.

• Enable with program recovery.

If the disable is triggered all MOTION programs will pause and outputs
remain on. Once the e-stop is released the controller will display “- rS”
indicating input #5 will continue program where it last left off. This will
require the parameter “I/0 #35 to be set to 1.

There are some notes to keep in mind. If the system is moved during
disable, the system will be moved to where it left off (one axis at a time)
before continuing with the program. Also, the disable will only stop motion
programs, not non-motion programs. The last note is that the controller
can run a non-motion program during disable. This program will continue to
run after enable recovery.

 Intelligent Actuator, Inc. Introduction & Basic Training

33

Fault Recovery Related Parameters

• Outputs not affected by e-stop or enable. Using the parameters “I/O #70 &
71”, the controller can specify a range of outputs that will not turn off
during e-stop or enable.

• These parameters can come in useful when the controller starts running a
program during e-stop (“Other #2” set to 1~64) or enable (“Other #3” set
to 1~64).

• These parameters all work after a program has been triggered. In some

cases triggering a program at e-stop or disable may be necessary, whether
or not a program was running before. The parameter “Other #5” will allow
you to start a program once the e-stop or disable has been triggered.

• AutoStart is a parameter (Other #1) that is used to start a program
automatically after the controller is reset or power up. In this case the
program will always start on it’s own (in the AUTO mode) without a signal
from a PLC or a serial interface. Input Function Selection 003 (I/O
Parameters #3) should also be set to 1. Input Function Selection 003 (I/O
Parameters #3) if set to 2 will start the program on the rising edge of and
stop the program on the falling edge.

Also, a few parameters need to be changed.

First, in the parameter menu under Other,

Parameter 3 = Program number of the E-Stop program

Parameter 10 = 2

Under I/O Parameters,

Parameter 35 = 1

In the E-Stop program, a program is aborted and re-executed. The program
number should be the number of the AutoStart program. Right now it is set to 1.

Finally, when the e-stop is released, the controller will require Input 5 to be
pulsed before returning to normal operation.

 Intelligent Actuator, Inc. Introduction & Basic Training

Programming Lab II

Part 1

Part 2

Pick point
Bad part

Place points -Z-axis system w/ pneumatic
gripper.

-SOL for Z-axis: 310 on = down
 310 off = up

REQUIREMENTS X X X X X X
X X X X X X

Pi
X

X X X
X X X

ck point

X

-SOL for gripper: 311 on = close
 311 off = open

-Z-axis limit sw. up = 15 on

-Z-axis limit sw. dn. = 16 on

-Good part? 20 on.

X X X
X X X

Place points

 Bad part

Object blocking
path to bad part
bin and other
points.
X

X

34

 Intelligent Actuator, Inc. Introduction & Basic Training

35

Palletizing Examples

 4 x 3 Standard Pallet defined by 3 positions

PAPI defines the size of the pallet. Here is an example of the 4x3 pallet. (4 on X-
axis, 3 on Y axis)
PAPN defines the pattern that is executed (0 or 1).
PAPS defines the size of the pallet by three points that start in 2992 of the point
table. The first point starts at the first point of the pallet, the second is at
the end of the x-axis (primary), the third at the end of the y-axis
(secondary)
PSET starts Pallet one at it’s first point.
PMVL moves to the pallet.
PINC sets the next point in the pallet.
Flag 900 turns on when the pallet is complete.

The points change the shape/angle of the pallet.

 Intelligent Actuator, Inc. Introduction & Basic Training

36

Example of a 4x3 pallets defined by pitch (distance between pallet points)

PASE sets the primary axis
PAPN sets the pattern
PAPI sets the size of pallets
PAPT defines the offset of the pallet (the pitch for your axis)
PAST set the origin off your pallet
PSET starts your pallet at position one

 Intelligent Actuator, Inc. Introduction & Basic Training

37

Example of a Zig-Zag Pattern

PAPI - 4 (points on the primary axis) x 8 (points on the secondary axis)
PAPN – Pattern to visit the pallet points
PAPS – the three points in the point table that define the pallet
PSLI – the first point is indented (along the primary axis-20mm) and the number
if pallet points on that row

	Product Line Overview (from bottom up)
	System Interface
	I/O & Wiring
	BCD Inputs
	Specifications / Architecture (X-SEL)
	Encoder Operation (SEL-G)�
	Absolute Encoder Homing
	Programming semantics
	Software Lab I
	Introduction
	Point Table
	Programming
	Command Structure
	Numerals and Symbols
	Programming Logic
	Conditions Example
	Teaching Pendant
	Maintenance
	Service and repairs
	Cables
	Controllers
	More variables
	Pointers
	More SEL Commands
	More X-SEL Commands
	Pointer Example
	OFST (offset) Example:
	IN/OUT Example:
	Multi-tasking Example:
	Special Commands
	Symbols
	Cycle Time
	ACC and VEL vs. cycle time
	Program Flow
	Troubleshooting
	Error History Menu
	Parameters
	Fault Recovery Examples
	Fault Recovery Related Parameters
	Programming Lab II
	Palletizing Examples

