PCON, ACON, DCON, SCON RCP6S Series + PLC Connection Unit ERC2, ERC3

Serial Communication [Modbus Version]

Operation Manual, Tenth Edition

Please Read Before Use

Thank you for purchasing our product.

This Operation Manual explains the serial communication (Modbus), among others, providing the information you need to know to use the product safely.

Before using the product, be sure to read this manual and fully understand the contents explained herein to ensure safe use of the product.

The DVD that comes with the product contains operation manuals for IAI products.

When using the product, refer to the necessary portions of the applicable operation manual by printing them out or displaying them on a PC.

After reading the Operation Manual, keep it in a convenient place so that whoever is handling this product can reference it quickly when necessary.

[Important]

- The product cannot be operated in any way unless expressly specified in this Operation Manual. IAI shall assume no responsibility for the outcome of any operation not specified herein.
- Information contained in this Operation Manual is subject to change without notice for the purpose of product improvement.
- If you have any question or comment regarding the content of this manual, please contact the IAI sales office near you.
- Using or copying all or part of this Operation Manual without permission is prohibited.
- The company names, names of products and trademarks of each company shown in the sentences are registered trademarks.

Construction of Instruction Manual for Each Controller Model and This Manual

Basic Specifications Serial Communication (Modbus_RTU/ASCII) (This Manual)	ME0162
Related Controller Model and Instruction Manual Number	
ACON-CB/CGB, DCON-CB/CGB	ME0343
ACON-CYB/PLB/POB, DCON-CYB/PLB/POB	ME0354
ACON-CA, DCON-CA	ME0326
ACON-C/CG	ME0176
ACON-PL/PO	ME0166
ACON-SE	ME0171
ACON-CY	ME0167
PCON-CB/CGB/CFB/CGFB_	ME0342
PCON-CYB/PLB/POBPCON-CA/CFA	ME0353 ME0289
PCON-C/CG/CFPCON-PL/PO	ME0170 ME0164
PCON-SE	ME0163
PCON-CY	ME0156
COON CD/COD	ME0240
SCON CR E (Sarva Proce Type)	ME0340
SCON-CB-F (Servo Press Type)SCON-CA/CAL/CGAL	ME0345
SCON-C	ME0243 ME0161
RCP6S Series + PLC Connection Unit (This Manual)	ME0162
[RCP6S Series: RCP6S, RCM-P6PC, RCM-P6AC, RCM-P6DC]	ME0349
ERC3	ME0297
ERC2 (PIO)	ME0158
ERC2 (SIO)	ME0159
ROBONET-SIO ERC2 (PIO)	ME0208

Table of Contents

S	afety Guide	1
Н	andling Precautions	8
1	Overview	. 11
	1.1 Instruction Manuals Stored in DVD Related to This Product	. 11
2		
_	2.1 Communication Mode	
3		
3	·	
	3.1 In Case the Host Uses RS232C Interface	
	(1) System configuration	
	3.2 In Case the Host Uses RS485 Interface	
	(1) System configuration	
	(2) Wiring	
	3.3 Communication Connector Pin Assignment of PLC and PC (Reference)	
	3.4 Various Setting before Starting Communication	
	3.5 Setting Axis Numbers	
	3.6 Setting Controller Communication Speed	
	3.6.1 Setting Wiring and Hardware for Each System	
	3.6.2 Setting Communication Speed	
4	· · · · · · · · · · · · · · · · · · ·	
	4.1 Message Transmission Timing	
	4.2 Timeout and Retry	
	4.3 Internal Addresses and Data Structure of RC Controller	
	4.3.1 Structure of Modbus Registers	
	4.3.2 Details of Modbus Registers	
	(1) Data of alarm detail code (Address = 0500 _H) (ALA0)	
	(2) Data of alarm address (Address = 0501 _H) (ALA0)	. 30
	(3) Data of alarm code (Address = 0503 _H) (ALC0)	. 31
	(4) Data of alarm occurrence time (Address = 0504 _H) (ALT0)	
	(5) Data of device control register 1 (Address = 0D00 _H) (DRG1)	
	(6) Data of device control register 2 (Address = 0D01 _H) (DRG2)	
	(7) Data of position number command registers (Address = 0D03 _H) (POSR)	
	(8) Data of total moving count (Address = 8400 _H) (TLMC)	
	(9) Data of total moving distance (Address = 8402 _H) (ODOM)	. 31 \
	(10) Data of present time (Address = 841E _H (SCON-CA/CAL/CB), 8420 _H (PCON-CA/CFA/CB/CFB) 8422 _H (ACON-CA/CB, DCON-CA/CB) (TIMN)	, 38
	(11) Data of total FAN driving time (Address = 842A _H (SCON-CAL, SCON-CB [400W or more]),	. 00
	842E _H (PCON-CFA/CFB) (TFAN)	. 39
	(12) Data of device status register 1 (Address = 9005 _H) (DSS1)	
	(13) Data of device status register 2 (Address = 9006 _H) (DSS2)	
	(14) Data of expansion device status register (Address = 9007 _H) (DSSE)	
	(15) Data of system status registers (Address = 9008 _H) (STAT)	
	(16) Data of special port monitor registers (Address = 9012 _H) (SIPM)	
	(17) Data of zone status register (Address = 9013 _H) (ZONS)	. 45
	(18) Data of position number status register (Address = 9014 _H) (POSS) Exected program number registers (Address = 9014 _H) (PSOR) ·For SCON Servo Press Type	46
	(19) Data of expansion system status registers (Address = 9015 _H) (SSSE)	
	(10) Data of expansion system status registers (Address - 30 10H) (000L)	. +/

	(20) (Overload level monitors (Address = 9020 _H) (OLLV)	48
	(21) F	Press program alarm codes (Address = 9022 _H) (ALMP) ·SCON Servo Press Type only	49
	, ,	Alarm generated press program No. (Address = 9023 _H) (ALMP) ·SCON Servo Press	
		ype only	50
		Press program status registers (Address = 9024 _H) (PPST) ·SCON Servo Press Type only	
	(24) F	Press program judgements status registers (Address = 9025 _H) (PPJD) ·SCON Servo	
		Press Type only	
	4.3.3	Structure of Modbus Status Registers	
_	4.3.4	Detail of Modbus Status Registers	
5		RTU	
		ssage Frames (Query and Response)	
		t of RTU Mode Queries	
		ta and Status Reading (Used function code 03)	
	5.3.1	Reading Consecutive Multiple Registers	
	5.3.2	Alarm Detail Description Reading < <ala0, alc0,="" alt0="">></ala0,>	69
	5.3.3	Position Data Description Reading << PCMD, INP, VCMD, ZNMP, ZNLP, ACMD, DCMD, PPOW, LPOW, CTLF>>	71
	5.3.4	Total moving count Reading < <tlmc>></tlmc>	74
	5.3.5	Total moving distance Reading << ODOM>> (in 1 mm units)	76
	5.3.6	Present Time Reading < <timn>></timn>	
	5.3.7	Total FAN Driving Time Reading < <tfan>></tfan>	
	5.3.8	Current Position Reading << PNOW>> (in 0.01 mm units)	
	5.3.9	Present Alarm Code Reading < <almc>></almc>	
	5.3.10	I/O Port Input Signal Status Reading << DIPM>>	
	5.3.11	I/O Port Output Signal Status Reading< <dopm>></dopm>	
	5.3.12	Controller Status Signal Reading 1 << DSS1>>	
	5.3.13	Controller Status Signal Reading 2 << DSS2>>	
	5.3.14	Controller Status Signal Reading 3 << DSSE>>	
	5.3.15 5.3.16	Current Speed Reading < <vnow>></vnow>	
	5.3.17	Current Ampere Reading << CNOW>>	
	5.3.18	Deviation Reading < <devi>></devi>	
	5.3.19	Total Time after Power On Reading < <stim>></stim>	
	5.3.20	Special Input Port Input Signal Status Reading< <sipm>></sipm>	
	5.3.21	Zone Output Signal Status Reading< <zons>></zons>	
	5.3.22	Position Complete Number Reading< <poss>> Exected Program Number Register</poss>	
		(Servo Press Type) << POSS>>	117
	5.3.23	Controller Status Signal Reading 5 < <ssse>></ssse>	119
	5.3.24	Current Load Reading < <fbfc>> SCON-CA/CB Only</fbfc>	
	5.3.25	Overload Level Monitor Reading < <ollv>> SCON-CA/CAL/CB Only</ollv>	
	5.3.26	Press Program Alarm Code Reading < <almp>> Servo Press Type Only</almp>	
	5.3.27	Alarm Generated Press Program No. Reading < <almp>> Servo Press Type Only</almp>	
	5.3.28	Press Program Status Register Reading << PPST>> Servo Press Type Only	
	5.3.29	Press Program Judgement Status Register Reading << PPJD>> Servo Press Type Only	
	•	eration Commands and Data Rewrite (Used function code 05)	
	5.4.1	Writing to Coil	
	5.4.2	Safety Speed Enable/Disable Switching (SFTY)	
	5.4.3	Servo ON/OFF < <son>></son>	
	5.4.4 5.4.5	Alarm Reset < <alrs>></alrs>	
	5.4.5 5.4.6	Pause < <stp>></stp>	140 142
	. (.) ↔ (.)	1 GUDE 22011 CC	14/

	5.4.7	Home Return < <home>></home>	
	5.4.8	Positioning Start Command < <cstr>></cstr>	146
	5.4.9	Jog/Inch Switching < <jisl>></jisl>	148
	5.4.10	Teaching Mode Command < <mod>></mod>	150
	5.4.11	Position Data Load Command < <teac>></teac>	152
	5.4.12	Jog+ Command << JOG+>>	154
	5.4.13	Jog- Command << JOG->>	156
	5.4.14	Start Positions 0 to 7 < <st0 st7="" to="">> Movement Command (Limited to solenoid valve mode)</st0>	158
	5.4.15	Load Cell Calibration Command < <clbr>> A dedicated load cell must be connected</clbr>	160
	5.4.16	PIO/Modbus Switching Setting << PMSL>>	162
	5.4.17	Deceleration Stop < <stop>></stop>	164
	5.4.18	Axis operation permission < <enmv>> Servo Press Type Only</enmv>	166
	5.4.19	Program Home Position Movement << PHOM>> Servo Press Type Only	168
	5.4.20	Search Stop < <sstp>> Servo Press Type Only</sstp>	
	5.4.21	Program compulsoly finish < <fpst>> Servo Press Type Only</fpst>	
	5.4.22	Program Start < <pstr>> Servo Press Type Only</pstr>	
		ect Writing of Control Information (Used function code 06)	
	5.5.1	Writing to Registers	
		ect Writing of Positioning Data (Used function code 10)	
	5.6.1	Numerical Value Movement Command	
	5.6.2	Writing Position Table Data	
6		ASCII	
U			
		ssage Frames (Query and Response)	
		CII Code Table	
		of ASCII Mode Queries	
	6.4 Dat	a and Status Reading (Used function code 03)	
	6.4.1	Reading Consecutive Multiple Registers	
	6.4.2	Alarm Detail Description Reading < <ala0, alc0,="" alt0="">></ala0,>	219
	6.4.3	Position Data Description Reading << PCMD, INP, VCMD, ZNMP, ZNLP, ACMD, DCMD, PPOW, LPOW, CTLF>>	221
	6.4.4	Total moving count Reading < <tlmc>></tlmc>	224
	6.4.5	Total moving distance Reading << ODOM>> (in 0.01 mm units)	226
	6.4.6	Present Time Reading < <timn>></timn>	228
	6.4.7	Total FAN Driving Time Reading < <tfan>></tfan>	231
	6.4.8	Current Position Reading (in 0.01 mm units) Monitor << PNOW>>	233
	6.4.9	Present Alarm Code Query < <almc>></almc>	
	6.4.10	I/O Port Input Signal Status Reading << DIPM>>	
	6.4.11	I/O Port Output Signal Status Reading << DOPM>>	242
	6.4.12	Controller Status Signal Reading << DSS1>>	
	6.4.13	Controller Status Signal Reading 2 << DSS2>>	
	6.4.14	Controller Status Signal Reading 3 << DSSE>>	
	6.4.15	Controller Status Signal Reading 4 < <stat>></stat>	
	6.4.16	Current Speed Query < <vnow>></vnow>	
	6.4.17	Current Ampere Reading < <cnow>></cnow>	
	6.4.18	Deviation Reading < <devi>></devi>	
	6.4.19	Total Time after Power On Reading < <stim>></stim>	
	6.4.20	Special Input Port Input Signal Status Query < <sipm>></sipm>	
	6.4.21	Zone Output Signal Status Reading < <zons>></zons>	
	6.4.22	Position Complete Number Query << POSS>> Exected Program Number Register (Servo	200
		Press Type) << POSS>>	267

	6.4.23	Controller Status Signal 5 < <ssse>></ssse>	269
	6.4.24	Current Load Reading < <fbfc>> SCON-CA/CB Only</fbfc>	271
	6.4.25	Overload Lebel Monitor Reading < <ollv>> SCON-CA/CAL/CB Only</ollv>	273
	6.4.26	Press Program Alarm Code Reading < <almp>> Servo Press Type Only</almp>	
	6.4.27	Alarm Generated Press Program Reading < <almp>> Servo Press Type Only</almp>	
	6.4.28	Press Program Status Register Reading < <ppst>> Servo Press Type Only</ppst>	
	6.4.29	Press Program Judgement Status Register Reading << PPJD>> Servo Press Type Only	
	6.5 Ope	eration Commands and Data Rewrite (Used function code 05)	
	6.5.1	Writing to Coil	
	6.5.2	Safety Speed Enable/Disable Switching (SFTY)	
	6.5.3	Servo ON/OFF < <son>></son>	
	6.5.4	Alarm Reset < <alrs>></alrs>	
	6.5.5	Brake Forced Release << BKRL>>	290
	6.5.6	Pause < <stp>></stp>	292
	6.5.7	Home return < <home>></home>	294
	6.5.8	Positioning Start Command < <cstr>></cstr>	296
	6.5.9	Jog/Inch Switching < <jisl>></jisl>	298
	6.5.10	Teaching Mode Command < <mod>></mod>	300
	6.5.11	Position Data Load Command < <teac>></teac>	302
	6.5.12	Jog+ Command << JOG+>>	304
	6.5.13	Jog- Command << JOG->>	306
	6.5.14	Start Positions 0 to 7 < <st0 st7="" to="">> (Limited to solenoid valve mode)</st0>	308
	6.5.15	Load Cell Calibration Command < <clbr>> A dedicated load cell must be connected</clbr>	
	6.5.16	PIO/Modbus Switching Setting << PMSL>>	
	6.5.17	Deceleration Stop < <stop>></stop>	
	6.5.18	Axis operation permission < <enmv>> Servo Press Type Only</enmv>	
	6.5.19	Program Home Position Movement << PHOM>> Servo Press Type Only	
	6.5.20	Search Stop < <sstp>> Servo Press Type Only</sstp>	
	6.5.21	Program compulsoly finish < <fpst>> Servo Press Type Only</fpst>	
	6.5.22	Program Start < <pstr>> Servo Press Type Only</pstr>	
	6.6 Cor	ntrol Information Direct Writing (Used function code 06)	
	6.6.1	Writing to Registers	
	6.7 Pos	sitioning Data Direct Writing (Used function code 10)	
	6.7.1	Numerical Value Movement Command	
	6.7.2	Writing Position Table Data	348
7	Troubles	shooting	356
	7.1 Res	sponses at Errors (Exception Responses)	357
	7.2 Not	es	360
		en Communication Fails	
8		ce Materials	
		C Check Calculation	
		of Systems that Use both SIO and PIO	
		garding Option Units	
	8.3.1	SIO converter (vertical specification: RCB-TU-SIO-A, horizontal specification: RCB-TU-SIO-B	
	8.3.2	PLC Connection Unit for RCP6S (RCB-P6PLC-□) * Not applicable for ASCII Mode	•
C		ory	
\circ	nange i list	O1 y	511

Safety Guide

"Safety Guide" has been written to use the machine safely and so prevent personal injury or property damage beforehand. Make sure to read it before the operation of this product.

Safety Precautions for Our Products

The common safety precautions for the use of any of our robots in each operation.

No.	Operation Description	Description
1	Model Selection	 This product has not been planned and designed for the application where high level of safety is required, so the guarantee of the protection of human life is impossible. Accordingly, do not use it in any of the following applications. 1) Medical equipment used to maintain, control or otherwise affect human life or physical health. 2) Mechanisms and machinery designed for the purpose of moving or transporting people (For vehicle, railway facility or air navigation facility) 3) Important safety parts of machinery (Safety device, etc.) Do not use the product outside the specifications. Failure to do so may considerably shorten the life of the product. Do not use it in any of the following environments. 1) Location where there is any inflammable gas, inflammable object or explosive 2) Place with potential exposure to radiation 3) Location with the ambient temperature or relative humidity exceeding the specification range 4) Location where radiant heat is added from direct sunlight or other large heat source 5) Location where condensation occurs due to abrupt temperature changes 6) Location where there is any corrosive gas (sulfuric acid or hydrochloric acid) 7) Location exposed to significant amount of dust, salt or iron powder 8) Location subject to direct vibration or impact For an actuator used in vertical orientation, select a model which is equipped with a brake. If selecting a model with no brake, the moving part may drop when the power is turned OFF and may cause an accident such as an injury or damage on the work piece.

1

No.	Operation Description	Description
2		 When carrying a heavy object, do the work with two or more persons or utilize equipment such as crane. When the work is carried out with 2 or more persons, make it clear who is to be the leader and who to be the follower(s) and communicate well with each other to ensure the safety of the workers. When in transportation, consider well about the positions to hold, weight and weight balance and pay special attention to the carried object so it would not get hit or dropped. Transport it using an appropriate transportation measure. The actuators available for transportation with a crane have eyebolts attached or there are tapped holes to attach bolts. Follow the instructions in the operation manual for each model. Do not step or sit on the package. Do not put any heavy thing that can deform the package, on it. When using a crane capable of 1t or more of weight, have an operator who has qualifications for crane operation and sling work. When using a crane or equivalent equipments, make sure not to hang a load that weighs more than the equipment's capability limit. Use a hook that is suitable for the load. Consider the safety factor of the hook in such factors as shear strength. Do not get on the load that is hung on a crane. Do not leave a load hung up with a crane. Do not stand under the load that is hung up with a crane.
3	Storage and Preservation	 The storage and preservation environment conforms to the installation environment. However, especially give consideration to the prevention of condensation. Store the products with a consideration not to fall them over or drop due to an act of God such as earthquake.
4	Installation and Start	 (1) Installation of Robot Main Body and Controller, etc. Make sure to securely hold and fix the product (including the work part). A fall, drop or abnormal motion of the product may cause a damage or injury. Also, be equipped for a fall-over or drop due to an act of God such as earthquake. Do not get on or put anything on the product. Failure to do so may cause an accidental fall, injury or damage to the product due to a drop of anything, malfunction of the product, performance degradation, or shortening of its life. When using the product in any of the places specified below, provide a sufficient shield. 1) Location where electric noise is generated 2) Location where high electrical or magnetic field is present 3) Location where the product may come in contact with water, oil or chemical droplets

No.	Operation Description	Description
4	Installation and Start	 (2) Cable Wiring Use our company's genuine cables for connecting between the actuator and controller, and for the teaching tool. Do not scratch on the cable. Do not bend it forcibly. Do not pull it. Do not coil it around. Do not insert it. Do not put any heavy thing on it. Failure to do so may cause a fire, electric shock or malfunction due to leakage or continuity error. Perform the wiring for the product, after turning OFF the power to the unit, so that there is no wiring error. When the direct current power (+24V) is connected, take the great care of the directions of positive and negative poles. If the connection direction is not correct, it might cause a fire, product breakdown or malfunction. Connect the cable connector securely so that there is no disconnection or looseness. Failure to do so may cause a fire, electric shock or malfunction of the product. Never cut and/or reconnect the cables supplied with the product for the purpose of extending or shortening the cable length. Failure to do so may cause the product to malfunction or cause fire.
		 (3) Grounding The grounding operation should be performed to prevent an electric shock or electrostatic charge, enhance the noise-resistance ability and control the unnecessary electromagnetic radiation. For the ground terminal on the AC power cable of the controller and the grounding plate in the control panel, make sure to use a twisted pair cable with wire thickness 0.5mm² (AWG20 or equivalent) or more for grounding work. For security grounding, it is necessary to select an appropriate wire thickness suitable for the load. Perform wiring that satisfies the specifications (electrical equipment technical standards). Perform Class D Grounding (former Class 3 Grounding with ground resistance 100Ω or below).

3

No.	Operation Description	Description	
 (4) Safety Measures When the work is carried out with 2 or more persons, make it clear when the safety of the workers. When the product is under operation or in the ready mode, take the safety of the workers. When the product is under operation or in the ready mode, take the safety and protection fence) so can enter the area within the robot's movable range. When the robot operation is touched, it may result in death or serious injury. Make sure to install the emergency stop circuit so that the unit can be immediately in an emergency during the unit operation. Take the safety measure not to start up the unit only with the power to the product. Take the safety measure not to start up the machine only with the empancellation or recovery after the power failure. Failure to do so may electric shock or injury due to unexpected power input. When the installation or adjustment operation is to be performed, give warnings such as "Under Operation; Do not turn ON the power!" etc. power input may cause an electric shock or injury. Take the measure so that the work part is not dropped in power failure emergency stop. Wear protection gloves, goggle or safety shoes, as necessary, to see Do not insert a finger or object in the openings in the product. Failure cause an injury, electric shock, damage to the product or fire. When releasing the brake on a vertically oriented actuator, exercise pages. 		 When the work is carried out with 2 or more persons, make it clear who is to be the leader and who to be the follower(s) and communicate well with each other to ensure the safety of the workers. When the product is under operation or in the ready mode, take the safety measures (such as the installation of safety and protection fence) so that nobody can enter the area within the robot's movable range. When the robot under operation is touched, it may result in death or serious injury. Make sure to install the emergency stop circuit so that the unit can be stopped immediately in an emergency during the unit operation. Take the safety measure not to start up the unit only with the power turning ON. Failure to do so may start up the machine suddenly and cause an injury or damage to the product. Take the safety measure not to start up the machine only with the emergency stop cancellation or recovery after the power failure. Failure to do so may result in an electric shock or injury due to unexpected power input. When the installation or adjustment operation is to be performed, give clear warnings such as "Under Operation; Do not turn ON the power!" etc. Sudden power input may cause an electric shock or injury. Take the measure so that the work part is not dropped in power failure or emergency stop. Wear protection gloves, goggle or safety shoes, as necessary, to secure safety. Do not insert a finger or object in the openings in the product. Failure to do so may 	
5	Teaching	 When the work is carried out with 2 or more persons, make it clear who is to be the leader and who to be the follower(s) and communicate well with each other to ensure the safety of the workers. Perform the teaching operation from outside the safety protection fence, if possible. In the case that the operation is to be performed unavoidably inside the safety protection fence, prepare the "Stipulations for the Operation" and make sure that all the workers acknowledge and understand them well. When the operation is to be performed inside the safety protection fence, the worker should have an emergency stop switch at hand with him so that the unit can be stopped any time in an emergency. When the operation is to be performed inside the safety protection fence, in addition to the workers, arrange a watchman so that the machine can be stopped any time in an emergency. Also, keep watch on the operation so that any third person can not operate the switches carelessly. Place a sign "Under Operation" at the position easy to see. When releasing the brake on a vertically oriented actuator, exercise precaution not to pinch your hand or damage the work parts with the actuator dropped by gravity. * Safety protection Fence: In the case that there is no safety protection fence, the movable range should be indicated. 	

