RCP2-GRLS

RoboCylinder 2-Finger Gripper Vertical Small Lever Type 42 mm Width Pulse Motor

Model Description

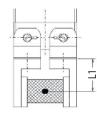
RCP2 – GRLS	5 –	20P -	- 30 -	- 180	- 🔲 -		_	
Series — Type	— Encoder —	- Motor -	 Deceleration - 	— Stroke	— Compatible Controllers —	Cable Length	_	Option
	I: Incremental * The Simple	20P : 20 □ size Pulse motor	30 : 1/30 Deceleration	180:180 degree (90 degree	P1:PCON-PL/PO/SE PSEL	N : None		NM : Nor

per side)

RPCON P3:PCON-CA PMEC/PSEP

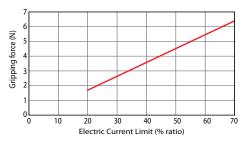
S : 3m M : 5m X□□ : Custom

-motor end ification FB : Flange bracket SB : Shaft bracket



- (1) The maximum opening/closing speed indicates the operating speed on one side. The relative operating speed is twice this value.
- (2) The maximum gripping force is the sum of the gripping forces of both fingers, at a gripping point where there is no offset or overhang distance. The work part weight that can be actually moved depends on the friction coefficient between the gripper fingers and the work part, as well as on the shape of the work part. As a rough guide, a work part's weight should not exceed 1/10 to 1/20 of the gripping force. (See page 27 for details.)
- (3) The rated acceleration while moving is 0.3 G.

■ Gripping Force vs. Electric Current Limit


The gripping (pushing) force can be adjusted freely within the range of electric current limits of 20% to 70%.

- * The gripping force of the graph below is measured on the top face of the lever. The actual gripping force drops in inverse proportion to the distance from the opening/closing fulcrum. Calculate the effective gripping force using the formula below.
- * Operate with the L1 distance under 40 mm.

Effective gripping force (GRLS) = $F \times 15.5/(L1 + 15.5)$

* In the graph below, the gripping force value is the sum of gripping forces of both fingers.

- * The gripping force graph above shows the number of references. Please allow margins up to \pm 15%
- * Please note that, when gripping (pushing), the speed is fixed at 5 deg/s.

Actuator Specifications

■ Lead and Payload

Model Number	Deceleration Ratio	Max. Gripping Force (N)	Stroke (degree)
RCP2-GRLS-I-20P-30-180- 11 - 2 - 3	30	6.4 (3.2 per side)	180 (90 per side)

Legend: 1 Compatible controllers 2 Cable length 3 Options

■ Stroke and Max. Opening/Closing Speed

Decele- ration Ratio	180 (degree)
30	600 (per side)

(Unit: deg/s)

Cable List

Type	Cable Symbol	
C. 1.1T	P (1m)	
Standard Type (Robot cable)	S (3m)	
(NODOL CADIE)	M (5m)	
	X06 (6m) ~ X10 (10m)	
Special Length	X11 (11m) ~ X15 (15m)	
	X16 (16m) ~ X20 (20m)	

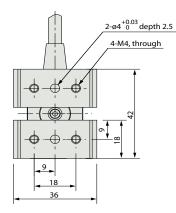
^{*} The standard cable is the motor-encoder integrated robot cable.

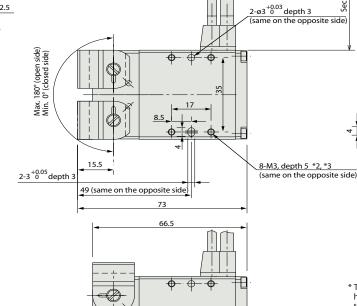
Actuator Specifications

ltem	Description			
Drive System	Worm gear + helical gear			
Positioning Repeatability	±0.01 degree			
Backlash	1.0 degree or less per side (constantly pressed out by a spring)			
Lost Motion	0.1 degree or less per side			
Guide	-			
Allowable Static Load Moment	=			
Weight	0.2 kg			
Ambient Operating Temp./Humidity	0 to 40°C, 85% RH or less (non-condensing)			

Option List


Name	Option Code	See Page	
Non-motor end specification	NM	P 18	
Flange bracket	FB	-	
Shaft bracket	SB	-	


www.intelligentactuator.com



- $\ensuremath{^*}$ The opening side of the slider is the home position.
- *1 The motor-encoder cable is connected here. *2 Use all tap holes (4 locations) on the same mounting surface to secure the actuator.
- *3 Do not screw in the bolt beyond the depth of the fixing tap hole. The internal parts may be damaged.
- *4 The actuator cable is not a robot cable, so secure the cable while the actuator is in use.

* The standard configuration is that the home is on the open side. If you wish to have the home on the closed side, specify an applicable option (model: NM).

3 ^{+0.05} depth 3

ø3^{+0.03}depth 3

34

4-M3, depth 5 *2, *3

Compatible Controllers

The RCP2 series actuators can operate with the controllers below. Select the controller according to your usage.

Name	External View	Model Number	Description	Max. Pos. Points	Input Voltage	Power Supply Capacity	See Page
Solenoid Valve Multi-axis Type PIO Specification		MSEP-C- ③ -~- ① -2-0	Positioner type based on PIO control, allowing up to 8 axes to be connected	3 points		See RoboCylinder	
Solenoid Valve Multi-axis Type Net- work Specification		MSEP-C- ③ -~- ④ -0-0	Filed network-ready positioner type, allowing up to 8 axes to be connected	256 points		General Catalog.	
Positioner Type		PCON-CA-20PI- ①-2-0	PIO control ready	512 points			→ P29
Pulse Train Type		PCON-CA-20PI-PL□-2-0	Pulse-train input ready	-		1A max.	
Network Type		PCON-CA-20PI- 4-0-0	Field network ready	768 points	DC24V		
Pulse Train Type (Differential Line Driver Specification)	ũ	PCON-PL-20PI- ① -2-0	Differential line driver ready	_			
Pulse Train Type (Open Collector Specification)		PCON-PO-20PI- ① -2-0	Open collector ready	_		See RoboCylinder	See RoboCylinder
Serial Communi- cation Type		PCON-SE-20PI-N-0-0	Dedicated serial communication type	64 points		General Catalog.	General Catalog.
Program Control Type		PSEL-CS-1-20PI- ① -2-0	Program operation is possible. Operation is possible up to 2 axes.	1500 points			

^{*} This is for the single-axis PSEL.

^{*} ① indicates I/O type (NP/PN).

^{*}indicates N (NPN specification) or P (PNP specification) symbol.

^{*3} indicates number of axes (1~8).

^{* 4} indicates field network specification symbol.