No.	Operation Description	Description		
6	Trial Operation	 When the work is carried out with 2 or more persons, make it clear who is to be the leader and who to be the follower(s) and communicate well with each other to ensure the safety of the workers. After the teaching or programming operation, perform the check operation one step by one step and then shift to the automatic operation. When the check operation is to be performed inside the safety protection fence, perform the check operation using the previously specified work procedure like the teaching operation. Make sure to perform the programmed operation check at the safety speed. Failure to do so may result in an accident due to unexpected motion caused by a program error, etc. Do not touch the terminal block or any of the various setting switches in the power ON mode. Failure to do so may result in an electric shock or malfunction. 		
7	Automatic Operation	 Check before starting the automatic operation or rebooting after operation stop that there is nobody in the safety protection fence. Before starting automatic operation, make sure that all peripheral equipment is in an automatic-operation-ready state and there is no alarm indication. Make sure to operate automatic operation start from outside of the safety protection fence. In the case that there is any abnormal heating, smoke, offensive smell, or abnormal noise in the product, immediately stop the machine and turn OFF the power switch. Failure to do so may result in a fire or damage to the product. When a power failure occurs, turn OFF the power switch. Failure to do so may cause an injury or damage to the product, due to a sudden motion of the product in the recovery operation from the power failure. 		

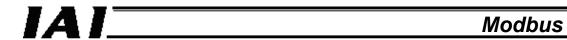
5

No.	Operation Description	Description		
8	Maintenance and Inspection	 When the work is carried out with 2 or more persons, make it clear who is to be the leader and who to be the follower(s) and communicate well with each other to ensure the safety of the workers. Perform the work out of the safety protection fence, if possible. In the case that the operation is to be performed unavoidably inside the safety protection fence, prepare the "Stipulations for the Operation" and make sure that all the workers acknowledge and understand them well. When the work is to be performed inside the safety protection fence, basically turn OFF the power switch. When the operation is to be performed inside the safety protection fence, the worker should have an emergency stop switch at hand with him so that the unit can be stopped any time in an emergency. When the operation is to be performed inside the safety protection fence, in addition to the workers, arrange a watchman so that the machine can be stopped any time in an emergency. Also, keep watch on the operation so that any third person can not operate the switches carelessly. Place a sign "Under Operation" at the position easy to see. For the grease for the guide or ball screw, use appropriate grease according to the Operation Manual for each model. Do not perform the dielectric strength test. Failure to do so may result in a damage to the product. When releasing the brake on a vertically oriented actuator, exercise precaution not to pinch your hand or damage the work parts with the actuator dropped by gravity. The slider or rod may get misaligned OFF the stop position if the servo is turned OFF. Be careful not to get injured or damaged due to an unnecessary operation. Pay attention not to lose the cover or untightened screws, and make sure to put the product back to the original condition after maintenance and inspection works. Use in incomplete condition may cause damage to the product or an injury. Safety protection Fence:		
9	Modification and Dismantle	Do not modify, disassemble, assemble or use of maintenance parts not specified		
10	Disposal	 When the product becomes no longer usable or necessary, dispose of it properly as an industrial waste. When removing the actuator for disposal, pay attention to drop of components when detaching screws. Do not put the product in a fire when disposing of it. The product may burst or generate toxic gases. 		
11	Other	 Do not come close to the product or the harnesses if you are a person who requires a support of medical devices such as a pacemaker. Doing so may affect the performance of your medical device. See Overseas Specifications Compliance Manual to check whether complies if necessary. For the handling of actuators and controllers, follow the dedicated operation manual of each unit to ensure the safety. 		

Alert Indication

The safety precautions are divided into "Danger", "Warning", "Caution" and "Notice" according to the warning level, as follows, and described in the Operation Manual for each model.

Level	Degree of Danger and Damage	Sy	ymbol
Danger	This indicates an imminently hazardous situation which, if the product is not handled correctly, will result in death or serious injury.	<u></u>	Danger
Warning	This indicates a potentially hazardous situation which, if the product is not handled correctly, could result in death or serious injury.	<u></u>	Warning
Caution	This indicates a potentially hazardous situation which, if the product is not handled correctly, may result in minor injury or property damage.	<u></u>	Caution
Notice	This indicates lower possibility for the injury, but should be kept to use this product properly.	<u>.</u>	Notice



Handling Precautions

The explanations provided in this manual are limited to procedures of serial communication. Refer to the operation manual supplied with the ROBO Cylinder Controller (hereinafter referred to as RC controller) for other specifications, such as control, installation and connection.

Caution Λ

- (1) Make sure to follow the usage condition, environment and specifications ranges of the product.
 - Not doing so may cause a drop in performance or malfunction of the product.
- (2) If any address or function not defined in this specification is sent to an RC controller, the controller may not operate properly or it may implement unintended movements. Do not send any function or address not specified herein.
- (3) RC controllers are designed in such a way that once the controller detects a break (space) signal of 150 msec or longer via its SIO port, it will automatically switch the baud rate to 9600 bps.
 - On some PCs, the transmission line remains in the break (space) signal transmission mode while the communication port is closed. Exercise caution if one of these PCs is used as the host device, because the baud rate in your RC controller may have been changed to 9600 bps.
- (4) Set the baud rate and other parameters using IAI's PC software or other dedicated teaching tool.
- (5) If the controller is used in a place meeting any of the following conditions, provide sufficient shielding measures. If sufficient actions are not taken, the controller may malfunction:
 - [1] Where large current or high magnetic field generates
 - [2] Where arc discharge occurs due to welding, etc.
 - [3] Where noise generates due to electrostatic, etc.
 - [4] Where the controller may be exposed to radiation
- (6) When performing wiring tasks and inserting/extracting connectors in/from sockets, make sure that the power supplies of the host and each RC controller are turned OFF. Carrying out such tasks with the power supplies turned ON may result in electric shock and/or damage to parts.

- (7) In order to prevent malfunctions due to noise, wire the communication cables such that the communication cables are isolated from power lines and other control wiring.
- (8) In order to prevent malfunctions due to noise, make sure to take noise prevention measures on the electric equipment in the same power supply circuit or within the same device.
- (9) The alarm codes output to 0503_H and 9002_H in Modbus address include those in message level. There are some types in the IAI controllers that do no issue the message level alarms. In case it is necessary to replace a controller that does not issue the message level alarms with one that issues, add the operation patterns at the issuance of a message level alarm in the system that requires changing the operation pattern for each alarm level. (Example: Replacing from PCON-C to PCON-CA)
 For the details of the alarm levels to be issued, refer to the troubleshooting in the instruction
- manual of each controller.
- (10) About Battery-less Absolute Type Stepping Motor Mounted Actuator
 Note 1) and 2) should be applied to encoders with resolution of 800 pulses.
 - Position adjustment operation will be conducted only in the first servo-on after the power is turned on due to the characteristics of the stepping motor. The maximum amount of movement in the position adjustment operation is 0.025mm * lead length [mm].
 - 2) Home-return complete signal [HEND] and limit switch output signal [LS] are output after the first servo-on after the power is turned on.
 - 3) An error output will not be issued when the first servo-on is held outside the soft limit range. Soft limit monitoring starts after moved into the range.
 - 4) Make sure to perform the home-return operation (absolute reset) when the motor unit is taken off the actuator for such a purpose as motor replacement work.
- (11) For Position Data editing of RCP6S, RCM-P6PC, RCM-P6AC and RCM-P6DC, the teaching tool such as PC software needs to be connected to the teaching port on the RCP6S actuator. Connecting to ports other than this teaching port cannot access without the connection to this teaching port, and 0 will be read even the reading guery is executed.

9

1 Overview

The ROBO Cylinder Controller (hereinafter referred to as RC controller) is equipped with a serial bus interface for asynchronous communication conforming to the EIA RS485 standard. This interface allows the RC controller to communicate with the host (host controller). In this way, it is possible to build an SIO link system that can connect and control up to 16 axes of slaves (RC controllers) (Note 1).

In addition to sending commands to each axis individually, it is also possible to broadcast the same command to all slaves at the same time.

Modbus Protocol is employed as the communication protocol, and it is possible to send commands from a host as well as read internal information.

Since the specifications of Modbus Protocol are disclosed globally, software development can be carried out easily.

(Note 1) Note that it is only possible to connect RC series devices on the same network; old RC series (protocol T) or other devices cannot be connected.

There are 2 types of serial transmission modes: ASCII mode (where 1-byte (8 bits) data is Converted to ASCII code (2 characters) and sent) and RTU mode (where 1-byte (8 bits) data is sent as is). RC controllers identify the transmission mode on a packet-by-packet basis, thus making it possible to receive in both modes (Note 2).

Set the ROBONET RS485 to the SIO through mode. [Refer to the separate ROBONET Operation Manual.]

(Note 2) Make sure to use the same serial transmission mode for all devices on one network: it is not allowed to use both modes.

☆ Controllable controllers

- ERC2(SE)/ERC3 (V0002 or later)
- PCON-C/CG/CF/CY/PL/PO/SE/CA/CFA/CB/CFB/CGB/CGFB/CYB/PLB/POB
- ACON-C/CG/CY/PL/PO/SE/CA/CB/CGB/CYB/PLB/POB
- DCON-CA/CB/CGB/CYB/PLB/POB
- SCON-C/CA/CAL/CGAL/CB/CGB/Servo Press Type
- ROBONET_RS485 (When RTU mode and SIO through mode)
- RCP6S Series + PLC Connection Unit (RTU mode) [RCP6S Series: RCP6S, RCM-P6PC, RCM-P6AC, RCM-P6DC]

1.1 Instruction Manuals Stored in DVD Related to This Product

Refer to "Construction of Instruction Manuals for Each Controller Model Code and This Manual" in front of the table of contents for the instruction manual numbers for each controller.

Abbreviation for Type Names for Controllers in This Manual

Some controller types may not be able to use some features and commands (queries) explained in this instruction manual. In case there is such restrictions, the type names that are applicable and those that are not applicable should be described. As Safety Category (G) Type is the same as the standard type in the way of applicable and not applicable, abbreviation should be as described below.

[Abbreviation]	Abbreviated as C for C/CG	Abbreviated as CAL for CAL/CGAL
Abbreviated as CB for CB/CGB	Abbreviated as CFA for CFA/CGFA	Abbreviated as CFB for CFB/CGFB

2 Specifications

Item	Method/condition
Interface	Conforming to EIA RS485
Communication method	Half-duplex communication
Maximum total extension distance	100 m
Synchronization method	Start-stop synchronization
Connection pattern	1-to-N unbalanced bus connection (1 ≤ N ≤ 16)
Transmission mode	RTU/ASCII (auto-detect) (Note)
Baud rate (bps)	Selectable from the following speeds via parameter setting: 9600, 14400, 19200, 28800, 38400
	57600, 76800, 115200, 230400
Bit length	8 bits
Stop bit	1 bit
Parity	None

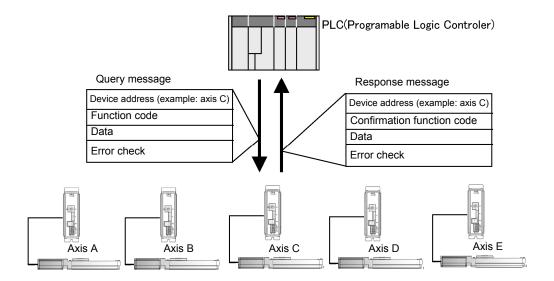
Note ROBONET and RCP6S Series + PLC Connection Unit are not applicable for ASCII Mode. [RCP6S Series: RCP6S, RCM-P6PC, RCM-P6AC, RCM-P6DC]

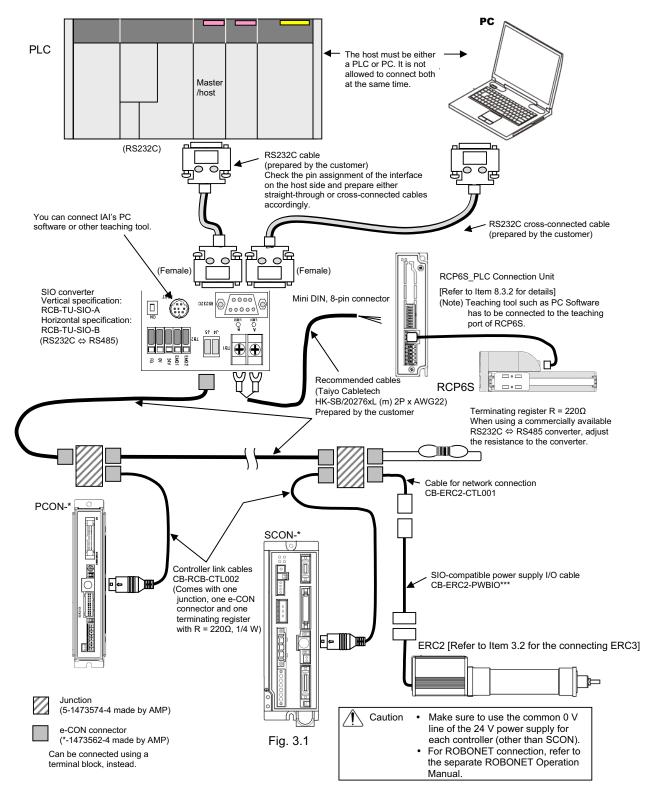
2.1 Communication Mode

In the Modbus protocol, communication takes place in a single-master/multiple-slave configuration. In this communication, only the master (the PLC host in the example below) issues a query to a specified slave (the RC controller connected to axis C in the example below). When the specified slave receives this query, it executes the function specified in the query, and then returns a response message (one communication cycle is completed with this operation).

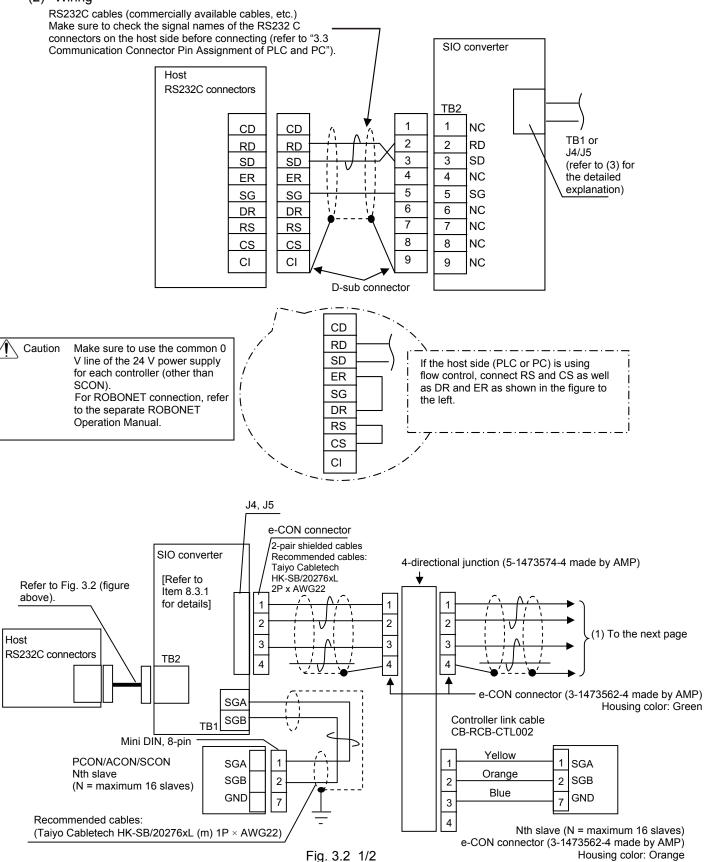
The query message format consists of the slave address (or broadcast), function code defining the content of request, data, and error check.

The response message format consists of the function code confirming the content of request, data, and error check. Following figure shows the query message format and response message configuration.

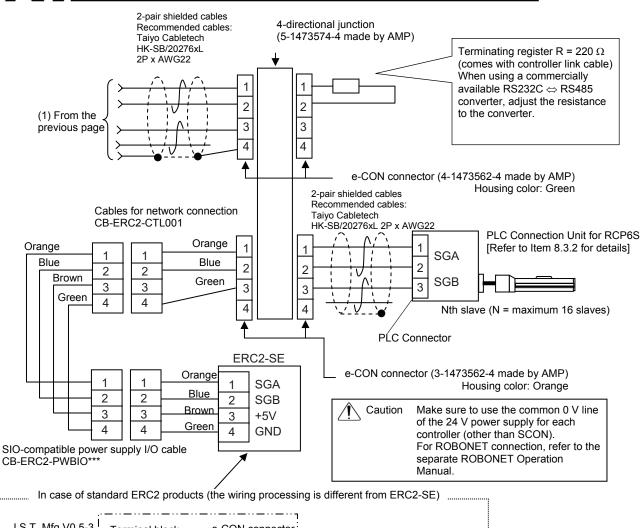



Fig. 2.1

3 Preparation for Communication


3.1 In Case the Host Uses RS232C Interface

(1) System configuration



(2) Wiring

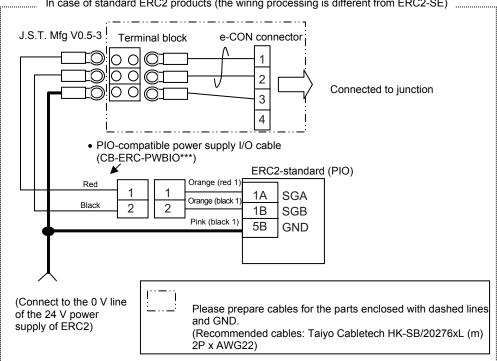
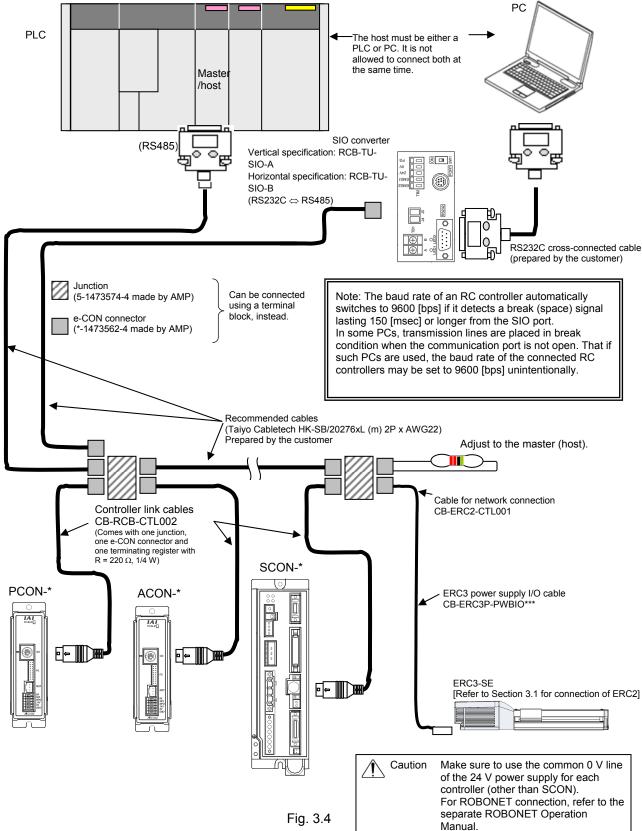
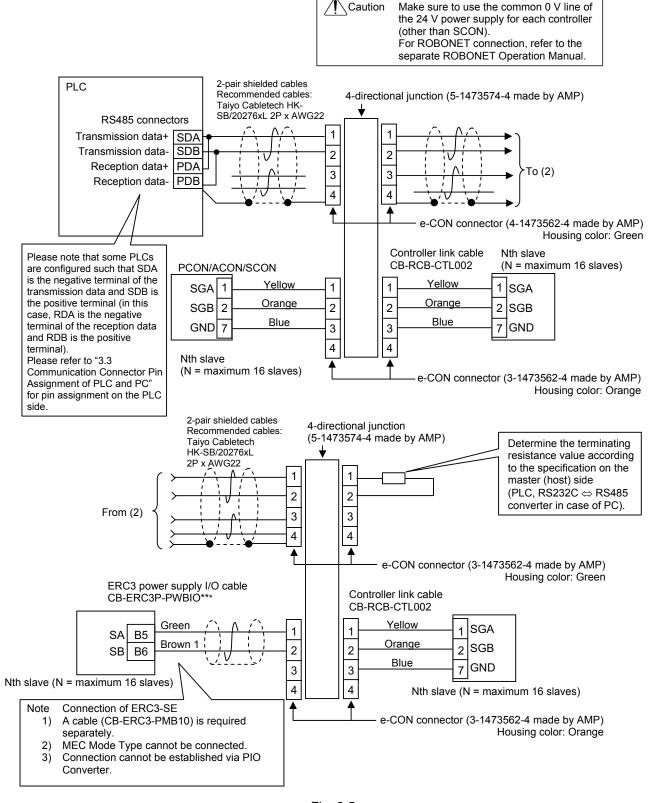



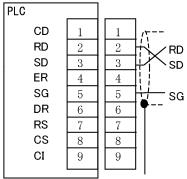
Fig. 3.2 2/2

3.2 In Case the Host Uses RS485 Interface

(1) System configuration

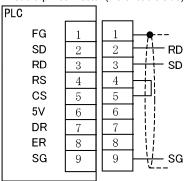
(2) Wiring




Fig. 3.5

3.3 Communication Connector Pin Assignment of PLC and PC (Reference)

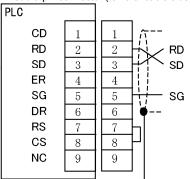
In case of PLC made by Mitsubishi: QJ71C24 RS232C


D-sub 9-pin connector (male: cable side)

One end of the shielded cable shall be connected to a connector housing or grounded.

In case of PLC made by Omron: CJ1W-SCB or SCU RS232C

D-sub 9-pin connector (male: cable side)



D-sub 9-pin connector (female: cable side)

PC: RS232C

In case of PLC made by Keyence: KV-L20R RS232C

D-sub 9-pin connector (female: cable side)

One end of the shielded cable shall be connected to a connector housing or grounded.

connector housing or grounded.

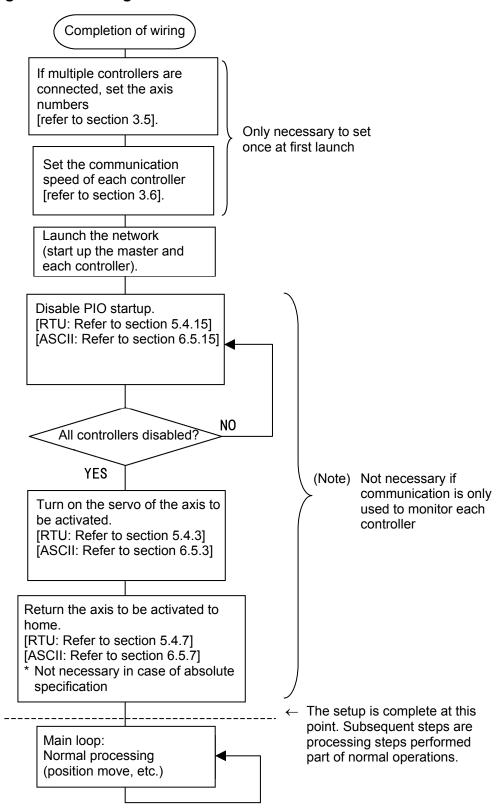
CD RD 2 2 SD 3 3 ER 4 4 SG 5 5 SG To use flow control, connect RS DR 6 6 and CS as well as DR and ER. RS 7 7 CS 8 8 9 9 Connect the shielded cable to the connector housing

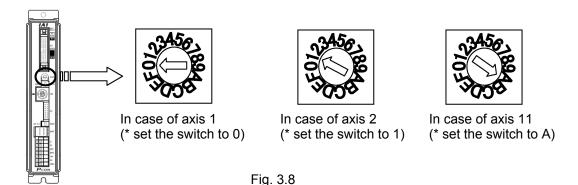
In case of PLC made by Mitsubishi: In case of PLC made by Omron: QJ71C24 RS485 CJ1W-SCB or SCU RS485 Terminal block D-sub 9-pin connector (male: cable side) Wire cables based on the printed signal PLC names on the communication unit panel. Transmission data- (SDA) Transmission data Transmission data+ (SDB) 2 2 Transmission data+ Transmission data-Transmission data+ SDA NC 3 3 Transmission data+ SDB Transmission data-NC 4 4 RDA q Reception data+ NC 5 5 **RDB** a Reception data-Reception data- (RDA) 6 6 One end of the One end of the shielded cable shall NC 7 In case of PLC made by Keyence: shielded cable shall be connected to a Reception data+ (RDB) 8 8 **KV-L20R RS485** connector housing be connected to a Terminal block NC 9 9 or grounded. connector housing or grounded. (Set the toggle switch PLC 1: SG to a two-wire system) Transmission data-2 2: Reception data- (RDA) Transmission data+ 3: Transmission data- (SDA) 3 4: Reception data+ (RDB) 4 5: Transmission data+ (SDB) 5 One end of the (Set the toggle switch on the 485 (2) side) shielded cable shall be connected to a

[* Please refer to operation manual of each manufacturer for detailed explanations.]

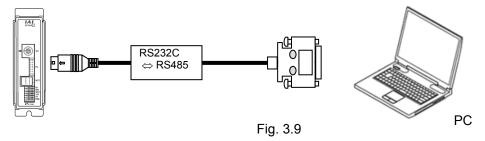
Fig. 3.6

3.4 Various Setting before Starting Communication




Fig. 3.7

3.5 Setting Axis Numbers


Set an axis number for each RC controller on the SIO link using hexadecimal digits from 0 to F_H , which is the number for the 16th axis.

If the panel surface of an RC controller has an axis number setting switch (ADRS) (PCON-C/CG/CF/CA/CFA/CB/CFB/CGB/CGFB, ACON-C/CG/CA/CB, DCON-CA/CB, SCON-C/CA/CB/CGB and ROBONET), adjust the arrow to point to the axis number using a flat bladed screwdriver (make sure that each axis number is unique).

For those RC Controllers other than above that do not have the axis number setting switch, it is necessary that the axis number is set by connecting one unit of the teaching tool such as PC software to each controller. In this example, how to set the axis number using the PC software is explained. For the setting from a teaching pendant, refer to an instruction manual for each model (TB-03/02/01, CON-PTA, CON-PT, CON-T, RCM-E and RCM-T).

Connect the PC to the SIO connector of the RC controller for which an axis number is to be set.

Set the numbers using the following procedure.

- [1] Start the RC connection software and select the [Setting] menu.
- [2] Select the [Controller] menu item.
- [3] Select the [Addressing axis number] menu item.
- [4] Input the axis numbers (0 to 15) to the axis number table with a care not to make duplication.

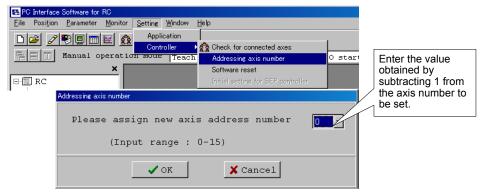


Fig. 3.10

3.6 Setting Controller Communication Speed

In order to perform communication, the communication speed of the PLC and each RC controller must match.

Set the communication speed according to the procedure explained in sections 3.6.1 and 3.6.2. [For the settings on the host side, refer to the operation manual for your host equipment.] Please be aware that the wiring is different depending on the system configuration.

3.6.1 Setting Wiring and Hardware for Each System

- (1) In case of using a PC as the master (host) controller
 It is possible to make settings without changing the current connection. For those RC controllers that possess the operation mode setting switch, set the switch to MANU.
- (2) In case a PLC is used as the master (host) controller connected via RS232C Connect a PC as master (host) controller instead of the PLC (refer to Figure 3.1). At this point, disconnect the PLC from the SIO converter and connect the PC to the teaching port (Mini DIN8 pin connector) of the SIO converter [refer to section 3.1 (3)] using the cable supplied with the PC software. For those RC controllers that possess the operation mode setting switch, set the switch to MANU.
- (3) In case a PLC is used as the master (host) controller connected via RS485 Connect a PC directly to each RC controller in the same way as for setting axis numbers. For those RC controllers that possess the operation mode setting switch, set the switch to MANU.
- (4) When a ROBONET is connected

 To set up your ROBONET, connect the cable supplied with your PC software to the teaching port
 on the GateWayR unit. Set the MODE selector switch on the GateWayR unit to "MANU."

3.6.2 Setting Communication Speed

Set the communication speed using the following procedure.

(Note) On ROBONET controllers, the baud rate is set using the ROBONET gateway parameter setting tool. [For details, refer to the separate ROBONET Operation Manual.]

[1] Start the RC connection software and select [Edit] from the [Parameters] menu.

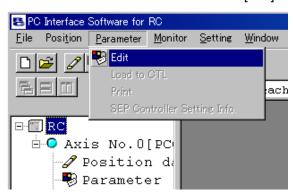


Fig. 3.11

[2] Select the axis number of the controller to be changed.

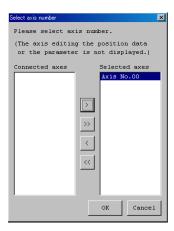


Fig. 3.12

[3] Set parameter No. 16, SIO Baudrate [bps].

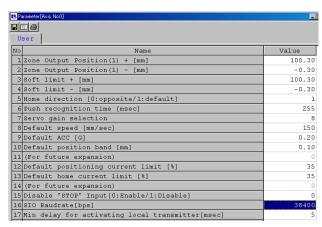


Fig. 3.13

4 Communication

4.1 Message Transmission Timing

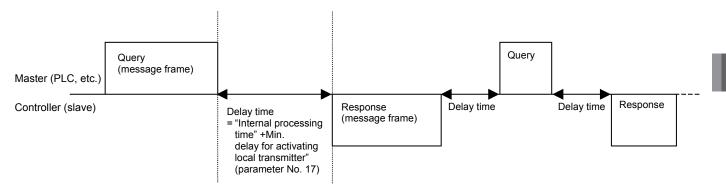


Fig. 4.1

The basic transmission control procedure consists of the master sending a query, and the RC controller that received the query sending a response, which are considered one unit.

The delay time after a query message is received until a response message is sent is calculated as the total sum of parameter No. 17 "Min. delay for activating local transmitter" (default value 5 ms) and the internal processing time (refer to the table below).

After receiving a query message, the RC controller waits for the "min. delay for activating local transmitter." Once this delay time elapses, the controller will activate the transmitter and start sending a response message. The master must enable the receive function of its own station within the aforementioned delay time after sending a query message.

RC controller gets ready for the next query reception in 1ms after a response or a message has sent out.

Internal processing time^(Note 1)

Item	Time	
Read/write a register other than those in the low-speed memory area	1 msec max.	
Position data (1 position) Read	4 msec max.	
Position data (1 position) Write	15 msec max.	
Position data (1 position) Read/write	18 msec max.	
Position data (9 positions) Read	9 msec max.	
Position data (9 positions) Write	90 msec max.	
Position data (9 positions) Read/write	98 msec max.	

Note 1 Processing duration may differ depending on the category to access and the controller type.

Timeout and Retry

After sending a query, the host waits for a response from the controller (except when the query that has been sent is a broadcast query).

If the elapsed time after sending a command until a response is received exceeds the timeout value (Tout), the host may send the command again to reestablish communication. If the number of retries exceeds three times, it means that an irremediable communication error has occurred.

The method for calculating the timeout value (Tout) is explained below.

1. Timeout value (Tout)

Tout = To + α + (10 × Bprt/Kbr) [ms]

To : Internal processing time* × Safety factor (3) : Min. delay for activating local transmitter [ms] (default value of parameter No. 17 is 5 ms)

Kbr : Baud rate [kbps]

Bprt: Response message bytes + 8

 \bigwedge Caution The internal processing time varies depending on the category of the register to be accessed. The processing time required for each action is listed in the table below.

Item	Maximum time [ms]		
Read/write a register other than those in the low-speed memory area	1		
Position data (1 position) Read	4		
Position data (1 position) Write	15		
Position data (1 position) Read/write	18		
Position data (9 positions) Read	9		
Position data (9 positions) Write	90		
Position data (9 positions) Read/write	98		

2. Number of Retries

Nrt = 3 (note that setting of the number of retries is mandatory)

4.3 Internal Addresses and Data Structure of RC Controller

The memory area in your RC controller consists of the Modbus register area read/written in units of words and the Modbus status are written in units of bits (coils).

and the medical characteristics in the control of the control						
Memory area	Access	Address range	Function			
Memory area	unit	Address range	Code (Note)	Function		
	Word	0500 to 9908 _H	03 н	Read holding registers		
Modbus register [Refer to 4.3.1 and 4.3.2.]			06 н	Write holding registers		
			10 _H	Write multiple holding		
				registers at the same time		
Modbus status	Bit	0100 to 043F _H	05 н	Write coils		
[Refer to 4.3.3 and 4.3.4.]			- 5 11			

(Note) Function codes explained in this manual.

4.3.1 Structure of Modbus Registers

The layout of the Modbus registers is shown below.

0000 _н	(Reserved for system) (Note)						
0500 _н ≀ 0505 _н	Detailed information of the alarm detected lately						
ООООН	(Reserved for system) (Note)						
0D00 _H	,						
₹	I/O control information registers						
0D03 _н	(Note)						
	(Reserved for system) (Note)						
1000₁	Position table information						
. ₹	< <low-speed area="" memory="">></low-speed>						
3FFF _н	* SCON for servo-pressing and RCP6S series not applicable						
	(Reserved for system) (Note)						
8400 _H	Maintenance information						
₹ 842E ₊	* Refer to section for the maintenance information in the following page for the applicable models.						
OTZEH	(Reserved for system) (Note)						
9000⊩	(Reserved for System)						
)	Controller monitor information registers						
9015μ	• • • • • • • • • • • • • • • • • • •						
	(Reserved for system) (Note)						
9800 _н	Position command registers						
	(Reserved for system) (Note)						
9900₁	, ,						
₹	Numerical command registers						
9908₁							
FFFF _H	(Reserved for system) (Note)						

Note Areas reserved for the system cannot be used for communication. [RCP6S Series: RCP6S, RCM-P6PC, RCM-P6AC, RCM-P6DC]

4.3.2 Details of Modbus Registers

Address	Area name		Symbol	Reference page				
[hex]	7 ii Ga Harrio	Description		Cymbo.	RTU		ASCII	
0000 to 04FF	Reserved for system							
0500	Detailed	Alarm detai	code	ALA0	69	30	219	30
0501	information of	Alarm addre	ess	ALA0		30		30
0502	the alarm	Always 0	Always 0			-		-
0503	detected lately	Alarm code				31		31
0504		Alarm occu	ALT0		32		32	
0506 to 0CFF	Reserved for system							
0D00	I/O control	Device conf	rol register 1	DRG1	176	33	326	33
0D01	information	Device conf	Device control register 2			34		34
	category	(Other type:	s than Servo Press Type)	POSR		35		35
0D03		Position number specification register						
0003			s Type) Program number					
		specification	n register		,			
0D04 to 0FFF	Reserved for system							
1000 to 3FFF	Position table	Offset [hex]						
(Note 2)	information	+0000 _H	Target position	PCMD	198	200	348	350
	(low-speed	+0002 _H	Positioning band	INP				
	memory area)	+0004 _H	Speed command	VCMD				
		+0006 _H	Individual zone boundary +	ZNMP				
* Detailed		+0008 _H	Individual zone boundary -	ZNLP				
addresses		+000A _H	Acceleration command	ACMD				
can be		+000B _H	Deceleration command	DCMD		201		
calculated		+000C _H	Push-current limiting value	PPOW				351
using the		+000D _H	Load current threshold	LPOW				
formula to		+000E _H	Control flag specification	CTLF				
the right. $ ightarrow$	* Address = 10	00 _н + (16 х I	Position No.) + Offset					
4000 to 83FF	Reserved for system							
8400	Maintenance	Total movin	g count (Note 1)	TLMC	36	74	36	224
8402	information	Total movin	g distance ^(Note 1)	ODOM	37	76	37	226
841E	(models		e (SCON-CA/CAL/CB only)	TIMN	38	78	38	228
8420	applicable to		e (PCON-CA/CFA/CB/CFB only)	TIMN	38	78	38	228
8422	calendar		e (ACON-CA/CB, DCON-CA/CB only)	TIMN	38	78	38	228
842A	function only)	Total FAN o	riving time (SCON-CAL, 400W or more] only)	TFAN	39	81	39	231
842E			driving time (PCON-CFA/CFB only)	TFAN	39	81	39	231
8430 to 8FFF	Reserved for system							
9000	Controller	Current pos	ition register	PNOW	(66)	83	(216)	233
9002	monitor		rm code register	ALMC	` ′	85	` ′	235
9003	information		Input port register]	87		237
9004	category	Output port register		DIPM DOPM		92		242
9005			us 1 register	DSS1	40 (66)	97	40 (216)	247
9006			us 2 register	DSS2	41 (66)	99	41 (216)	249
9007			device status register	DSSE	42 (66)	101	42 (216)	251
9008		System stat		STAT	43 (66)	103	43 (216)	253

Note 1 PCON-CA/CFA/CB/CFB/CYB/PLB/POB, ACON-CA/CB/CYB/PLB/POB, DCON-CA/CB/CYB/PLB/POB, SCON-CA/CAL/CB, ERC3, RCM-P6PC, RCM-P6AC and RCM-P6DC not applicable

Note 2 SCON for servo-pressing, RCP6S, RCM-P6PC, RCM-P6AC and RCM-P6DC not applicable

Address	Aroa namo	Description	Symbol		Reference page		
[hex]	Area name	Description	Symbol	R ⁻	ΓU	AS	CII
900A	Controller	Current speed monitor register	VNOW	(66)	105	(216)	255
900C	monitor	Current ampere monitor register	CNOW		107		257
900E	information	Deviation monitor register	DEVI		109] [259
9010	category	System timer register	STIM		111		261
9012		Special input port register	SIPM		(66)		13
9013		Zone status register	ZONS	45		11	
9014		(Other types than Servo Press Type) Positioning complete position No. register (Servo Press Type) Executed program No. register	POSS	46 (66)	117	46 (216)	267
9015		Expansion System status register	SSSE	47 (66)	119	47 (216)	269
9016 to 901D	Reserved for system						
901E	Controller monitor information category	Current load (SCON-CA/CB only)	FBFC	(66)	121	(216)	271
9020	Controller	Overload level monitor	OLLV	48	123	48	273
9022	monitor information	Press program alarm code	ALMP	49	125	49	275
9023	category	Press program alarm generated program No.	ALMP	50	127	50	277
9024	(Servo Press	Press program status register	PPST	51	129	51	279
9025	Type only)	Press program judgement status register	PPJD	52	131	52	281
9026 to 97FF	Reserved for system						
9800	Position command category	Position movement command register	POSR	35	176	35	326
9801 to	Reserved for						
98FF	system			/	/	/	/
9900	Numerical value	Target position coordinate specification register	PCMD	180	182	330	332
9902	command	Positioning band specification register	INP				
9904	category	Speed specification register	VCMD				
9906		Acceleration/deceleration speed specification register	ACMD		183		333
9907		Push-current limiting value	PPOW]]	
9908		Control flag specification register	CTLF		184		334
9909 to FFFF	Reserved for system						
			_	_	_	_	_

(1) Data of alarm detail code (Address = 0500_H) (ALA0)

Bit	Symbol	Name	Function
15	-	Alarm detail code 32768	It shows the alarm detail code numbers.
14	-	Alarm detail code 16384	It is output when an alarm is issued that possesses an
13	-	Alarm detail code 8192	alarm detail code. It shows 0 _H when either there is no
12	-	Alarm detail code 4096	alarm generated or an alarm is generated but it
11	-	Alarm detail code 2048	possesses no alarm detail code.
10	-	Alarm detail code 1024	Alarm detail codes are read out in binary codes.
9	-	Alarm detail code 512	Check in the operation manual for the controller for the content of an alarm detail code as well as an alarm code.
8	-	Alarm detail code 256	Content of all alarm detail code as well as an alarm code.
7	-	Alarm detail code 128	
6	-	Alarm detail code 64	
5	-	Alarm detail code 32	
4	-	Alarm detail code 16	
3	-	Alarm detail code 8	
2	-	Alarm detail code 4	
1	-	Alarm detail code 2	
0	-	Alarm detail code 1	

(2) Data of alarm address (Address = 0501_H) (ALA0)

Bit	Symbol	Name	Function
15	-	Alarm address 32768	It shows the alarm address.
14	-	Alarm address 16384	The stored virtual address is output when a value stored
13	-	Alarm address 8192	in the virtual domain is the cause of the generated alarm.
12	-	Alarm address 4096	It shows FFFF _H when either there is no alarm generated
11	-	Alarm address 2048	or an alarm is generated but the virtual domain is not the
10	-	Alarm address 1024	cause of it.
9	-	Alarm address 512	Alarm address are read out in binary codes.
8	-	Alarm address 256	
7	-	Alarm address 128	
6	-	Alarm address 64	
5	-	Alarm address 32	
4	-	Alarm address 16	
3	-	Alarm address 8	
2	-	Alarm address 4	
1	-	Alarm address 2	
0	-	Alarm address 1	

(3) Data of alarm code (Address = 0503_H) (ALC0)

Bit	Symbol	Name	Function
15	-	Alarm code 32768	It shows the alarm code numbers of each level (cold start,
14	-	Alarm code 16384	operation cancellation, message).
13	-	Alarm code 8192	It is output when an alarm is issued. When any alarm is
12	-	Alarm code 4096	not issued, it is "0 _H ".
11	-	Alarm code 2048	Alarm code are read out in binary codes.
10	-	Alarm code 1024	For the detail of an alarm code, check in the operation
9	-	Alarm code 512	manual of the controller.
8	-	Alarm code 256	(Note) There some controllers that do not issue the
7	-	Alarm code 128	message level alarms. [For more details refer to
6	-	Alarm code 64	the troubleshooting of each controller]
5	-	Alarm code 32	
4	-	Alarm code 16	(Reference) If changing from a controller that does not
3	-	Alarm code 8	issue the message level alarms from one
2	-	Alarm code 4	which does (Example PCON-C \Rightarrow PCON-
1	-	Alarm code 2	CA), consider the operation patterns when
0	-	Alarm code 1	the message level alarms are issued.

Note Address = 0502_H always returns 0.

(4) Data of alarm occurrence time (Address = 0504_H) (ALT0)

Bit	Symbol	Name	Function
31	-	Alarm occurrence time 2147202832	It outputs the time of the alarm issuance.
30	-	Alarm occurrence time 1073601416	[1] For the models that are equipped with the calendar function (RTC), when RTC is set effective, it shows
29	-	Alarm occurrence time 536800708	the time of alarm issuance. [2] When RTC is set ineffective or for the models that is
28	ı	Alarm occurrence time 268400354	not equipped with RTC, it shows the passed time [sec] since the power to the controller is turned on.
27	-	Alarm occurrence time 134200177	How alarm issuance time is calculated in 1)
26	-	Alarm occurrence time 67108864	The data of alarm issuance time is calculated in 1) The data of alarm issuance time shows the seconds passed from the origin time (00hr:00min:00sec
25	-	Alarm occurrence time 33554432	1January2000).
24	ı	Alarm occurrence time 16777216	Passed second from the origin time is expressed with S, passed minute with M, passed hour with H, passed day
23	ı	Alarm occurrence time 8388608	with D and passed year with Y, and the calculation is conducted with a formula as shown below:
22	-	Alarm occurrence time 4194304	S= Data of read alarm issuance time
21	-	Alarm occurrence time 2097152	M= S/60 (decimal fraction to be rounded down) H= M/60 (decimal fraction to be rounded down)
20	-	Alarm occurrence time 1048576	D= H/24 (decimal fraction to be rounded down) Y= D/365.25 (decimal fraction to be rounded down)
19	-	Alarm occurrence time 524288	L (Leap year) = Y/4 (decimal fraction to be rounded up)
18	-	Alarm occurrence time 262144	Assuming the second of alarm issuance time is SA,
17	-	Alarm occurrence time 131072	minute is MA, hour is HA, passed day in this year is DA and year is YA, the time can be calculated with a formula
16	-	Alarm occurrence time 65536	as shown below: SA= Remainder of S/60
15	-	Alarm occurrence time 32768	MA= Remainder of M/60 HA= Remainder of H/24
14	-	Alarm occurrence time 16384	DA= D-(Y×365+L)
13	-	Alarm occurrence time 8192	Year and day can be figured out by subtracting the number of days in each month from DA.
12	-	Alarm occurrence time 4096	YA= Y+2000 (A.D.)
11	-	Alarm occurrence time 2048	Example) Assuming alarm issuance time data is 172C1B8B _H ;
10	-	Alarm occurrence time 1024	(1) Convert into decimal number:
9	-	Alarm occurrence time 512	S= 172C1B8B _H ⇒ 388766603 (2) Calculate M, H, D, Y and L.
8	-	Alarm occurrence time 256	M= 388766603/60= 6479443 H= 6479443/60= 107990
7	-	Alarm occurrence time 128	D= 107990/24= 4499
6	-	Alarm occurrence time 64	Y= 4499/365.25= 12 L= 12/4= 3
5	-	Alarm occurrence time 32	(3) Figure out SA, MA, HA and DA. SA= Remainder of 388766603/60= 23
4	-	Alarm occurrence time 16	MA= Remainder of 6479443/60= 43 HA= Remainder of 107990/24= 14
3	-	Alarm occurrence time 8	DA= 4499- (12×365+3)
2	-	Alarm occurrence time 4	= 116 (116 days has passed in this year and the time of alarm issuance is on the day 117.)
1	-	Alarm occurrence time 2	Year and day = 117 – {31 (Jan) – 29 (Feb) – 31 (Mar)} = 26 (since the number becomes a negative if
0		Alarm occurrence time 1	days in April is subtracted, the time of alarm issuance is on 26April)
	-		YA= 12+2000= 2012
			As figured out with the calculation above, the time of alarm issuance is 14:43:23 26 Apr 2012.

(5) Data of device control register 1 (Address = 0D00_H) (DRG1)

Bit	Symbol	Name	Function
15	EMG	EMG operation specification	O: Emergency stop not actuated 1: Emergency stop actuated Changing this bit to 1 will switch the controller to the emergency stop mode. Take note that the drive source will not be cut off. (The ALM LED on the controller will not illuminate.)
14	SFTY	Safety speed command	O: Disable safety speed I: Enable safety speed Changing this bit to 1 will limit the speeds of all movement commands to the speed specified by user parameter No. 35, "Safety speed."
13	-	Cannot be used	
12	SON	Servo ON command	O: Servo OFF 1: Servo ON Changing this bit to 1 will turn the servo ON. However, the following conditions must be satisfied: Device status register 1 (5.3.11 or 6.4.11): The EMG status bit is 0. Device status register 1 (5.3.11 or 6.4.11): The major failure status is 0. Device status register 2 (5.3.12 or 6.4.12): The enable status bit is 1. System status register (5.3.9 or 6.4.9): The auto servo OFF status is 0.
11 to 9		Cannot be used	, , , , , , , , , , , , , , , , , , ,
8	ALRS	Alarm reset command	 0: Normal 1: Alarm will reset Present alarms will be reset upon detection of a rising edge for this bit (this bit: 0 → 1). Note, however, that if any of the causes for the alarm has not been removed, the same alarm will be generated again. If a rising edge is detected for this bit (this bit: 0 → 1) during a pause, the remaining travel will be canceled.
7	BKRL	Brake forced-release command	0: Normal 1: Forcibly release brake You can forcibly release the brake by setting this bit to 1.
6	-	Cannot be used	, , , , , , , , , , , , , , , , , , ,
5	STP	Pause command	0: Normal 1: Pause command All motor movement is inhibited while this bit is 1. If this bit turns 1 while the actuator is moving, the actuator will decelerate to a stop. When the bit is set to 0 again thereafter, the actuator will resume the remaining travel. If this bit is turned 1 while the actuator is performing a home return, the movement command is held until the actuator reverses upon contact. When the bit turns 0 thereafter, the actuator will complete the remaining home return operation automatically. However, make sure you perform a home return again after the actuator reverses upon contact.
4	HOME	Home return command	0: Normal 1: Home return command Home return will start when a rising edge is detected for this bit (this bit: 0 → 1). Once the home return is completed, the HEND bit will become 1. You can input a home return command again even if the actuator has already completed a home return.
3	CSTR	Positioning start command	 0: Normal 1: Position start command When a rising edge is detected for this bit (this bit: 0 → 1), the actuator will move to the target position of the position number stored in the position
			number specification register (POSR:0D03 _H). If this bit remains 1, a position complete will not be output even when the actuator enters the positioning band (return to the normal status by writing 0 to this bit). If this command is executed before home return has been performed at least once after the power was turned on (the HEND bit is 0), the actuator will perform home return and then start moving to the target position. * Set the target position, speed, etc., in the position table of the controller beforehand.

(6) Data of device control register 2 (Address = 0D01_H) (DRG2)

Bit	Symbol	Name	Function
15	-	Cannot be used	
14	JISL	Jog/inch switching	0: Jog 1: Inching When this bit is 0, the jog operation is selected. When this bit is 1, the inching operation is selected. If this bit turns 1 while the actuator is jogging, the actuator will accelerate to a stop. While the actuator is inching, turning this bit 0 will have no effect and the actuator will continue with the inching operation. The setting of this bit is not reflected in any jog/inching operation set from the teaching tool.
13	-	Cannot be used	
12	-	Cannot be used	
11	MOD	Teaching mode command	O: Normal operation mode 1: Teaching mode Changing this bit to 1 will switch the controller to the teaching mode.
10	TEAC	Position data load command	0: Normal 1: Position data load command The current position data will be written to the position number specified by the position number specification register if 1 is written to this bit while the 11th bit of the teach mode command is 1 (teaching mode). The current position data is loaded to the position data line specified by the position number specification register. If the position number under which the data is loaded is an empty position, meaning that no data is currently set, the data fields other than target position (such as positioning band, etc.) will be automatically populated by the default values of the respective parameters. Make sure that after this bit is set to 1, it will remain 1 for at least 20 ms.
9	JOG+	Jog+ command	0: Normal 1: Jog+ command • The actuator jogs in the direction opposite home as long as this bit is 1 if the 14th JISL bit is 0. The speed and acceleration/deceleration match the specifications in user parameter No. 26 "PIO jog speed" and rated acceleration/deceleration speed. If this bit is set to 0 or the 8th bit of the jog-command is changed to 1, the actuator will decelerate to a stop. • If a positive edge (this bit: 0 → 1) is detected for the jog+ command while the 14th JISL bit is 0, the actuator inches in the direction opposite home. The speed, travel and acceleration/deceleration speed match the specifications in user defined parameter No. 26 (PIO jog speed), user parameter No. 48 (PIO inching distance) and rated jog acceleration/deceleration, respectively.
8	JOG-	Jog- command	 0: Normal 1: Jog- command • The actuator jogs in the direction of home as long as this bit is 1 if the 14th JISL bit is 0. The speed and acceleration/deceleration speed match the specifications in user parameter No. 26 "PIO jog speed" and rated acceleration/deceleration speed. If this bit is set to 0 or the 9th bit of the jog-command is changed to 1, the actuator will decelerate to a stop. • If a positive edge (this bit: 0 → 1) is detected for the jog+ command while the 14th JISL bit is 0, the actuator inches in the direction of home. The speed, travel and acceleration/deceleration speed match the specifications in user defined parameter No. 26 (PIO jog speed), user parameter No. 48 (PIO inching distance) and rated jog acceleration/deceleration, respectively.
7	ST7	Start position 7	(If either of these bits is enabled) The actuator moves to the position of the
6	ST6	Start position 6	specified position number.
5	ST5	Start position 5	These bits are only valid when solenoid valve mode is selected. The move is started if either of the ST0 to ST7 bits is set to 1 (this bit: $0 \rightarrow 1$).
4	ST4	Start position 4	If a position other than the enabled start poison is selected, the alarm "085"
3	ST3	Start position 3	Position No. error at moving" is generated.
2	ST2	Start position 2	You can select the signal input method as "Level" or "Edge" in user parameter No. 27, "Movement command type."
		Ciait pooliion 2	LINO. ∠7. IVIOVEMENT COMMANO TVDE.
1	ST1	Start position 1	If multiple positions are entered at the same time, the smallest number takes the

(7) Data of position number command registers (Address = 0D03_H) (POSR) Position movement command register details (Address = 9800_H) (POSR) Data of program number command registers (Address = 0D03_H) (POSR)

···For SCON Servo Press type

Bit	Symbol	Name	Function
15	-	Cannot be used	
14	-	Cannot be used	
13	-	Cannot be used	
12	-	Cannot be used	
11	-	Cannot be used	
10	-	Cannot be used	
9	PC512	Position command bit 512	* Position command bit : For other types than Servo Press Type Program command bit: For Servo Press Type (Max: 63)
8	PC256	Position command bit 256	These bits indicate position numbers to be moved using binary codes. Note that the maximum position number varies depending on the model and PIO pattern. [When address = 0D03 _H is used] After specifying a position number, set the CSTR (start signal) of device control register 1 to 1, and the actuator will move to the specified position. [Refer to 5.5.1 or 6.6.1.] [When address = 9800 _H is used] This register is such that once a position number is specified, the actuator will move to the specified position. You need not set the CSTR (start signal). [For Servo Press Type] After indicating the press program number in this register, set PSTR (start signal) in the press program control register to 1, and the program gets executed. After indicating the press program number in this register, set PHOM (program home-return movement signal) in the press program control register to 1, and movement gets made to the program home position set in the indicated program number.
7	PC128	Position command bit 128	
6	PC64	Position command bit 64	
5	PC32	Position command bit 32 Position command bit 32	
4	PC16	Position command bit 16 Position command bit 16	
3	PC8	Position command bit 8 Position command bit 8	
2	PC4	Position command bit 4 Position command bit 4	
1	PC2	Position command bit 2 Position command bit 2	
0	PC1	Position command bit 1 Position command bit 1	

(8) Data of total moving count (Address = 8400_H) (TLMC)

Data 0	i total IIIC	oving count (Address = 84	FOOH) (I LIVIO)
Bit	Symbol	Name	Function
31	-	Total moving count 2147202832	It shows the total moving count.
30	-	Total moving count 1073601416	Total moving count are read out in binary codes.
29	-	Total moving count 536800708	* Corresponding Model:
28	-	Total moving count 268400354	PCON-CA/CFA/CB/CFB/CYB/PLB/POB,
27	-	Total moving count 134200177	ACON-CA/CB/CYB/PLB/POB,
26	-	Total moving count 67108864	DCON-CA/CB/CYB/PLB/POB,
25	_	Total moving count 33554432	SCON-CA/CAL/CB, ERC3,
24	-	Total moving count 16777216	RCP6S, RCM-P6PC, RCM-P6AC and RCM-P6DC
23	-	Total moving count 8388608	
22	-	Total moving count 4194304	
21	-	Total moving count 2097152	
20	-	Total moving count 1048576	
19	-	Total moving count 524288	
18	-	Total moving count 262144	
17	-	Total moving count 131072	
16	-	Total moving count 65536	
15	-	Total moving count 32768	
14	-	Total moving count 16384	
13	-	Total moving count 8192	
12	-	Total moving count 4096	
11	-	Total moving count 2048	
10	-	Total moving count 1024	
9	-	Total moving count 512	
8	-	Total moving count 256	
7	-	Total moving count 128	
6	-	Total moving count 64]
5		Total moving count 32]
4	-	Total moving count 16	
3	-	Total moving count 8	
2	-	Total moving count 4	
1	-	Total moving count 2	
0	-	Total moving count 1	

(9) Data of total moving distance (Address = 8402_H) (ODOM)

		Name	• • • • • • • • • • • • • • • • • • • •
Bit	Symbol	Name	Function
31	-	Total moving distance 2147202832	It shows the total moving distance.
30	-	Total moving distance 1073601416	Total moving distance are read out in binary codes.
29	-	Total moving distance 536800708	* Corresponding Model:
28	-	Total moving distance 268400354	PCON-CA/CFA/CB/CFB/CYB/PLB/POB,
27	-	Total moving distance 134200177	ACON-CA/CB/CYB/PLB/POB,
26	-	Total moving distance 67108864	DCON-CA/CB/CYB/PLB/POB,
25	-	Total moving distance 33554432	SCON-CA/CAL/CB, ERC3,
24	-	Total moving distance 16777216	RCP6S, RCM-P6PC, RCM-P6AC and RCM-P6DC
23	-	Total moving distance 8388608	
22	-	Total moving distance 4194304	
21	-	Total moving distance 2097152	
20	-	Total moving distance 1048576	
19	-	Total moving distance 524288	
18	-	Total moving distance 262144	
17	-	Total moving distance 131072	
16	-	Total moving distance 65536	
15	-	Total moving distance 32768	
14	-	Total moving distance 16384	
13	-	Total moving distance 8192	
12	-	Total moving distance 4096	
11	-	Total moving distance 2048	
10	-	Total moving distance 1024	
9	-	Total moving distance 512	
8	-	Total moving distance 256	
7	-	Total moving distance 128	
6	-	Total moving distance 64	
5	-	Total moving distance 32	
4	-	Total moving distance 16	
3	-	Total moving distance 8	
2	-	Total moving distance 4	
1	-	Total moving distance 2	
0	-	Total moving distance 1	

(10) Data of present time (Address = $841E_H$ (SCON-CA/CAL/CB), 8420_H (PCON-CA/CFA/CB/CFB), 8422_H (ACON-CA/CB, DCON-CA/CB) (TIMN)

Bit	Symbol	Name	Function
31	_	Present time 2147202832	It outputs the time of the present time issuance.
30	-	Present time 1073601416	[1] For the models that are equipped with the calendar function (RTC), when RTC is set effective, it shows
29	-	Present time 536800708	the time of alarm issuance. [2] When RTC is set ineffective or for the models that is
28	-	Present tiime 268400354	not equipped with RTC, it shows the passed time [sec] since the power to the controller is turned on.
27	-	Present time 134200177	
26	-	Present time 67108864	How present time is calculated in 1) The data of present time shows the seconds passed from
25	-	Present time 33554432	the origin time (00hr:00min:00sec 1January2000). Passed second from the origin time is expressed with S,
24	-	Present time 16777216	passed minute with M, passed hour with H, passed day with D and passed year with Y, and the calculation is
23	-	Present time 8388608	conducted with a formula as shown below: S= Data of read alarm issuance time
22	-	Present time 4194304	M= S/60 (decimal fraction to be rounded down)
21	-	Present time 2097152	H= M/60 (decimal fraction to be rounded down) D= H/24 (decimal fraction to be rounded down)
20	-	Present time 1048576	Y= D/365.25 (decimal fraction to be rounded down) L (Leap year)= Y/4 (decimal fraction to be rounded up)
19	-	Present time 524288	
18	-	Present time 262144	Assuming the second of time is SA, minute is MA, hour is HA, passed day in this year is DA and year is YA, the
17	-	Present time 131072	time can be calculated with a formula as shown below: SA= Remainder of S/60
16	-	Present time 65536	MA= Remainder of M/60
15	-	Present time 32768	HA= Remainder of H/24 DA= D- (Y×365+L)
14	-	Present time 16384	Year and day can be figured out by subtracting the number of days in each month from DA.
13	-	Present time 8192	YA= Y+2000 (A.D.)
12	-	Present time 4096	Example) Assuming present time data is 172C1B8B _H ;
11	-	Present time 2048	(1) Convert into decimal number: S= 172C1B8B _H ⇒ 388766603
10	-	Present time 1024	(2) Calculate M, H, D, Y and L.
9	-	Present time 512	M= 388766603/60= 6479443 H= 6479443/60= 107990
8	-	Present time 256	D= 107990/24= 4499 Y= 4499/365.25= 12
7	-	Present time 128	L= 12/4= 3 (3) Figure out SA, MA, HA and DA.
6	-	Present time 64	SA= Remainder of 388766603/60= 23
5	-	Present time 32	MA= Remainder of 6479443/60= 43 HA= Remainder of 107990/24= 14
4	-	Present time 16	DA= 4499- (12×365+3) = 116 (116 days has passed in this year and the
3	-	Present time 8	time of alarm issuance is on the day 117.)
2	-	Present time 4	Year and day = 117 – {31 (Jan) – 29 (Feb) – 31 (Mar)} = 26 (since the number becomes a negative if
1	-	Present time 2	days in April is subtracted, the time of present is on 26April)
0		Present time 1	YA= 12+2000= 2012
			As figured out with the calculation above, the present time is 14:43:23 26Apr2012.

(11) Data of total FAN driving time (Address = 842A_H (SCON-CAL, SCON-CB [400W or more]), 842E_H (PCON-CFA/CFB) (TFAN)

			HELH (1 GON GIAGIB) (ITAN)
Bit	Symbol	Name	Function
31	-	Total FAN driving time 2147202832	It shows the total FAN driving time [sec].
30	-	Total FAN driving time 1073601416	Total FAN driving time are read out in binary codes.
29	-	Total FAN driving time 536800708	* Corresponding Model: PCON-CFA/CFB,
28	-	Total FAN driving time 268400354	SCON-CAL,
27	-	Total FAN driving time 134200177	SCON-CB [400W or more]
26	-	Total FAN driving time 67108864	
25	-	Total FAN driving time 33554432	
24	-	Total FAN driving time 16777216	
23	-	Total FAN driving time 8388608	
22	-	Total FAN driving time 4194304	
21	-	Total FAN driving time 2097152	
20	-	Total FAN driving time 1048576	
19	-	Total FAN driving time 524288	
18	-	Total FAN driving time 262144	
17	-	Total FAN driving time 131072	
16	-	Total FAN driving time 65536	
15	-	Total FAN driving time 32768	
14	-	Total FAN driving time 6384	
13	-	Total FAN driving time 8192	
12	-	Total FAN driving time 4096	
11	-	Total FAN driving time 2048	
10	-	Total FAN driving time 1024	
9	-	Total FAN driving time 512	
8	-	Total FAN driving time 256	
7	-	Total FAN driving time 128	
6	-	Total FAN driving time 64	
5	-	Total FAN driving time 32	
4	-	Total FAN driving time 16	
3	-	Total FAN driving time 8	
2	-	Total FAN driving time 4	
1	-	Total FAN driving time 2	
0	-	Total FAN driving time 1	

(12) Data of device status register 1 (Address = 9005_H) (DSS1)

Bit	Symbol	Name	Function
15	EMGS	EMG status	O: Emergency stop not actuated 1: Emergency stop actuated This bit indicates whether or not the controller is currently in the emergency stop mode due to an emergency stop input, cutoff of the drive source, etc.
14	SFTY	Safety speed enabled status	O: Safety status disabled 1: Safety status enabled Enable/disable the safety speed of the controller using the "safety speed command bit" of device control register 1.
13	PWR	Controller ready status	Controller busy Controller ready This bit indicates whether or not the controller can be controlled externally. Normally this bit does not become 0 (busy).
12	SV	Servo ON status	O: Servo OFF 1: Servo ON The servo ON status is indicated. After a servo ON command is issued, this bit will remain 0 until the servo ON delay time set by a parameter elapses. If the servo cannot be turned ON for some reason even after a servo ON command is received, this bit will remain 0. The RC controller does not accept any movement command while this bit is 0.
11	PSFL	Missed work part in push-motion operation	O: Normal 1: Missed work part in push-motion operation This bit turns 1 when the actuator has moved to the end of the push band without contacting the work part (= the actuator has missed the work part) according to a push-motion operation command. Operation commands other than push-motion do not change this bit.
10	ALMH	Major failure status	O: Normal 1: Major failure alarm present This bit will turn 1 if any alarm at the cold start level or operation cancellation level is generated. Alarms at the operation cancellation level can be reset by using an alarm reset command, but resetting alarms at the cold start level requires turning the power supply off and then on again.
9	ALML	Minor failure status	Normal Hinor failure alarm present This bit will turn 1 when a message level alarm is generated.
8	ABER	Absolute error status	Normal Absolute error present This bit will turn 1 if an absolute error occurs in case the absolute specification is set.
7	BKRL	Brake forced-release status	O: Brake actuated I: Brake released This bit indicates the status of brake operation. Normally the bit remains 1 while the servo is ON. Even when the servo is OFF, changing the "brake forced-release command bit" in devic control register 1 to 1 will change this bit to 1.
6	-	Cannot be used	
5	STP	Pause status	O: Normal 1: Pause command active This bit remains 1 while a pause command is input. If the PIO/Modbus Switch Setting (5.4.16 or 6.5.16) is PIO enabled, paused PIO signals are monitored (For those RC controllers that possess the operation mode setting switch, set the switch to AUTO.). If Modbus is enabled, the Pause Commands (5.4.6 or 6.5.6) are monitored.
4	HEND	Home return completion status	O: Home return not yet complete 1: Home return complete This bit will become 1 when home return is completed. In case the absolute specification is set, the bit is set to 1 from the startup if absolute reset has been completed. If a movement command is issued while this bit is 0, an alarm will generate.
3	PEND	Position complete status	O: Positioning not yet complete 1: Position complete This bit turns 1 when the actuator has moved close enough the target position and entered the positioning band. It also turns 1 when the servo turns on after the actuator has started, because the controller recognizes that the actuator has completed a positioning to the currer position. This bit will also become 1 during the push-motion operation as well as at the completion.
2	CEND	Load cell calibration complete	Calibration not yet complete Calibration complete This bit turns 1 when the load cell calibration command (CLBR) has been successfully executed.
1	CLBS	Load cell calibration status	O: Calibration not yet complete 1: Calibration complete Regardless of whether or not a load cell calibration command has been issued, this bit is 1 a long as a calibration has completed in the past.
0	-	Cannot be used	12.13 22 23 20110 0011 1100 0011 protect in the part.
v		Carriot De asca	

(13) Data of device status register 2 (Address = 9006_H) (DSS2)

Bit	Symbol	Name	Function
15	ENBS	Enable	O: Disable condition(Operation Stop, Servo OFF) 1: Enable condition (normal operation) It shows the condition of the enable switch when a teaching tool that is equipped with an enable switch (dead man's switch) is connected to a model that has the enable function equipped. (Note) It is fixed to 1 when in AUTO Mode or for a model without the enable function being equipped.
14	-	Cannot be used	
13	LOAD	Load output judgment status	O: Normal 1: Load output judgment If a load current threshold or check range (individual zone boundaries: only supported by PCON-CF) is set when a movement command is issued, this bit indicates whether or not the motor current has reached the threshold inside the check range. This bit maintains the current value until the next position command is received.
12	TRQS	Torque level status	0: Normal 1: Torque level achieved This bit turns 1 when the current has reached a level corresponding to the specified push torque during a push-motion operation. Since this bit indicates a level, its status will change when the current level changes.
11	MODS	Teaching mode status	O: Normal operation mode 1: Teaching mode This bit becomes 1 when the teaching mode is selected by the "teach mode command bit" of device control register 2.
10	TEAC	Position-data load command status	0: Normal 1: Position data load complete Setting the "position-data load command bit" in device control register 2 to 1 will change this bit to 0. This bit will turn 1 once position data has been written to the EEPROM successfully.
9	JOG+	Jog+ status	0: Normal 1: "Jog+" command active This bit becomes 1 while the "jog+ command bit" of device control register 2 is selected.
8	JOG-	Jog- status	O: Normal 1: "Jog-" command active This bit becomes 1 while the "jog- command bit" of device control register 2 is selected.
7	PE7	Position complete 7	These bits output a position complete number as a binary value in solenoid
6	PE6	Position complete 6	valve mode.
5	PE5	Position complete 5	Each of these bits turns 1 when the actuator has completed a position movement and become close enough to the target position by entering the
4	PE4	Position complete 4	positioning band according to a position movement command (ST0 to ST7
3	PE3	Position complete 3	in device control register 2). Although the bit turns 0 once the servo is turned OFF, when the servo is
2	PE2	Position complete 2	turned ON again the bit will turn 1 if the actuator is still within the positioning
1	PE1	Position complete 1	band of the specified command position data. Moreover, they will become 1 when push-motion is completed or missed in
0	PE0	Position complete 0	push-motion operation.

(14) Data of expansion device status register (Address = 9007_H) (DSSE)

Bit	Symbol	Name	Function
15	EMGP	Emergency stop status	O: Emergency stop input OFF 1: Emergency stop input ON This bit indicates the status of the emergency stop input port.
14	MPUV	Motor voltage low status	Normal Hotor drive source cut off This bit becomes 1 if there is no input from the motor drive power supply.
13	RMDS	Operation mode status	O: AUTO mode However, for those with no operation mode setting switch equipped, it should always be set to MANU mode.
12	-	Cannot be used	
11	GHMS	Home return status	Normal Home return This bit remains 1 for as long as home return is in progress. This bit will be 0 in other cases.
10	PUSH	Push-motion operation in progress	O: Normal 1: Push-motion operation in progress This bit remains 1 while the actuator is performing a push-motion operation (excluding an approach operation. It will turn 0 under the following conditions: 1. The actuator has missed the push motion operation. 2. The actuator has paused. 3. The next movement command has been issued. 4. The servo has turned OFF.
9	PSNS	Excitation detection status	O: Excitation detection not yet complete 1: Excitation detection complete PCON/ERC2, ERC3 Series controllers perform excitation detection at the first servo ON command received after the controller has started. This bit becomes 1 when excitation detection is completed. This bit remains 0 if the excitation detection has failed. Even after a successful detection, the bit will return to 0 when a software reset is performed. This bit becomes 1 if pole sensing is performed with the first servo ON command after startup and the operation is completed in case of ACON series controllers. On SCON Series controllers, this bit is always 0.
8	PMSS	PIO/Modbus switching status	O: PIO commands enabled 1: PIO command disabled The result of switching according to the PIO/Modbus switching setting explained in 5.4.16 or 6.5.16, or the current status, is indicated.
7	-	Cannot be used	
6		Cannot be used	
5	MOVE	Moving signal	O: Stopped 1: Moving This bit indicates whether or not the actuator is moving (conditions during home return and push-motion operation included). This bit remains 0 while the actuator is paused.
			the actuator is paused.
4	-	Cannot be used	the actuator is paused.
4 3	-	Cannot be used Cannot be used	the actuator is paused.
			the actuator is paused.
3	- - -	Cannot be used	the actuator is pauseu.

(15) Data of system status registers (Address = 9008_H) (STAT)

Bit	Symbol	Name	Function
31	BATL	Absolute Battery Voltage Drop (for SCON only)	0: In normal condition 1: Battery voltage drop It becomes 1 once the voltage of the absolute battery reaches below the alarm level. The operation of the axes can be held even if this bit is showing 1 as far as Critical Failure Status Bit in Device Status Register 1 is showing 0.
30 to 18	-	Cannot be used	
17	ASOF	Auto servo OFF	0: Normal 1: Auto servo OFF If "Auto servo OFF delay time" is set with a parameter of the RC controller, this bit becomes 1 when the servo is turned OFF automatically after the specified time has elapsed following the position complete.
16	AEEP	Nonvolatile memory being accessed	O: Normal 1: Nonvolatile memory being accessed This bit turns 1 as soon as the nonvolatile memory in the RC controller is accessed to read or write the controller's parameter position table, etc. The bit becomes 0 when the access is completed or a timeout error occurs.
15 to 5	-	Cannot be used	
4	RMDS	Operation mode status	0: AUTO mode 1: MANU mode This bit becomes 1 when the RC controller is in the MANU mode. However, for those with no operation mode setting switch equipped, it should always be set to MANU mode.
3	HEND	Home return completion status	0: Home return not yet complete 1: Home return completion This bit will become 1 when home return is completed. In case the absolute specification is set, the bit is set to 1 from the startup if absolute reset has been completed. If a movement command is issued while this bit is 0, an alarm will generate.
2	SV	Servo status	O: Servo OFF 1: Servo ON The servo ON status is indicated. After a servo ON command is issued, this bit will remain 0 until the servo ON delay time set by a parameter elapses. If the servo cannot be turned ON for some reason even after a servo ON command is received, this bit will remain 0. The RC controller does not accept any movement command while this bit is 0.
1	SON	Servo command status	O: Servo OFF 1: Servo ON This bit indicates the servo ON/OFF command status. This bit will turn 1 when the following conditions are met: • The EMG status bit in device status register 1 is 0. [Refer to 5.3.12 or 6.4.12.] • The major failure status bit in device status register 1 is 0. [Refer to 5.3.12 or 6.4.12.] • The enable status bit in device status register 2 is 1. [Refer to 5.3.13 or 6.4.13.] • The auto servo OFF status in the system status register is 0. [Refer to 5.3.15 or 6.4.15.]
0	MPOW	Drive source ON	0: Drive source cut off 1: Normal This bit will turn 0 when the motor drive-source cutoff terminal is released.

(16) Data of special port monitor registers (Address = 9012_H) (SIPM)

Bit	Symbol	Name	Function
15	-	Cannot be used	
14	NP	Command pulse NP signal status	This bit indicates the status of the command pulse NP signal.
13	-	Cannot be used	
12	PP	Command pulse PP signal status	This bit indicates the status of the command pulse PP signal.
11	-	Cannot be used	
10	-	Cannot be used	
9	-	Cannot be used	
8	MDSW	Mode switch status	O: AUTO mode 1: MANU mode This bit becomes 1 when the RC controller is in the MANU mode. However, for those with no operation mode setting switch equipped, it should always be set to MANU mode.
7	-	Cannot be used	
6	-	Cannot be used	
5	-	Cannot be used	
4	BLCT	Belt breakage sensor (SCON only)	0: Belt broken 1: Normal
3	HMCK	Home-check sensor monitor	O: Sensor OFF 1: Sensor ON On a model equipped with a home-check sensor function, this bit indicates the status of sensor input. It is always 0 on any other model.
2	ОТ	Overtravel sensor monitor	Sensor OFF Sensor ON This bit indicates the status of the overtravel sensor signal in the encoder connector. It is always 0 on a model not equipped with an overtravel sensor.
1	CREP	Creep sensor monitor	Sensor OFF Sensor ON This bit indicates the status of the creep sensor signal in the encoder connector. It is always 0 on a model not equipped with a creep sensor.
0	LS	Limit sensor monitor	Sensor OFF Sensor ON This bit indicates the status of the limit sensor signal in the encoder connector. It is always 0 on a model not equipped with a limit sensor.

(17) Data of zone status register (Address = 9013_H) (ZONS)

Bit	Symbol	Name	Function
15	-	Cannot be used	
14	LS2	Limit sensor output monitor 2 (When in Electromagnetic Valve Mode 2, Single Solenoid Mode or Double Solenoid Mode for PCON, ACON, DCON and SCON)	0: Out of range 1: In range The negative boundary of the positioning band is obtained by subtracting the positioning band size from target position No. 2 while the positive boundary of the positioning band is obtained by adding the positioning band size to target position No. 2. This bit will become 1 when the current position is within the band and 0 when it is outside the band. This bit becomes effective upon home return completion. It remains effective even while the servo is OFF.
13	LS1	Limit sensor output monitor 1 (When in Electromagnetic Valve Mode 2, Single Solenoid Mode or Double Solenoid Mode for PCON, ACON, DCON and SCON)	0: Out of range 1: In range The negative boundary of the positioning band is obtained by subtracting the positioning band size from target position No. 1 while the positive boundary of the positioning band is obtained by adding the positioning band size to target position No. 1. This bit remains 1 as long as the current position is within these boundaries. This bit will become 1 when the current position is within the band and 0 when it is outside the band. This bit becomes effective upon home return completion. It remains effective even while the servo is OFF.
12	LSO	Limit sensor output monitor 0 (When in Electromagnetic Valve Mode 2, Single Solenoid Mode or Double Solenoid Mode for PCON, ACON, DCON and SCON)	0: Out of range 1: In range The negative boundary of the positioning band is obtained by subtracting the positioning band size from target position No. 0 while the positive boundary of the positioning band is obtained by adding the positioning band size to target position No. 0. This bit remains 1 as long as the current position is within these boundaries. This bit will become 1 when the current position is within the band and 0 when it is outside the band. This bit becomes effective upon home return completion. It remains effective even while the servo is OFF.
11	-	Cannot be used	Chicago Gran Willia dia Garra la Giri
10	_	Cannot be used	
9	_	Cannot be used	
8	ZP	Position zone output monitor	0: Out of range 1: In range This bit remains 1 while the current position is within the zone range specified for each position and becomes 0 when it is outside the range. This bit becomes effective upon home return completion. It remains effective even while the servo is OFF.
7	-	Cannot be used	
6	-	Cannot be used	
5	-	Cannot be used	
4	-	Cannot be used	
3	-	Cannot be used	
2	-	Cannot be used	
1	Z2	Zone output monitor 2	0: Out of range 1: In range This bit remains 1 while the current position is within the range where the zone boundary 2 parameter is set and becomes 0 when it is outside the range. This bit becomes effective upon home return completion. It remains effective even while the servo is OFF.
0	Z1	Zone output monitor 1	0: Out of range 1: In range This bit remains 1 while the current position is within the range where the zone boundary 1 parameter is set and becomes 0 when it is outside the range. This bit becomes effective upon home return completion. It remains effective even while the servo is OFF.

(18) Data of position number status register (Address = 9014_H) (POSS) Exected program number registers (Address = 9014_H) (PSOR) ·For SCON Servo Press Type

Bit	Symbol	Name	Function
15	_	Cannot be used	
14	-	Cannot be used	
13	_	Cannot be used	
12	_	Cannot be used	
11	_	Cannot be used	
10	-	Cannot be used	
9	PM512	Position complete number status bit 512	These bits indicate position numbers for which positioning has been completed
8	PM256	Position complete number status bit 256	(Valid in cases other than solenoid valve mode). The position complete is read as binary code.
7	PM128	Position complete number status bit 128	It becomes possible to read position complete numbers when the current position gets close to the target position (within the positioning band in
6	PM64	Position complete number status bit 64	either the positive or negative directions). 0 is read in other cases. Although all the bits will change to 0 once the servo turns OFF, the position complete becomes valid again if the current position is still inside the positioning band when the servo is turned ON subsequently. In push-motion, the position complete numbers can be read at both the completion and miss of push-motion. [For Servo Press Type] Shown below is the exected press program number. The value is maintained after press program is complete till the servo gets turned OFF or another movement command gets issued. Also, it
5	PM32	Position complete number status bit 32 Exected program No. 32	
4	PM16	Position complete number status bit 16 Exected program No. 16	
3	PM8	Position complete number status bit 8 Exected program No. 8	
2	PM4	Position complete number status bit 4 Exected program No. 4	shows FFFF _H during the program is stopped.
1	PM2	Position complete number status bit 2 Exected program No. 2	
0	PM1	Position complete number status bit 1 Exected program No. 1	

(19) Data of expansion system status registers (Address = 9015_H) (SSSE)

Bit	Symbol	Name	Function
15	_	Cannot be used	
14	_	Cannot be used	
13	_	Cannot be used	
12	_	Cannot be used	
11	ALMC	Cold start level alarm	O: Normal 1: Cold level start alarm in occurrence It becomes 1 when the cold start level alarm is being occurred. It is necessary to cancel the cause of the alarm issuance and reboot the power in order to resume the operation.
10	_	Cannot be used	
9	_	Cannot be used	
8	RTC	RTC (calendar) function use	0: RTC (calendar) function not in use 1: RTC (calendar) function use * Corresponding Model: ERC3, PCON-CA/CFA/CB/CFB, ACON-CA/CB, DCON-CA/CB and SCON-CA/CAL/CB
7	_	Cannot be used	·
6	_	Cannot be used	
5	_	Cannot be used	
4	_	Cannot be used	
3	_	Cannot be used	
2	_	Cannot be used	
1	_	Cannot be used	
0	_	Cannot be used	

(20)	20) Overload level monitors (Address = 9020 _H) (OLLV)				
Bit	Symbol	Name	Function		
31	_	Overload level monitor 214720832	It shows the current load status [%]. The overload level monitor is read out in the binary code.		
30	_	Overload level monitor 1073601416	* Corresponding Model: SCON-CA/CAL/CB		
29	_	Overload level monitor 536800708			
28	_	Overload level monitor 268400354			
27	_	Overload level monitor 134200177			
26	_	Overload level monitor 67108864			
25	_	Overload level monitor 33554432			
24	_	Overload level monitor 16777216			
23	_	Overload level monitor 8388608			
22	_	Overload level monitor 4194304			
21	_	Overload level monitor 2097152			
20	_	Overload level monitor 1048576			
19	_	Overload level monitor 524288			
18	_	Overload level monitor 262144			
17	_	Overload level monitor 131072			
16	_	Overload level monitor 65536			
15	_	Overload level monitor 32768			
14	_	Overload level monitor 16384			
13	_	Overload level monitor 8192			
12	_	Overload level monitor 4096			
11	_	Overload level monitor 2048			
10	_	Overload level monitor 1024			
9	_	Overload level monitor 512			
8	_	Overload level monitor 256			
7	_	Overload level monitor 128			
6	_	Overload level monitor 64			
5	_	Overload level monitor 32			
4	_	Overload level monitor 16			
3	_	Overload level monitor 8			
2	_	Overload level monitor 4			
1	_	Overload level monitor 2			
0	_	Overload level monitor 1			

(21) Press program alarm codes (Address = 9022_H) (ALMP) ·SCON Servo Press Type only

<u> </u>			
Bit	Symbol	Name	Function
15	_	Alarm code 32768	It shows the alarm code numbers of press program.
14	_	Alarm code 16384	It gets output when an alarm is generated.
13	_	Alarm code 8192	It is 0 _H when there is no alarm generated.
12	_	Alarm code 4096	The alarm codes are read out in the binary code. Check in the controller instruction manual for the details of the
11	_	Alarm code 2048	alarm codes.
10	_	Alarm code 1024	
9	_	Alarm code 512	
8	_	Alarm code 256	
7	_	Alarm code 128	
6	_	Alarm code 64	
5	_	Alarm code 32	
4	_	Alarm code 16	
3	_	Alarm code 8	
2	_	Alarm code 4	
1	_	Alarm code 2	
0	_	Alarm code 1	

(22) Alarm generated press program No. (Address = 9023_H) (ALMP) •SCON Servo Press Type only

Bit	Symbol	Name	Function
15	_	Alarm generated press program 32768	The press program number that an alarm is issued gets displayed.
14	_	Alarm generated press program 16384	It gets output when an alarm is generated. It is $0_{\rm H}$ when there is no alarm generated.
13	_	Alarm generated press program 8192	
12	_	Alarm generated press program 4096	
11	_	Alarm generated press program 2048	
10	_	Alarm generated press program 1024	
9	_	Alarm generated press program 512	
8	_	Alarm generated press program 256	
7	_	Alarm generated press program 128	
6	_	Alarm generated press program 64	
5	_	Alarm generated press program 32	
4		Alarm generated press program 16	
3	_	Alarm generated press program 8	
2	_	Alarm generated press program 4	
1	_	Alarm generated press program 2	
0	_	Alarm generated press program 1	

(23) Press program status registers (Address = 9024_H) (PPST) ·SCON Servo Press Type only

Bit	Symbol	Name	Function
15	_	Cannot be used	
14	WAIT	Waiting	It turns to 1 during the waiting of the press program.
13	RTRN	While in returning operation	It turns to 1 during the returning of the press program.
12	DCMP	While in depression operation	It turns to 1 during the depression operation of the press program.
11	PSTP	Pressurize during the stop	It turns to 1 during the pressurize the stop of the press program.
10	PRSS	While in pressurizing operation	It turns to 1 during the pressurizing operation of the press program.
9	SERC	While in probing operation	It turns to 1 during the probing operation of the press program.
8	APRC	While in approaching operation	It turns to 1 during the approaching operation of the press program.
7		Cannot be used	
6	_	Cannot be used	
5	_	Cannot be used	
4	MPHM	Program home return during the movement	It turns to 1 during the program home-return movement, program depressurizing stage and return stage by the program home-return movement command, and during the program home position retract movement by the program alarm, and program home position retract movement by the program compulsory complete command.
3	PALM	Program alarm	It turns to 1 when the program alarm generated. The program alarm can be cancelled by the alarm reset as it is the movement cancellation level.
2	PCMP	Program finished in normal condition	It turns to 1 once it has transited to the standby period after a program is finished in the normal condition. It remains to 0 when the program is interrupted or finished in an error. Also, it remains to 0 when the program home-return movement completed. It is remained till the next program start command or movement command or servo OFF command gets issued even after a program is finished.
1	PRUN	While in executing program	It show the press program is in exection. It is 1 from the program start till the standby period finishes. It is not included during the program home-return movement. Program alarm gets issued when another program start command or axis movement command is executed while this bit is 1.
0	PORG	Program home position	It shows 1 when it is on the program home position coordinates of the indicated program number while a program is executed or during the program home-return movement. It is remained after program complete or program home-return movement complete till the next program start command, movement command or servo OFF command is issued.

(24) Press program judgements status registers (Address = 9025_H) (PPJD) •SCON Servo Press Type only

_		servo Press Type Only	
Bit	Symbol	Name	Function
15	_	Cannot be used	
14	_	Cannot be used	
13	_	Cannot be used	
12	_	Cannot be used	
11	_	Cannot be used	
10	_	Cannot be used	
9	_	Cannot be used	
8	_	Cannot be used	
7	_	Cannot be used	
6	_	Cannot be used	
5	LJNG	Load judgement NG	O: Load judgment not conducted Load judgment is conducted during the period from the pressurizing operation finish in the normal condition till the end of stop status. It turns to 1 when NG is detected in the load judgment during the judgment period. It shows 0 while in a period out of the judgment period, when the load judgment is not activated and when the load judgment is OK.
4	LJOK	Load judgement OK	0: Load judgment not conducted and when the load judgment is OK. 1: Load judgment not conducted 1: Load judgment OK Load judgment is conducted during the period from the pressurizing operation finish in the normal condition till the end of stop status. It turns to 1 when OK is detected in the load judgment during the judgment period. It shows 0 while in a period out of the judgment period, when the load judgment is not activated and when the load judgment is NG.
3	PJNG	Position (distance) judgement NG	0: Position (distance) not conducted 1: Position (distance) judgement NG Position (distance) judgement is conducted during the period from the pressurizing operation finish in the normal condition till the end of stop status. It turns to 1 when NG is detected in the load judgment during the judgment period. It shows 0 while in a period out of the judgment period, when the load judgment is not activated and when the load judgment is OK.
2	PJOK	Position (distance) judgement OK	0: Position (distance) not conducted 1: Position (distance) judgement OK Position (distance) judgement is conducted during the period from the pressurizing operation finish in the normal condition till the end of stop status. It turns to 1 when OK is detected in the load judgment during the judgment period. It shows 0 while in a period out of the judgment period, when the load judgment is not activated and when the load judgment is NG.
1	JDNG	Total judgement NG	0: Total judgement not conducted 1: Total judgement NG It turns to 1 when failure is detected in either of the position (distance) judgment or the load judgment at the end of the judgment period. It shows 0 while in a period out of the judgment period or when no NG is detected in both of the position (distance) judgment and the load judgment.
0	JDOK	Total judgement OK	0: Total judgement not conducted 1: Total judgement OK It shows 1 when the load judgment is passed in both of the position (distance) judgment and the load judgment at the end of the judgment period, or either of them is judged passed and the other is inactivated. It shows 0 while in a period out of the judgment period or when no OK is detected in both of the position (distance) judgment and the load judgment.

4.3.3 Structure of Modbus Status Registers

The layout of the Modbus status registers is shown below.

0000 _н	(Reserved for system) (Note)
0100 _H	Device status register 1 [DSS1]
0110 _H ₹ 011F _H	Device status register 2 [DSS2]
0120 _н ≀ 012F _н	Expansion device status register [DSSE]
0130 _н ≀ 013F _н	Position number status register Exected program number register (Servo press only) [POSS]
0140 _H ₹ 014F _H	Zone status register [ZONS]
0150 _н ≀ 015F _н	Input port monitor register [DIPM]
0160 _н ≀ 016F _н	Output port monitor register [DOPM]
0170 _н ≀ 017F _н	Special input port register [SIPM]
0180 _н ≀ 018F _н	Expansion system status register [SSSE]
0190 _н ≀ 019F _н	Press program status register [PPST]
01AO _H	Program judgement status register [PPJD]

	(Reserved for system) (Note)
0400 _H ₹ 040F _H	Device control register 1 [DRG1]
0410 _H	Device control register 2 [DRG2]
0420 _H	Expansion device control register [DRGE]
	Position number command register Program number command register (Servo press only) [POSR]
	Press program control register [PPCT]
FFFF _H	(Reserved for system) (Note)

Note Areas reserved for the system cannot be used for communication.

4.3.4 Detail of Modbus Status Registers

[HEX]	Address	Area name	Description	Symbol		Referen	ce page)	
Display Disp	[HEX]		·	-	R1	ΓU	AS	CII	
D100	0000 to 0CFF								
Safety speed enabled status	0100		EMC status	EMGS	(07)	40	(247)	40	
Controller ready status					(97)	40	(247)	40	
Controller leady satus FWR									
Missed work part in push-motion operation		` ′							
Major failure status									
Minor failure status									
Absolute error status									
D108									
Cannot be used									
Pause status				BKRL					
Home return status									
Position complete status			Pause status			40		40	
Device status register 2 (DSS2) Cannot be used Cann			Home return status						
Content Cont	010C		Position complete status	PEND					
O110	010D		Load cell calibration complete	CEND	1				
O110	010E		Load cell calibration status	CLBS					
0110 Device status register 2 (DSS2) Cannot be used (99) (249) 0112 Cannot be used (DSS2) (DSS2) (249) (249) 0112 Cannot be used (DSS2) (DS			Cannot be used		1		1		
0111 register 2 (DSS2) Cannot be used 41 0112 Load output judgment status LOAD 0113 Torque level status TRQS 0114 Teaching mode status MODS 0115 Position-data load command status TEAC 0116 Jog+ status JOG+ 0117 Jog- status JOG- 0118 Position complete 7 PE7 0119 Position complete 6 PE6 011A Position complete 5 PE5 011B Position complete 4 PE4 011C Position complete 3 PE3 011D Position complete 2 PE2 011E Position complete 1 PE1 011F Position complete 0 PE0		Device status			(99)		(249)		
Load output judgment status					(00)	$\overline{}$	(= : -)		
0113 Torque level status TRQS 0114 Teaching mode status MODS 0115 Position-data load command status TEAC 0116 Jog+ status JOG+ 0117 Jog- status JOG- 0118 Position complete 7 PE7 0119 Position complete 6 PE6 011A Position complete 5 PE5 011B Position complete 4 PE4 011C Position complete 3 PE3 011D Position complete 2 PE2 011E Position complete 1 PE1 011F Position complete 0 PE0		(DSS2)		LOAD		41		41	
0114 Teaching mode status MODS 0115 Position-data load command status TEAC 0116 Jog+ status JOG+ 0117 Jog- status JOG- 0118 Position complete 7 PE7 0119 Position complete 6 PE6 011A Position complete 5 PE5 011B Position complete 4 PE4 011C Position complete 3 PE3 011D Position complete 2 PE2 011E Position complete 1 PE1 011F Position complete 0 PE0		· ·							
O115 Position-data load command status TEAC 0116 Jog+ status JOG+ 0117 Jog- status JOG- 0118 Position complete 7 PE7 0119 Position complete 6 PE6 011A Position complete 5 PE5 011B Position complete 4 PE4 011C Position complete 3 PE3 011D Position complete 2 PE2 011E Position complete 1 PE1 011F Position complete 0 PE0									
0116 Jog+ status JOG- 0117 Jog- status JOG- 0118 Position complete 7 PE7 0119 Position complete 6 PE6 011A Position complete 5 PE5 011B Position complete 4 PE4 011C Position complete 3 PE3 011D Position complete 2 PE2 011E Position complete 1 PE1 011F Position complete 0 PE0									
0117 Jog- status JOG- 0118 Position complete 7 PE7 0119 Position complete 6 PE6 011A Position complete 5 PE5 011B Position complete 4 PE4 011C Position complete 3 PE3 011D Position complete 2 PE2 011E Position complete 1 PE1 011F Position complete 0 PE0					1				
0118 Position complete 7 PE7 0119 Position complete 6 PE6 011A Position complete 5 PE5 011B Position complete 4 PE4 011C Position complete 3 PE3 011D Position complete 2 PE2 011E Position complete 1 PE1 011F Position complete 0 PE0									
0119 Position complete 6 PE6 011A Position complete 5 PE5 011B Position complete 4 PE4 011C Position complete 3 PE3 011D Position complete 2 PE2 011E Position complete 1 PE1 011F Position complete 0 PE0		•							
011A Position complete 5 PE5 011B Position complete 4 PE4 011C Position complete 3 PE3 011D Position complete 2 PE2 011E Position complete 1 PE1 011F Position complete 0 PE0									
O11B Position complete 4 PE4 011C Position complete 3 PE3 011D Position complete 2 PE2 011E Position complete 1 PE1 011F Position complete 0 PE0									
O11C Position complete 3 PE3 011D Position complete 2 PE2 011E Position complete 1 PE1 011F Position complete 0 PE0									
011DPosition complete 2PE2011EPosition complete 1PE1011FPosition complete 0PE0									
011EPosition complete 1PE1011FPosition complete 0PE0									
011F Position complete 0 PE0									
	0120	Expansion	Emergency stop status	EMGP	(101)	42	(251)	42	
0121 device status Motor voltage low status MPUV register Operation mode status PMDS									
Operation mode status				RMDS					
U123 Cannot be used		(3002)							
0124 Home return status GHMS 42						42		42	
Push-motion operation in progress PUSH									
0126 Excitation detection status PSNS	0126		Excitation detection status	PSNS					
0127 PIO/Modbus switching status PMSS	0127		PIO/Modbus switching status	PMSS					
0128 Cannot be used]		1		
0129 Cannot be used]		-		
012A Moving signal MOVE 42				MOVE	i	42		42	
012B to 012F Cannot be used					1				

Address	Area name	Description	Symbol		Referen	ce page)
[HEX]		· ·		RTU			CII
0130 to 0135	Position	Cannot be used		(117)		(267)	
0136	number status	Position complete number status bit 512	PM512	, ,	46	` ′	46
0137	register,	Position complete number status bit 256	PM256	•			
0138		Position complete number status bit 128	PM128				
0139	Exected program	Position complete number status bit 64	PM64	·			
	number register	Position complete number status bit 32	PM32	·			
013A	(Servo Press)	Exected program number status bit 32					
		Position complete number status bit 16	PM16				
013B	(POSS)	Exected program number status bit 16					
	1	Position complete number status bit 8	PM8				
013C		Exected program number status bit 8	1 1010				
	1	Position complete number status bit 4	PM4	·			
013D		Exected program number status bit 4	I IVIT				
		Position complete number status bit 2	PM2	•			
013E		Exected program number status bit 2	1 1012				
	1	Position complete number status bit 1	PM1	ŀ	İ		
013F		Exected program number status bit 1	1 101 1				
0140	Zone status	Cannot be used		(115)		(265)	
0140	register	Limit sensor output monitor 2	LS2	(113)	45	(203)	45
	(ZONS)		LS1		43		45
0142	<u> </u>	Limit sensor output monitor 1					
0143		Limit sensor output monitor 0	LS0				
0144 to 0146		Cannot be used	70		45		
0147		Position zone output monitor	ZP		45		45
0148 to 014D		Cannot be used	70		45		
014E		Zone output monitor 2	Z2		45		45
014F		Zone output monitor 1	Z1				
0150 to 015F	Input port monitor register	PIO connector pin numbers 20A (IN15) to 5A (IN0)		8	7	2	37
0100 10 0101	(DIPM)	(INO)					
	Output port	PIO connector pin numbers 16B (OUT15) to		9	2	24	42
0160 to 016F	monitor register	1B (OUT0)					
	(DOPM)	, ,					
0170	Special input	Cannot be used		(113)		(263)	
0171	port monitor	Command pulse NP signal status	NP		44		44
0172	register (SIPM)	Cannot be used					
0173	(OII WI)	Command pulse PP signal status	PP		44		44
0174 to 0176		Cannot be used					
0177		Mode switch status	MDSW		44		44
0178 to 017A		Cannot be used					
017B	1	Belt breakage sensor monitor	BLCT		44		44
017C		Home-check sensor monitor	HMCK		44		44
017D		Overtravel sensor	OT	Ī			
017E	1	Creep sensor	CREP	Ī			
017F	1	Limit sensor	LS	Ì			
0180 to 0183	Expansion	Cannot be used		(119)		(269)	
0184	system status	Cold start level alarm	ALMC	\ ,	47	`/	47
0185 to 0186	register	Cannot be used		ľ			
	(SSSE)	RTC in use	RTC	ŀ	47		47
0187		(ERC3, ACON-CA/CB, DCON-CA/CB and			.,		.,
		PCON-CA/CFA/CB/CFB only)					
0188 to 018F		Cannot be used		ł			
0 100 10 0 101		Odinior be doed		L		l	

Address [HEX] O190 Press program status register (Servo Press) (PPST) While in returning operation While in depression operation While in probing operation While in approaching the operation While in approaching the operation While in approaching the operation Cannot be used Program home return during the movem Program finished in normal condition While in executing program Program home position O19E O19D O19E O1AO to 01A9 O1AA O1AB O1AC O1AC O1AD O1AD O1AC O1AD O1AC O1AD O1AC O1AD O1AC O1AD O1AC PALM PCMP PRUN PORG LJNG LJOK	(129)	Referen FU 51 51 51 51 51 51 51 51 51 51 51 51 51	AS (279)		
Other Colors Othe	RTRN DCMP PSTP PRSS SERC APRC Ment MPHM PALM PCMP PRUN PORG LJNG LJOK		51 51 51 51 51 51 51 51 51 51 51	(279)	51 51 51 51 51 51 51 51 51
0192 (Servo Press) 0193 (PPST) While in returning operation While in depression operation While in pressurize during the stop While in pressurizing operation While in probing operation While in approaching the operation While in approaching the operation Cannot be used Program home return during the movem Program alarm Program finished in normal condition While in executing program Program home position O19E O19F O1AO to 01A9 O1AA O1AB O1AB O1AB O1AB O1AC O1AC O1AD O1AD O19S O1AC O1AC O1AD O1AC O1AD O1AC O1AD O1AC O1AC O1AD O1AC O1AC O1AC O1AD O1AC	RTRN DCMP PSTP PRSS SERC APRC Ment MPHM PALM PCMP PRUN PORG LJNG LJOK	(131)	51 51 51 51 51 51 51 51 51		51 51 51 51 51 51 51 51
While in returning operation	DCMP PSTP PRSS SERC APRC Ment MPHM PALM PCMP PRUN PORG LJNG LJOK	(131)	51 51 51 51 51 51 51 51 51		51 51 51 51 51 51 51
O193 O194 O195 O196 O197 O198 to 019A O19B O19C O19D O19E O19F O1AO to 01A9 O1AA O1AB O1AB O1AB O1AC O1AC O1AC O1AC O1AC O1AC O1AC O1AC	DCMP PSTP PRSS SERC APRC Ment MPHM PALM PCMP PRUN PORG LJNG LJOK	(131)	51 51 51 51 51 51 51 51 51		51 51 51 51 51 51
0194 0195 0196 0197 0198 to 019A 019B 019C 019D 019E 019F 01AO to 01A9 01AA 01AB 01AB 01AC 01AC 01AC 01AD 0195 0195 0196 0197 0197 0198 0198 0198 0198 0198 0198 0198 0198	PSTP PRSS SERC APRC MPHM PALM PCMP PRUN PORG LJNG LJOK	(131)	51 51 51 51 51 51 51 51		51 51 51 51 51 51
0195 While in pressurizing operation 0196 While in probing operation 0197 While in approaching the operation 0198 to 019A Cannot be used 019C Program home return during the movem 019D Program finished in normal condition 019E While in executing program 019F Press program judgement 01A0 to 01A9 Press program judgement status register (Servo Press) (PPJD) 01AC (PPJD) 01AD (PPJD) While in pressurizing operation While in approaching the operation Cannot be used Load judgement NG Load judgement NG Position (distance) judgement NG Position (distance) judgement OK	PRSS SERC APRC MPHM PALM PCMP PRUN PORG LJNG LJOK	(131)	51 51 51 51 51 51 51		51 51 51 51 51
0196 While in probing operation 0197 While in approaching the operation 0198 to 019A Cannot be used 019B Program home return during the movem 019C Program alarm 019D Program finished in normal condition While in executing program Program home position 019F Cannot be used 01A0 to 01A9 Press program judgement 01AA judgement status register (Servo Press) 01AC (PPJD) 01AD Position (distance) judgement NG Position (distance) judgement OK	SERC APRC MPHM PALM PCMP PRUN PORG LJNG LJOK	(131)	51 51 51 51 51 51		51 51 51 51
While in approaching the operation Cannot be used	APRC MPHM PALM PCMP PRUN PORG LJNG LJOK	(131)	51 51 51 51 51		51 51 51
O198 to 019A O19B O19C O19D O19E O19F O1AO to 01A9 O1AA O1AB O1AB O1AC O1AC O1AD O1BE O1AC O1AD O1BE O1AC O1AD O1BE O1BE O1BE O1BE O1BE O1BE O1BE O1BE	nent MPHM PALM PCMP PRUN PORG LJNG LJOK	(131)	51 51 51 51		51 51
019B 019C 019D 019E 019F 01AO to 01A9 01AA 01AB 01AB 01AC 01AC 01AD 01AD 019E 01AC 01AD 01AC 01AD 01AB 01AC 01AD 01AB 01AC 01AD 01AB 01AC 01AD 01AC 01AD 01AC 01AD 01AC 01AC 01AC 01AC 01AC 01AC 01AC 01AC	PALM PCMP PRUN PORG LJNG LJOK	(131)	51 51 51		51
019C Program alarm 019D Program finished in normal condition 019E While in executing program 019F Program home position 01A0 to 01A9 Press program judgement status register (Servo Press) 01AB (Servo Press) (PPJD) 01AC (PPJD) 01AD Position (distance) judgement NG Position (distance) judgement OK	PALM PCMP PRUN PORG LJNG LJOK	(131)	51 51 51		51
019D Program finished in normal condition 019E While in executing program 01A0 to 01A9 Press program 01AA judgement status register 01AB (Servo Press) 01AC (PPJD) Program finished in normal condition While in executing program Cannot be used Load judgement NG Load judgement OK Position (distance) judgement NG Position (distance) judgement OK	PCMP PRUN PORG LJNG LJOK	(131)	51 51		
019E While in executing program 019F Program home position 01A0 to 01A9 Press program judgement judgement status register (Servo Press) (PPJD) Cannot be used 01AB Load judgement OK 01AC (PPJD) 01AD Position (distance) judgement OK Position (distance) judgement OK	PRUN PORG LJNG LJOK	(131)	51		51
019F Program home position 01A0 to 01A9 Press program judgement status register (Servo Press) (PPJD) Cannot be used 01AA Load judgement NG Load judgement OK Position (distance) judgement NG Position (distance) judgement OK	PORG LJNG LJOK	(131)			
01A0 to 01A9 Press program 01AA judgement 01AB (Servo Press) 01AC (PPJD) Cannot be used Load judgement NG Load judgement OK Position (distance) judgement NG Position (distance) judgement OK	LJNG LJOK	(131)	51		51
01AA judgement status register (Servo Press) (PPJD) Load judgement NG Load judgement OK Position (distance) judgement NG Position (distance) judgement OK	LJOK	(131)			51
01AB status register (Servo Press) (PPJD) Load judgement OK Position (distance) judgement NG Position (distance) judgement OK	LJOK			(281)	
01AC (Servo Press) (PPJD) Position (distance) judgement NG Position (distance) judgement OK Position (distance) judgement OK]	52		52
01AD Position (distance) judgement NG Position (distance) judgement OK			52		52
O1AD Position (distance) judgement OK	PJNG		52		52
	PJOK		52		52
01AE Total judgement NG	JDNG		52		52
01AF Total judgement OK	JDOK	1	52		52
Paganged for					
01B0 to 03FF Reserved for system					
0420 to 0425 Expansion Cannot be used		1 /		/	
0426 device control Load cell calibration command	CLBR	1 /	160	/	310
0427 register PIO/Modbus switching specification	PMSL	1 /	162		312
0428 to 042B (DRGE) Cannot be used		1 /		/	
042C Deceleration stop	STOP	1 /	164		314
042D to 042F Cannot be used		1/		/	
0430 to 0435 Position Cannot be used		(176)		(326)	
0436 number Position command bit 512	PC512	(170)	35	(020)	35
0437 specification Position command bit 256	PC256		00		00
0438 register Position command bit 128	PC128				
D ''' 11 '' 04	PC64	1			
i Togram	PC32				
043A number Position command bit 32 Program number command bit 32	PC32				
	D040				
0/3D (O-mas Break) I control continuand bit to	PC16				
Frogram number command bit to					
043C (POSR) Position command bit 8	PC8				
Program number command bit 8					
Position command bit 4	PC4				
Program number command bit 4					
Position command bit 2	PC2				
Program number command bit 2					
043F Position command bit 1	PC1				
Program number command bit 1					
0440 to 048F Reserved for					
0490 to 049A Press program Cannot be used					
	TAINA) /	/	100	/	210
(DDCT)	ENMV		166	/	316
Program nome return movement	PHOM	. /	168	/	318
049D Search stop	SSTP] /	170	/	320
049E Program compulsoly finish	FPST] /	172	/	322
	PSTR	<u>/_</u>	174		324
049F Program start		1 -			
049F Program start 04A0 to FFFF Reserved for system					

5 Modbus RTU

5.1 Message Frames (Query and Response)

Start	Address	Function code	Data	CRC Check	End
Silent	1 byte	1 byte	n byte	2 byte	Silent
interval	1 Dyte	1 byte	II byte	Z byte	interval

(1) Start

This field contains a silent interval (non communication time) of 3.5 characters or longer. (1 character = 10 bits)

Example: In case of 9600 bps, (10×3.5) bits $\times 1/9600$ bps = 3.65 ms

Note If the response timeout error occurs, change parameter No. 45, "Silent interval multiplier" or No. 17, "Min. delay for activating local transmitter" using the IAI teaching tool as required.

(2) Address

This field specifies the addresses of connected RC controllers (01_H to 10_H). Address = axis number + 1

Caution: The address is not equal to the corresponding axis number: be careful when making settings.

(3) Function

The table below summarizes the function codes and functions that can be used with RC controllers.

Code [Hex]	Name	Function
01 _H	Read Coil Status	Read coils/DOs.
02 _H	Read Input Status	Read input statuses/DIs.
03 _H	Read Holding Registers	Read holding registers.
04 _H	Read Input Registers	Read input registers.
05 _H	Force Single Coil	Write one coil/DO.
06 _H	Preset Single Register	Write holding register.
07 _H	Read Exception Status	Read exception statuses.
0F _H	Force Multiple Coils	Write multiple coils/DOs at once.
10 _H	Preset Multiple Registers	Write multiple holding registers at once.
11 _H	Report Slave ID	Query a slave's ID.
17 _H	Read / Write Registers	Read/write registers.

Note This manual explains about I mark function codes.

(Reference) The ROBONET gateway supports three types of function codes (03_H, 06_H and 10_H). [Please refer to the separate ROBONET Operation Manual.]

(4) Data

Use this field to add data specified by a function code. It is also allowed to omit data if data addition is not specified by a function code.

(5) CRC check

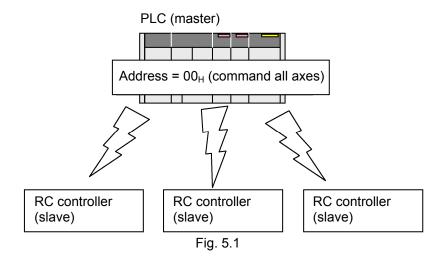
In the RTU mode, an error check field confirming to the CRC method is automatically ^(Note) included in order to check contents of all messages. Moreover, checking is carried out regardless of the parity check method of individual characters in messages.

The CRC check consists of 16-bit binary values. The CRC value is calculated by the sender that appends the CRC field to a message. The recipient recalculates the CRC value again while receiving the message, and compares the calculation result against the actual value received in the CRC field. If the two values do not match, an error will generate. (Note) When using a PC or a PLC not supporting Modbus are used as the host, it is

necessary to create a function for calculating CRC.

Programs written in C language are included in 8.1, "CRC Check Calculation."

Generation polynomial equation: **x16 + x15 + x2 + 1** (CRC-16 method)


(Reference) CRC calculation is automatically carried out with the FINS command supporting Modbus RTU communication of the PLC CJ1 series made by Omron.

(6) End

This field contains a silent interval (non communication time) of 3.5 characters or longer. (Note) If the response timeout error occurs, change parameter No. 45, "Silent interval multiplier" or No. 17, "Min. delay for activating local transmitter" using the IAI's teaching tools as required.

(7) Broadcast

It is possible to send a query containing same data to all connected axes by specifying the address 00_{H} . In this case, no response is returned from an RC controller. Note, however, that the function codes etc. that can be used with this function are limited; care should be taken when using the function. Please check the function codes that can be used in 5.2, "List of RTU Mode Queries."

↑ Caution

The sizes of send/receive buffers are set to 256 bytes for an RC controller, respectively. Make sure to keep the messages small enough such that messages sent from the host side do not exceed the receive buffer and data requests do not exceed send buffer.

5.2 List of RTU Mode Queries

FC: Function code

PIO: Parallel I/O (input/output of an I/O connector)

The circle marks in the Combination use with PIO and Broadcast columns indicate queries that can be combined with PIO and in broadcast communication, respectively.

FC	Function	Symbol	Function Summary	Combination with PIO	Broad- cast	Page
03	Multiple FC03 register reading	None	This function can be used to successively read multiple registers that use function 03.	0		65
03	Alarm detail description reading	ALA0 ALC0 ALT0	This bit reads the alarm codes, alarm addresses, detail codes and alarm occurrence time (passed time) that lately occurred.	0		69
03	Position data (Note 1) reading	Refer to right	This bit reads the indicated number in the position data. (PCMD, INP, VCMD, ZNMP, ZNLP, ACMD, DCMD, PPOW, LPOW, CTLF)	0		71
03	Total moving count reading	TLMC	This bit reads the Total moving count.	0		74
03	Total moving distance reading	ODOM	This bit reads the Total moving distance in units of 1 m.	0		76
03	Present time reading	TIMN	This bit reads the present time. (PCON-CA/CFA/CB/CFB, ACON-CA/CB, DCON-CA/CB and SCON-CA/CAL/CB only)	0		78
03	Total FAN driving time reading	TFAN	This bit reads the Total FAN driving time. (PCON-CFA/CFB, SCON-CAL and SCON-CB [400W or more] only)	0		81
03	Current position reading	PNOW	This function reads the current actuator position in units of 0.01 mm.	0		83
03	Present alarm code reading	ALMC	This function reads alarm codes that are presently detected.	0		85
03	I/O port input status reading	DIPM	This function reads the ON/OFF statuses of PIO input ports.	0		87
03	I/O port output status reading	DOPM	This function reads the ON/OFF statuses of PIO output ports.	0		92
03	Controller status signal reading 1 (device status 1) (Operation preparation status)	DSS1	This function reads the following 12 statuses: [1] Emergency stop [2] Safety speed enabled/disabled [3] Controller ready [4] Servo ON/OFF [5] Missed work part in push-motion operation [6] Major failure [7] Minor failure [8] Absolute error [9] Brake [10] Pause [11] Home return completion [12] Position complete [13] Load cell calibration complete [14] Load cell calibration status	0		97

Note1 Once RCP6S, RCM-P6PC, RCM-P6AC and RCM-P6DC read this address, they return 0_H to all the addresses.

FC	Function	Symbol	Function Summary	Combination with PIO	Broad- cast	Page
03	Controller status signal reading 2 (device status 2) (Operation preparation 1 status)	DSS2	 This function reads the following 15 statuses: [1] Enable [2] Load output judgment (check-range load current threshold) [3] Torque level (load current threshold) [4] Teaching mode (normal/teaching) [5] Position data load (normal/complete) [6] Jog+ (normal/command active) [7] Jog- (normal/command active) [8] Position complete 7 to 0 	0		99
03	Controller status signal reading 3 (extended device status) (Operation preparation 2 status)	DSSE	 This function reads the following 9 statuses: [1] Emergency stop (emergency stop input port) [2] Motor voltage low [3] Operation mode (AUTO/MANU) [4] Home return [5] Push-motion operation in progress [6] Excitation detection [7] PIO/Modbus switching [8] Position-data write completion status [9] Moving 	0		101
03	Controller status signal reading 4 (System status) (Controller status)	STAT	This function reads the following 7 statuses: [1] Automatic servo OFF [2] Nonvolatile memory being accessed [3] Operation mode (AUTO/MANU) [4] Home return completion [5] Servo ON/OFF [6] Servo command [7] Drive source ON (normal/cut off)	0		103
03	Current speed reading	VNOW	This function reads the current actuator speed in units of 0.01 mm/sec.	0		105
03	Current ampere reading	CNOW	This function reads the motor-torque current command value of the actuator in mA.	0		107
03	Deviation reading	DEVI	This function reads the deviation over a 1-ms period in pulses.	0		109
03	Total power on time reading	STIM	This function reads the total time in msec since the controller power was turned on.	0		111
03	Special input port input signal status reading (Sensor input status)	SIPM	This function reads the following 8 statuses: [1] Command pulse NP [2] Command pulse PP [3] Mode switch [4] Belt breakage sensor [5] Home check sensor [6] Overtravel sensor [7] Creep sensor [8] Limit sensor	0		113

FC	Function	Symbol	Function Summary	Combination with PIO	Broad- cast	Page
03	Zone output signal reading	ZONS	This function reads the following 6 statuses: [1] LS2 (PIO pattern solenoid valve mode [3-point type] [2] LS1 (PIO pattern solenoid valve mode [3-point type] [3] LS0 (PIO pattern solenoid valve mode [3-point type] [4] Position zone [5] Zone 2 [6] Zone 1	0		115
03	Positioning completed position number reading Exected program number register	POSS	This function reads the following next statuses: Complete position number bit 256 to 1 Exected program number bit 32 to1	. 0		117
03	Controller status signal reading 5	SSSE	This function reads the following 2 statuses: [1] Cold start level alarm occurred/not occurred [2] RTC (calendar) function used/not used (ERC3, PCON-CA/CFA/CB/CFB, ACON-CA/CB and DCON-CA/CB only)	0		119
03	Current load reading	FBFC	The current measurement on the load cell is read in units of 0.01 N.	0		121
03	Press program status register reading	PPST	This function reads the following 12 statuses: [1] Waiting [2] While in returning operation [3] While in depression operation [4] Pressurize during the stop [5] While in pressurizing operation [6] While in probing operation [7] While in approaching the operation [8] Program home return during the movement [9] Program alarm [10] Program finished in normal condition [11] While in excecuting program [12] Program home position	0		129
03	Press program judgement status register	PPJD	This function reads the following 6 statuses: [1] Load judgement NG [2] Load judgement OK [3] Position (distance) judgement NG [4] Position (distance) judgement OK [5] Total judgement NG [6] Total judgement OK	0		131
05	Safety speed enable/disable switching	SFTY	This function issues a command to enable/disable the safety speed.		0	134
05	Servo ON/OFF	SON	This function issues a command to turn the servo ON/OFF.		0	136

FC	Function	Symbol	Function Summary	Combination with PIO	Broad- cast	Page
05	Alarm reset	ALRS	This function issues a command to reset alarms/cancel the remaining travel.		0	138
05	Brake forced release	BKRL	This function issues a command to forcibly release the brake.		0	140
05	Pause	STP	This function issues a pause command.		0	142
05	Home return	HOME	This function issues a home return operation command.		0	144
05	Positioning start command	CSTR	This signal starts a position number specified movement.		0	146
05	Jog/inch switching	JISL	This function switches between the jogging mode and the inching mode		0	148
05	Teaching mode command	MOD	This function switches between the normal mode and the teaching mode		0	150
05	Position data load command	TEAC	This function issues a current position load command in the teaching mode.		0	152
05	Jog+ command	JOG+	This function issues a jogging/inching command in the direction opposite home.		0	154
05	Jog- command	JOG-	This function issues a jogging/inching command in the direction of home.		0	156
05	Start positions 0 to 7 < <st0 st7="" to="">> movement command</st0>	ST0 to ST7	This function specifies position numbers effective only in the solenoid valve mode. The actuator can be operated with this command alone.		0	158
05	Load cell calibration command	CLBR	Calibrate the load cell.		0	160
05	PIO/Modbus switching setting	PMSL	This function issues a command to enable/disable PIO external command signals.		0	162
05	Deceleration stop	STOP	This function can decelerate the actuator to a stop.		0	164
05	Axis operation permission	ENMV	Setting can be made whether to permit the operation of the connected axes.		0	166
05	Program home return movement	PHOM	Movement is made to the program home position set in each press program.		0	168
05	Search stop	SSTP	It can be stopped after search operation is complete.		0	170
05	Program compulsoly finish	FPST	It compulsoly finishes the press program.		0	172
05	Program executed	PSTR	Press program execute it.		0	174
06	Direct writing of control information write		Change (write) the content of the controller's register.		0	176
10	Numerical value movement command	None	This function can be used to send the target position, positioning band, speed, acceleration/deceleration, push, and control setting in a single message to operate the actuator. Normal movement, relative movement and push-motion operation are supported.		0	180
10	Writing position data table ^(Note 1)	None	This function can be used to change all data of the specified position number for the specified axis.		0	198
ndeter- ninable	Exception response	None	This response will be returned when the message contains invalid data.			357

Note 1 In RCP6S, RCM-P6PC, RCM-P6AC and RCM-P6DC, writing in this address is not available. They should return an exception response.

5.3 Data and Status Reading (Used function code 03)

5.3.1 Reading Consecutive Multiple Registers

(1) Function

These registers read the contents of registers in a slave.

This function is not supported in broadcast communication.

(2) Start address list

With RC Series controllers, the sizes of send/receive buffers are set to 256 bytes, respectively. Accordingly, a maximum of 125 registers' worth of data consisting of 251 bytes (one register uses two bytes), except 5 bytes (slave address + function code + number of data bytes + error check) of the above 256 bytes, can be queried in the RTU mode. In other words, all of the data listed below can be queried in a single communication.

It is also available to refer to multiple registers of the addresses in a row at one time of sending and receiving.

Address [H]	Symbol	Name	Sign	Register size	Byte
0500	ALA0	Alarm detail code		1	2
0501	ALA0	Alarm address		1	2
0502	-	Always 0	-	1	2
0503	ALC0	Alarm code		1	2
0504,0505	ALT0	Alarm occurrence time		2	4
1000 to 3FFF	PCMD	Target position	0	2	4
	INP	Positioning band	0	2	4
(Note) Assignment is	VCMD	Speed command		2	4
made in order	ZNMP	Individual zone boundary +	0	2	4
from small position	ZNLP	Individual zone boundary -	0	2	4
numbers.	ACMD	Acceleration command		1	2
	DCMD	Deceleration command		1	2
	PPOW	Push-current limiting value		1	2
	LPOW	Load current threshold		1	2
	CTLF	Control flag specification		1	2
8400, 8401	TLMC	Total moving count (Note1)		2	4
8402, 8403	ODOM	Total moving distance (Note1)		2	4
841E, 841F	TIMN	Present time (SCON-CA/CAL/CB only)		2	4
8420, 8421	TIMN	Present time (PCON-CA/CFA/CB/CFB only)		2	4
8422, 8423	TIMN	Present time		2	4
		(ACON-CA/CB, DCON-CA/CB only)			
842A, 842B	TFAN	Total FAN driving time		2	4
042A, 042D	IFAN	(SCON-CAL, SCON-CB [400W or more] only)		2	4
842E, 842F	TFAN	Total FAN driving time (PCON-CFA/CFB only)		2	4

Address [H]	Symbol	Name		Register size	Byte
9000, 9001	PNOW	Current position monitor		2	4
9002	ALMC	Present alarm code query		1	2
9003	DIPM	Input port query		1	2
9004	DOPM	Output port monitor query		1	2
9005	DSS1	Device status query 1		1	2
9006	DSS2	Device status query 2		1	2
9007	DSSE	Expansion device status query		1	2
9008, 9009	STAT	System status query		2	4
900A, 900B	VNOW	Current speed monitor	0	2	4
900C, 900D	CNOW	Current ampere monitor	0	2	4
900E, 900F	DEVI	Deviation monitor	0	2	4
9010, 9011	STIM	System timer query		2	4
9012	SIPM	Special input port query		1	2
9013	ZONS	Zone status query		1	2
9014	POSS	Positioning complete position No. status query Exected program No. register (Servo Press)		1	2
9015	SSSE	Expansion system status register		1	2
901E	FBFC	Current load data monitor		2	4
9020	OLLV	Overload level monitor		1	2
9022	ALMP	Press program alarm code		1	2
9023	ALMP	Alarm generated press program No.		1	2
9024	PPST	Pres program status register		1	2
9025	PPJD	Press program status judgements register		1	2

Note 1 PCON-CA/CFA/CB/CFB/CYB/PLB/POB, ACON-CA/CB/CYB/PLB/POB, DCON-CA/CB/CYB/PLB/POB, SCON-CA/CAL/CB, ERC3, RCP6S, RCM-P6PC, RCM-P6AC and RCM-P6DC only

(3) Query format

In a query message, specify the address of the register from which to start reading data, and number of bytes in registers to be read.

1 register (1 address) = 2 bytes = 16-bit data

Field	Number of data items (number of bytes)	RTU mode 8-bit data	Remarks
Start		None	Silent interval
Slave address [H]	1	Arbitrary	Axis No. + 1 (01 _H to 10 _H)
Function code [H]	1	03	Register reading code
Start address [H]	2	Arbitrary	Refer to 5.3.1 (2),
			"Start address list"
Number of registers [H]	2	Arbitrary	Refer to the start address list.
Error check [H]	2	CRC (16 bits)	
End		None	Silent interval
Total number of bytes	8		

(4) Response format

(4) Kesponse format			
Field	Number of data items (number of bytes)	RTU mode 8-bit data	Remarks
Start			Silent interval
Slave address [H]	1	Arbitrary	Axis No. + 1 (01 _H to 10 _H)
Function code [H]	1	03	Register reading code
Number of data bytes [H]	1		Total number of bytes of registers specified in the query
Data 1 [H]	Number of bytes of register specified in the query		
Data 2 [H]	Number of bytes of register specified in the query		
Data 3 [H]	Number of bytes of register specified in the query		
Data 4 [H]	Number of bytes of register specified in the query		
:	:		
:	:		
Error check [H]	2	CRC (16 bits)	Silent interval
End		None	
Total number of bytes	Up to 256		

A sample query that queries addresses 9000_H to 9009_H of a controller of axis No. 0 is shown below.

Query (silent intervals are inserted before and after the query)
 01 03 90 00 00 0A E8 CD

Field	RTU mode
	8-bit data
Start	Silent interval
Slave address [H]	01
Function code [H]	03
Start address [H]	9000
Number of registers [H]	000A (10 registers)
Error check [H]	E8CD (in accordance with
	CRC calculation)
End	Silent interval

The response to the query is as follows.

Response (silent intervals are inserted before and after the response)
 01 03 14 00 00 00 00 00 00 00 06 60 06 18 80 00 23 C7 00 00 00 19 18 A6

	20 00 10 00 00 20 01 00 00 10 10 10 1
Field	RTU mode
	8-bit data
Start	Silent interval
Slave address [H]	01
Function code [H]	03
Number of data bytes [H]	14 (20 bytes = 10 registers)
Data 1 [H]	00 00 00 00 (current position monitor)
Data 2 [H]	00 00 (present alarm code query)
Data 3 [H]	00 00 (input port query)
Data 4 [H]	6E 00 (output port query)
Data 5 [H]	60 18 (device status 1 query)
Data 6 [H]	80 00 (device status 2 query)
Data 7 [H]	23 C7 (expansion device status query)
Data 8 [H]	00 00 00 19 (system status query)
Error check [H]	18A6 (in accordance with CRC calculation)
End	Silent interval

5.3.2 Alarm Detail Description Reading <<ALA0, ALC0, ALT0>>

(1) Function

This bit reads the alarm codes, alarm detail codes and alarm occurrence time that lately occurred. When any alarm is not issued, it is ${}^{\circ}0_{H}{}^{\circ}$. [Refer to 4.3.2 (1) to (3) for detail]

(2) Query format

Field	Number of data items (number of bytes)	RTU mode 8-bit data	Remarks
Start	None		Silent interval
Slave address [H]	1	Arbitrary	Axis number + 1 (01 $_{\rm H}$ to 10 $_{\rm H}$)
Function code [H]	1	03	Register reading
Start address [H]	2	0500	Alarm detail code
Number of registers [H]	2	0006	Reading addresses
			0500 _H to 0505 _H
Error check [H]	2	CRC (16 bits)	
End	None		Silent interval
Total number of bytes	8		

(3) Response format

A response message	Contains to bits of data	per register.	
Field	Number of data items (number of bytes)	RTU mode 8-bit data	Remarks
Start	None		Silent interval
Slave address [H]	1	Arbitrary	Axis number + 1 (01 $_{\rm H}$ to 10 $_{\rm H}$)
Function code [H]	1	03	Register reading
Number of data bytes [H]	1	0C	Reading 6 registers = 12
			bytes
Data 1 [H]	4	Alarm detail code	Alarm detail code (0500 _H) [Hex]
		Alarm address	Alarm address (0501 _H) [Hex]
Data 2 [H]	4	Alarm code	Alarm code [Hex]
Data 3 [H]	4	Alarm occurrence time (Note1)	Alarm occurrence time [Hex]
Error check [H]	2	CRC (16 bits)	
End	None		Silent interval
Total number of bytes	17		

- Note 1 The contents of data differ for the case when the model is equipped with RTC (calendar) function and RTC is effective [1] and the case when RTC is ineffective or the model is not equipped with RTC [2].
- [1] It shows the alarm occurrence time.
- [2] It shows the time [msec] passed since the power was turned on.

A sample guery that reads the contents of last occurred alarm (addresses 0500_H to 0505_H) of a controller with axis No. 0 is shown below.

 Query (silent intervals are inserted before and after the query) 01 03 05 00 00 06 C5 04

Field	RTU mode 8-bit data	
Start	Silent interval	
Slave address [H]	01	
Function code [H]	03	
Start address [H]	0500	
Number of registers [H]	0006	
Error check [H]	C504 (in accordance with	
	CRC calculation)	
End	Silent interval	

The response to the query is as follows.

 Response (silent intervals are inserted before and after the response) 01 03 0C 00 00 FF FF 00 00 00 E8 17 2C 64 3F 2D CD

Field	RTU mode 8-bit data
	0-bit data
Start	Silent interval
Slave address [H]	01
Function code [H]	03
Number of data bytes [H]	0C (12 bytes = 6 registers)
Data 1 [H]	00 00 (Alarm detail code)
Data 2 [H]	FF FF (Alarm address)
Data 3 [H]	00 00 00 E8 (Alarm code)
Data 4 [H]	17 2C 64 3F (Alarm occurrence time)
Error check [H]	2DCD (in accordance with CRC calculation)
End	Silent interval

Alarm detail code: 0000_H····No detail code

Alarm address: FFFF_H...Disable (no detail code)

00E8_H=0E8···Encoder AB phase break error Alarm code:

 $172C643F_H$ (conversion) $\Rightarrow 2012/04/26 19:53:35$ [Conversion is Alarm occurrence time:

refer to the Section 4.3.2(3)]

Note 1 The data of the response example is simply an example and will vary depending on various conditions.

Note 2 For the detail of an alarm code, check in the instruction manual of the each controller.

5.3.3 Position Data Description Reading << PCMD, INP, VCMD, ZNMP, ZNLP, ACMD, DCMD, PPOW, LPOW, CTLF>>

(1) Function

This reads the value set in the indicated position number.

(2) Start address list

With RC Series controllers, the sizes of send/receive buffers are set to 256 bytes, respectively. Accordingly, a maximum of 125 registers' worth of data consisting of 251 bytes (one register uses two bytes), except 5 bytes (slave address + function code + number of data bytes + error check) of the above 256 bytes, can be queried in the RTU mode. In other words, all of the data listed below can be queried in a single communication.

It is also available to refer to multiple registers of the addresses in a row at one time of sending and receiving.

Address [H]	Top Address of Each Position Number [H]	Offset from Top Address [H]	Symbol	Registers name	sign	Register size	Byte	Unit
1000 to	Тор	+0	PCMD	Target position	0	2	4	0.01mm
3FFF	Address =	+2	INP	Positioning band	0	2	4	0.01mm
	1000 _H +(16	+4	VCMD	Speed command		2	4	0.01mm/s
	× position No.)	+6	ZNMP	Individual zone boundary +	0	2	4	0.01mm
		+8	ZNLP	Individual zone boundary -	0	2	4	0.01mm
		+A	ACMD	Acceleration command		1	2	0.01G
		+B	DCMD	Deceleration command		1	2	0.01G
		+C	PPOW	Push-current limiting value		1	2	% (100%= FF _H)
		+D	LPOW	Load current threshold		1	2	% (100%= FF _H)
		+E	CTLF	Control flag specification		1	2	

In a query input, each address is calculated using the formula below: 1000_H + (16 × Position number) _H + Address (Offset) _H

Example Change the speed command register for position No. 200 $1000_H + (16 \times 200 = 3200)_H + 4_H$

Note The maximum position number varies depending on the controller model and the PIO pattern currently specified.

Note RCP6S, RCM-P6PC, RCM-P6AC and RCM-P6DC returns 0_H in all the addresses once it reads this address.

 $^{= 1000}_{\rm H} + C80_{\rm H} + 4_{\rm H}$

^{= 1}C84_H

[&]quot;1C84" becomes the input value for the start address field of this query.

(3) Query format

In a query message, specify the address of the register from which to start reading data, and number of bytes in registers to be read.

1 register (1 address) = 2 bytes = 16-bit data

Field	RTU mode	Number of data items	Remarks
	8-bit data	(number of bytes)	
Start	None		Silent interval
Slave address [H]	Arbitrary	1	Axis No. + 1 (01 _H to 10 _H)
Function code [H]	03	1	Register reading code
Start address [H]	Arbitrary	2	Refer to (2),
			"Start address list"
Number of registers [H]	Arbitrary	2	Refer to the start address list.
Error check [H]	CRC (16 bits)	2	
End	None		Silent interval
Total number of bytes		8	

(4) Response format

(4) Response format			
Field	RTU mode 8-bit data	Number of data items (number of bytes)	Remarks
Start			Silent interval
Slave address [H]	Arbitrary	1	Axis No. + 1 (01 _H to 10 _H)
Function code [H]	03	1	Register reading code
Number of data bytes [H]		1	Total number of bytes of registers specified in the query
Data 1 [H]		Number of bytes of register specified in the query	
Data 2 [H]		Number of bytes of register specified in the query	
Data 3 [H]		Number of bytes of register specified in the query	
Data 4 [H]		Number of bytes of register specified in the query	
:		:	
:		:	
Error check [H]	CRC (16 bits)	2	Silent interval
End	None		
Total number of bytes		256 max.	

Shown below is an example for a use referring to the target position, positioning band and speed command in Position No. 1 (Address 1010_H to 1015_H) on Axis No. 0 controller.

Query (silent intervals are inserted before and after the query)
 01 03 10 10 00 06 C0 CD

RTU mode	
8-bit data	
Silent interval	
01	
03	
1010	
0006 (6 registers)	
C0CD (in accordance with	
CRC calculation)	
Silent interval	

The response to the query is as follows.

Response (silent intervals are inserted before and after the response)
 01 03 0C 00 00 07 D0 00 00 1F 40 00 00 3A 98 AF C5

Field	RTU mode 8-bit data	
Start	Silent interval	
Slave address [H]	01	
Function code [H]	03	
Number of data bytes [H]	0C (12 bytes = 6 registers)	
Data 1 [H]	00 00 07 D0 (target position query)	
Data 2 [H]	00 00 1F 40 (positioning band query)	
Data 3 [H]	00 00 3A 98 (speed command query)	
Error check [H]	AFC5 (in accordance with CRC calculation)	
End	Silent interval	

Target position "7D0_H" \rightarrow Convert into decimal number \rightarrow 2000×[unit 0.01mm]= 20.00[mm] Positioning band "1F40_H" \rightarrow Convert into decimal number \rightarrow 8000×[unit 0.01mm]= 80.00[mm] Speed command "3A98_H" \rightarrow Convert into decimal number \rightarrow 15000×[unit 0.01mm]= 150.00[mm]

5.3.4 Total moving count Reading <<TLMC>>

(1) Function

This bit reads the total moving count. [Refer to Section 4.3.2(8)]

(2) Query format

(=) Guory rorrinat			
Field	Number of data items (number of bytes)	RTU mode 8-bit data	Remarks
Start	None		Silent interval
Slave address [H]	1	Arbitrary	Axis number + 1 (01 _H to 10 _H)
Function code [H]	1	03	Register reading
Start address [H]	2	8400	Total moving count
Number of registers [H]	2	0002	Reading addresses 8400 _H to 8401 _H
Error check [H]	2	CRC (16 bits)	2 2 2 11 22 2 3 11
End	None		Silent interval
Total number of bytes	8		

(3) Response format

A response message contains to bits of data per register.				
Field	Number of data items	RTU mode	Remarks	
	(number of bytes)	8-bit data		
Start	None		Silent interval	
Slave address [H]	1	Arbitrary	Axis number + 1 (01 $_{\rm H}$ to 10 $_{\rm H}$)	
Function code [H]	1	03	Register reading	
Number of data bytes [H]	1	04	Reading 2 registers = 4 bytes	
Data 1 [H]	2	Total moving count	Total moving count(0500 _H)	
			[Hex] (most significant digit)	
Data 2 [H]	2	Total moving count	Total moving count(0501 _H)	
			[Hex] (least significant digit)	
Error check [H]	2	CRC (16 bits)		
End	None		Silent interval	
Total number of bytes	9			

A sample query that reads the total moving count (addresses 8400_H to 8401_H) of a controller with axis No. 0 is shown below.

Query (silent intervals are inserted before and after the query)
 01 03 84 00 00 02 EC FB

0 02 2010		
Field	RTU mode	
	8-bit data	
Start	Silent interval	
Slave address [H]	01	
Function code [H]	03	
Start address [H]	8400	
Number of registers [H]	0002	
Error check [H]	ECFB (in accordance with	
	CRC calculation)	
End	Silent interval	

The response to the query is as follows.

Response (silent intervals are inserted before and after the response)
 01 03 04 00 00 02 1F BA 9B

Field	RTU mode	
	8-bit data	
Start	Silent interval	
Slave address [H]	01	
Function code [H]	03	
Number of data bytes [H]	04 (4 bytes = 2 registers)	
Data 1 [H]	00 00	
Data 2 [H]	02 1F	
Error check [H]	BA9B (in accordance with CRC calculation)	
End	Silent interval	

The Total moving count is "21 F_H " \rightarrow Convert into decimal number \rightarrow 543[times]

5.3.5 Total moving distance Reading << ODOM>> (in 1 mm units)

(1) Function

This bit reads the total moving distance in units of 1m.

(2) Query format

Field	Number of data items	RTU mode	Remarks
	(number of bytes)	8-bit data	
Start	None		Silent interval
Slave address [H]	1	Arbitrary	Axis number + 1 (01 _H to 10 _H)
Function code [H]	1	03	Register reading
Start address [H]	2	8402	Total moving distance
Number of registers [H]	2	0002	Reading addresses
			8402 _H to 8403 _H
Error check [H]	2	CRC (16 bits)	
End	None		Silent interval
Total number of bytes	8		

(3) Response format

Field	Number of data items (number of bytes)	RTU mode 8-bit data	Remarks
Start	None		Silent interval
Slave address [H]	1	Arbitrary	Axis number + 1 $(01_H \text{ to } 10_H)$
Function code [H]	1	03	Register reading
Number of data bytes [H]	1	04	Reading 2 registers = 4 bytes
Data 1 [H]	2	Total moving distance	Total moving distance [Hex] (most significant digit)
Data 2 [H]	2	Total moving distance	Total moving distance [Hex] (least significant digit)
Error check [H]	2	CRC (16 bits)	
End	None		Silent interval
Total number of bytes	9		

A sample query that reads the total moving distance (addresses 8402_{H} to 8403_{H}) of a controller with axis No. 0 is shown below.

Query (silent intervals are inserted before and after the query)
 01 03 84 02 00 02 4D 3B

Field	RTU mode 8-bit data	
Start	Silent interval	
Slave address [H]	01	
Function code [H]	03	
Start address [H]	8402	
Number of registers [H]	0002	
Error check [H]	4D3B (in accordance with	
	CRC calculation)	
End	Silent interval	

The response to the query is as follows.

Response (silent intervals are inserted before and after the response)
 01 03 04 00 00 40 9E 4A 5B

T 00 00 TO 0L T/ (OD		
Field	RTU mode	
	8-bit data	
Start	Silent interval	
Slave address [H]	01	
Function code [H]	03	
Number of data bytes [H]	04 (4 bytes = 2 registers)	
Data 1 [H]	00 00	
Data 2 [H]	40 9E	
Error check [H]	4A5B (in accordance with CRC calculation)	
End	Silent interval	

The Total moving distance is "0000409EH" \rightarrow Convert into decimal number \rightarrow 16542 m

5.3.6 Present Time Reading <<TIMN>>

(1) Function

This bit reads the present time. [PCON-CA/CFA/CB/CFB, ACON-CA/CB, DCON-CA/CB and SCON-CA/CAL/CB only]

(2) Query format

(2) Query lorinat			
Field	Number of data items	RTU mode	Remarks
	(number of bytes)	8-bit data	
Start	None		Silent interval
Slave address [H]	1	Arbitrary	Axis number + 1 $(01_H \text{ to } 10_H)$
Function code [H]	1	03	Register reading
Start address [H]	2	Refer to remarks	841E: SCON-CA/CAL/CB
			8420: PCON-CA/CFA/CB/CFB
			8422: ACON-CA/CB,
			DCON-CA/CB
Number of registers [H]	2	0002	Reading addresses
			8402 _H to 8403 _H
Error check [H]	2	CRC (16 bits)	
End	None		Silent interval
Total number of bytes	8		

(3) Response format

Field	Number of data items (number of bytes)	RTU mode 8-bit data	Remarks
Start	None		Silent interval
Slave address [H]	1	Arbitrary	Axis number + 1 (01 $_{\rm H}$ to 10 $_{\rm H}$)
Function code [H]	1	03	Register reading
Number of data bytes [H]	1	04	Reading 2 registers = 4 bytes
Data [H]	4	Present Time	Refer to (4) for conversion at time.
Error check [H]	2	CRC (16 bits)	
End	None		Silent interval
Total number of bytes	9		

(4) Conversion of Read Data into Time

The read data output the current time by the setting on the controller.

- 1) For the models that are equipped with the calendar function (RTC), when RTC is set effective, it shows the time of alarm issuance.
- 2) When RTC is set ineffective or for the models that is not equipped with RTC, it shows the passed time [sec] since the power to the controller is turned on.
- 1) How present time is calculated

The data of present time shows the seconds passed from the origin time (00hr:00min:00sec 1January2000).

Passed second from the origin time is expressed with S, passed minute with M, passed hour with H, passed day with D and passed year with Y, and the calculation is conducted with a formula as shown below:

S= Data of read alarm issuance time

M= S/60 (decimal fraction to be rounded down)

H= M/60 (decimal fraction to be rounded down)

D= H/24 (decimal fraction to be rounded down)

Y= D/365.25 (decimal fraction to be rounded down)

L (Leap year) = Y/4 (decimal fraction to be rounded up)

Assuming the second of time is SA, minute is MA, hour is HA, passed day in this year is DA and year is YA, the time can be calculated with a formula as shown below:

SA= Remainder of S/60

MA= Remainder of M/60

HA= Remainder of H/24

DA= D- (Y×365+L)

Year and day can be figured out by subtracting the number of days in each month from DA.

YA= Y+2000 (A.D.)

Example) Assuming present time data is 172C1B8B_H;

[Procedure 1] Convert into decimal number: S= 172C1B8B_H⇒388766603

[Procedure 2] Calculate M, H, D, Y and L.

M= 388766603/60= 6479443

H= 6479443/60= 107990

D= 107990/24= 4499

Y= 4499/365.25= 12

L= 12/4= 3

[Procedure 3] Figure out SA, MA, HA and DA.

SA= Remainder of 388766603/60= 23

MA= Remainder of 6479443/60= 43

HA= Remainder of 107990/24= 14

DA= 4499- (12×365+3)

= 116 (116 days has passed in this year and the time of alarm issuance is on the day 117.)

Year and day= $117 - \{31 \text{ (Jan)} - 29 \text{ (Feb)} - 31 \text{ (Mar)}\} = 26 \text{ (since the number becomes a negative if days in April is subtracted, the time of present is on 26April)}$

YA= 12+2000= 2012

As figured out with the calculation above, the present time is 14:43:23 26Apr2012.

2) How to Calculate Passed Time

Example) Assuming the current time data is E1B8B_H:

Convert into decimal number: E1B8B_H⇒924555

Therefore, it means 924555sec (15min. 49sec. 256h) has passed since the power was turned on.

A sample query that reads the present time of PCON-CA (addresses 8420_{H} to 8421_{H}) of a controller with axis No. 0 is shown below.

Query (silent intervals are inserted before and after the query)
 01 03 84 20 00 02 ED 31

Field	RTU mode	
	8-bit data	
Start	Silent interval	
Slave address [H]	01	
Function code [H]	03	
Start address [H]	8420	
Number of registers [H]	0002	
Error check [H]	ED31 (in accordance with	
	CRC calculation)	
End	Silent interval	

The response to the query is as follows.

Response (silent intervals are inserted before and after the response)
 01 03 04 17 2C 1B 8B 74 D9

Field	RTU mode 8-bit data
Start	Silent interval
Slave address [H]	01
Function code [H]	03
Number of data bytes [H]	04 (4 bytes = 2 registers)
Data 1 [H]	17 2C 1B 8B
Error check [H]	74D9 (in accordance with CRC calculation)
End	Silent interval

Current time is 14h:43m:23s April 26, 2012.

5.3.7 Total FAN Driving Time Reading <<TFAN>>

(1) Function

This bit reads the Total FAN driving time (in 1 sec units) [PCON-CFA/CFB, SCON-CAL, SCON-CB [400W or more] only]

(2) Query format

Field	Number of data items (number of bytes)	RTU mode 8-bit data	Remarks
Start	None		Silent interval
Slave address [H]	1	Arbitrary	Axis number + 1 (01 _H to 10_H)
Function code [H]	1	03	Register reading
Start address [H]	2	842E	842A: SCON-CAL, SCON-CB [400W or more] 842E: PCON-CFA/CFB
Number of registers [H]	2	0002	Reading addresses 842E _H to 842F _H
Error check [H]	2	CRC (16 bits)	
End	None		Silent interval
Total number of bytes	8		

(3) Response format

Field	Number of data items	RTU mode	Remarks
	(number of bytes)	8-bit data	
Start	None		Silent interval
Slave address [H]	1	Arbitrary	Axis number + 1 (01 $_{\rm H}$ to 10 $_{\rm H}$)
Function code [H]	1	03	Register reading
Number of data bytes [H]	1	04	Reading 2 registers = 4 bytes
Data 1 [H]	2	Total FAN driving time	Total FAN driving time [Hex]
			(most significant digit)
Data 2 [H]	2	Total FAN driving time	Total FAN driving time [Hex]
			(least significant digit)
Error check [H]	2	CRC (16 bits)	
End	None		Silent interval
Total number of bytes	9		

A sample query that reads the total FAN driving time (addresses $842E_{H}$ to $842F_{H}$) of a controller with axis No. 0 is shown below.

Query (silent intervals are inserted before and after the query)
 01 03 84 2E 00 02 8C F2

Field	RTU mode 8-bit data	
Start	Silent interval	
Slave address [H]	01	
Function code [H]	03	
Start address [H]	842E	
Number of registers [H]	0002	
Error check [H]	8CF2 (in accordance with	
	CRC calculation)	
End	Silent interval	

The response to the query is as follows.

Response (silent intervals are inserted before and after the response)
 01 03 04 00 00 02 AF BB 2F

Field	RTU mode 8-bit data	
Start	Silent interval	
Slave address [H]	01	
Function code [H]	03	
Number of data bytes [H]	04 (4 bytes = 2 registers)	
Data 1 [H]	00 00	
Data 2 [H]	02 AF	
Error check [H]	BB2F (in accordance with CRC calculation)	
End	Silent interval	

The total FAN driving time is "000002AF_H" \rightarrow Convert into decimal number \rightarrow 687[sec]

5.3.8 Current Position Reading << PNOW>> (in 0.01 mm units)

(1) Function

This bit reads the current position in units of 0.01 mm. The sign is effective.

(2) Query format

Field	Number of data items	RTU mode	Remarks
	(number of bytes)	8-bit data	
Start	None		Silent interval
Slave address [H]	1	Arbitrary	Axis number + 1 (01 $_{\rm H}$ to 10 $_{\rm H}$)
Function code [H]	1	03	Register reading
Start address [H]	2	9000	Current position monitor
Number of registers [H]	2	0002	Reading addresses
			9000 _H to 9001 _H
Error check [H]	2	CRC (16 bits)	
End	None		Silent interval
Total number of bytes	8		_

(3) Response format

Field	Number of data items (number of bytes)	RTU mode 8-bit data	Remarks
Start	None	o bit data	Silent interval
Slave address [H]	1	Arbitrary	Axis number + 1 $(01_H \text{ to } 10_H)$
Function code [H]	1	03	Register reading
Number of data bytes [H]	1	04	Reading 2 registers = 4 bytes
Data 1 [H]	2	In accordance with the current position data	Current position data [Hex] (most significant digit)
Data 2 [H]	2	In accordance with the current position data	Current position data [Hex] (least significant digit)
Error check [H]	2	CRC (16 bits)	
End	None	·	Silent interval
Total number of bytes	9		

A sample query that reads the current position (addresses 9000_H to 9001_H) of a controller with axis No. 0 is shown below.

Query (silent intervals are inserted before and after the query)
 01 03 90 00 00 02 E9 0B

0 02 23 00		
Field	RTU mode	
	8-bit data	
Start	Silent interval	
Slave address [H]	01	
Function code [H]	03	
Start address [H]	9000	
Number of registers [H]	0002	
Error check [H]	E90B (in accordance with	
	CRC calculation)	
End	Silent interval	

The response to the query is as follows.

Response (silent intervals are inserted before and after the response)
 01 03 04 00 00 0B FE 7C 83

Field	RTU mode	
	8-bit data	
Start	Silent interval	
Slave address [H]	01	
Function code [H]	03	
Number of data bytes [H]	04 (4 bytes = 2 registers)	
Data 1 [H]	00 00	
Data 2 [H]	0B FE	
Error check [H]	7C83 (in accordance with CRC calculation)	
End	Silent interval	

The current position is "00000BFE_H" \rightarrow Convert into decimal number \rightarrow 3070 (× 0.01 mm) \rightarrow The current position is 30.7 mm.

Example 2) : If the current position is read "FFFFFF5_H" (negative position) \rightarrow FFFFFFF_H – FFFFFF5_H + 1 (make sure to add 1) \rightarrow

Convert into decimal number \rightarrow 11 (× 0.01 mm) \rightarrow

The current position is -0.11 mm

5.3.9 Present Alarm Code Reading <<ALMC>>

(1) Function

This query reads the code indicating the normal status or alarm status (cold start level, operation cancellation level and message level) of the controller.

In the normal status, 00_H is stored.

[For details on alarm codes, refer to the operation manual for each controller.]

(2) Query format

(E) Gaciy format			
Field	Number of data items	RTU mode	Remarks
	(number of bytes)	8-bits data	
Start	None		Silent interval
Slave address [H]	1	Arbitrary	Axis number + 1 (01 _H to 10_H)
Function code [H]	1	03	Register reading
Start address [H]	2	9002	Present alarm code
Number of registers [H]	2	0001	Reading address 9002 _H
Error check [H]	2	CRC (16 bits)	
End	None		Silent interval
Total number of bytes	8		

(3) Response format

	oontaine to bite of data		
Field	Number of data items	RTU mode	Remarks
	(number of bytes)	8-bits data	
Start	None		Silent interval
Slave address [H]	1	Arbitrary	Axis number + 1 (01 $_{\rm H}$ to 10 $_{\rm H}$)
Function code [H]	1	03	Register reading
Number of data bytes [H]	1	02	Reading 1 register = 2 bytes
Data 1 [H]	2	Alarm code	Alarm code [Hex]
Error check [H]	2	CRC (16 bits)	
End	None		Silent interval
Total number of bytes	7		

A sample query that reads the alarm code (address $9002_{\rm H}$) of a controller with axis No. 0 is shown below.

Query (silent intervals are inserted before and after the query)
 01 03 90 02 00 01 08 CA

0 01 00 0/	
Field	RTU mode
	8-bit data
Start	Silent interval
Slave address [H]	01
Function code [H]	03
Start address [H]	9002
Number of registers [H]	0001
Error check [H]	08CA (in accordance with
	CRC calculation)
End	Silent interval

The response to the query is as follows.

Response (silent intervals are inserted before and after the response)
 01 03 02 00 E8 B8 0A

Field	RTU mode 8-bit data			
Start	Silent interval			
Slave address [H]	01			
Function code [H]	03			
Number of data bytes [H]	02 (2 bytes = 1 register)			
Data 1 [H]	00 E8			
Error check [H]	B80A (in accordance with CRC calculation)			
End	Silent interval			

The most important alarm presently detected is "0E8"_H, which is a phase A/B open alarm. [For details on alarm codes, refer to the operation manual that comes with each controller.]

5.3.10 I/O Port Input Signal Status Reading << DIPM>>

(1) Function

This query reads the port input value of the RC controller regardless of the PIO pattern. The status of the port to which a signal is currently input as recognized by the RC controller is read.

(2) Query format

Field	Number of data items (number of bytes)	RTU mode 8-bit data	Remarks
Start	None		Silent interval
Slave address [H]	1	Arbitrary	Axis number + 1 (01 _H to 10_H)
Function code [H]	1	03	Register reading
Start address [H]	2	9003	Input port monitor register
Number of registers [H]	2	0001	Reading address 9003 _H
Error check [H]	2	CRC (16 bits)	
End	None		Silent interval
Total number of bytes	8		

(3) Response format

7 trooperior incodege	borntaino to bito of data	p c : c : c : c : c : c : c : c : c : c	
Field	Number of data items	RTU mode	Remarks
	(number of bytes)	8-bit data	
Start	None		Silent interval
Slave address [H]	1	Arbitrary	Axis number + 1 (01 _H to 10_H)
Function code [H]	1	03	Register reading
Number of data bytes [H]	1	02	Reading 1 register = 2 bytes
Data 1 [H]	2	Port input value	Port input value [Hex]
Error check [H]	2	CRC (16 bits)	
End	None		Silent interval
Total number of bytes	7		

A sample query that reads the current position (address 9003_H) of a controller with axis No. 0 is shown below.

Query (silent intervals are inserted before and after the query)
 01 03 90 03 00 01 59 0A

Field	RTU mode
	8-bit data
Start	Silent interval
Slave address [H]	01
Function code [H]	03
Start address [H]	9003
Number of registers [H]	0001
Error check [H]	590A (in accordance with
	CRC calculation)
End	Silent interval

The response to the query is as follows.

Response (silent intervals are inserted before and after the response)
 01 03 02 90 00 D4 44

Field	RTU mode
	8-bit data
Start	Silent interval
Slave address [H]	01
Function code [H]	03
Number of data bytes [H]	02 (2 bytes = 1 register)
Data 1 [H]	90 00
Error check [H]	D444 (in accordance with CRC calculation)
End	Silent interval

The input data area address is "9000" $_{\rm H}$, \rightarrow Convert into binary number "1001000000000000." \uparrow \uparrow INT15 ------- INT 1

(5) Port assignment [For details, refer to the operation manual that comes with each RC controller] Write the port assignment of PIO patterns to each RC controller.

0 indicates that response data is always 0.

		PCO	Other than PCON-C/CF									
			PIO p	attern			(Pulse Tra	ain Mode)				
Port	0	1	2	3	4	5	6	7				
IN0	PC1	PC1	PC1	PC1	ST0	ST0	SON	SON				
IN1	PC2	PC2	PC2	PC2	ST1	ST1	RES	RES				
IN2	PC4	PC4	PC4	PC4	ST2	ST2	HOME	HOME				
IN3	PC8	PC8	PC8	PC8	ST3	0	TL	TL				
IN4	PC16	PC16	PC16	PC16	ST4	0	CSTP	CSTP				
IN5	PC32	PC32	PC32	PC32	ST5	0	DCLR	DCLR				
IN6	0	MODE	PC64	PC64	ST6	0	BKRL	BKRL				
IN7	0	JISL	PC128	PC128	0	0	RMOD	RMOD				
IN8	0	JOG+	0	PC256	0	0	0	RSTR				
IN9	BKRL	JOG-	BKRL	BKRL	BKRL	BKRL	0	0				
IN10	RMOD	RMOD	RMOD	RMOD	RMOD	RMOD	0	0				
IN11	HOME	HOME	HOME	HOME	HOME	0	0	0				
IN12	*STP	*STP	*STP	*STP	*STP	0	0	0				
IN13	CSTR	CSTR/ PWRT	CSTR	CSTR	0	0	0	0				
IN14	RES	RES	RES	RES	RES	RES	0	0				
IN15	SON	SON	SON	SON	SON	SON	0	0				

			PCON	PCON-F	LB/POB	PCON-	-PL/PO			
			PIO p	attern			PIO p	attern	PIO p	attern
Port	0	1	2	3	4	5	0	1	0	1
IN0	PC1	ST0	ST0	ST0	ST0		SON	SON	SON	SON
IN1	PC2	ST1	ST1	0	ST1	Ser	RES	RES	TL	TL
IN2	PC4	ST2	ST2	0	ASTR	Number)	HOME	HOME	HOME	HOME
IN3	PC8	ST3	0	0	0	_	TL	TL	RES	RES/ DCLR
IN4	HOME	ST4	SON	SON	SON	Selected (Note	CSTP	CSTP	0	0
IN5	*STR	ST5	0	*STR	*STR	Sel	DCLR	DCLR	0	0
IN6	CSTR	ST6	0	0	0	₹	BKRL	BKRL	0	0
IN7	RES	RES	RES	RES	RES		0	RSTR	0	0
IN8 to IN15	0	0	0	0	0	0	0	0	0	0

(Note 1) Any number can be selected for those except for Command Position Number Signal and CSTR Signal.

[Refer to PCON-CYB/PLB/POB Operation Manual (ME0353).]

	Other than										
		ACON-									
			ACON	ACON-C/CF							
			PIO p	attern			(Pulse Tra	ain Mode)			
Port	0	1	2	3	4	5	6	7			
IN0	PC1	PC1	PC1	PC1	ST0	ST0	SON	SON			
IN1	PC2	PC2	PC2	PC2	ST1	ST1	RES	RES			
IN2	PC4	PC4	PC4	PC4	ST2	ST2	HOME	HOME			
IN3	PC8	PC8	PC8	PC8	ST3	0	TL	TL			
IN4	PC16	PC16	PC16	PC16	ST4	0	CSTP	CSTP			
IN5	PC32	PC32	PC32	PC32	ST5	0	DCLR	DCLR			
IN6	0	MODE	PC64	PC64	ST6	0	BKRL	BKRL			
IN7	0	JISL	PC128	PC128	0	0	RMOD	RMOD			
IN8	0	JOG+	0	PC256	0	0	0	RSTR			
IN9	BKRL	JOG-	BKRL	BKRL	BKRL	BKRL	0	0			
IN10	RMOD	RMOD	RMOD	RMOD	RMOD	RMOD	0	0			
IN11	HOME	HOME	HOME	HOME	HOME	0	0	0			
IN12	*STP	*STP	*STP	*STP	*STP	0	0	0			
IN13	CSTR	CSTR/ PWRT	CSTR	CSTR	0	0	0	0			
IN14	RES	RES	RES	RES	RES	RES	0	0			
IN15	SON	SON	SON	SON	SON	SON	0	0			

		AC	ON-CYB,	ACON, -PLB	DCON /POB	ACON-	-PL/PO			
			PIO p	attern			PIO p	attern	PIO p	attern
Port	0	1	2	3	4	5	0	1	0	1
IN0	PC1	ST0	ST0	ST0	ST0		SON	SON	SON	SON
IN1	PC2	ST1	ST1	0	ST1	ber	RES	RES	TL	TL
IN2	PC4	ST2	ST2	0	ASTR	Number)	HOME	HOME	HOME	HOME
IN3	PC8	ST3	0	0	0	_	TL	TL	RES	RES/ DCLR
IN4	HOME	ST4	SON	SON	SON	Selected (Note	CSTP	CSTP	0	0
IN5	*STR	ST5	0	*STR	*STR	Sele	DCLR	DCLR	0	0
IN6	CSTR	ST6	0	0	0	۵, ح	BKRL	BKRL	0	0
IN7	RES	RES	RES	RES	RES		0	RSTR	0	0
IN8 to IN15	0	0	0	0	0	0	0	0	0	0

(Note 1) Any number can be selected for those except for Command Position Number Signal and CSTR Signal.

[Refer to ACON-CYB/PLB/POB and DCON-CYB/PLB/POB Operation Manual (ME0354).]

		S	CON-C/C	A/CAL/C	SCON-	CA/CB	SCON-C	C/CA/CB		
		PIO pattern							(Pulse Tra	ain Mode)
Port	0	1	2	3	4	5	6	7	0	1 ^(Note 1)
IN0	PC1	PC1	PC1	PC1	ST0	ST0	PC1	ST0	SON	SON
IN1	PC2	PC2	PC2	PC2	ST1	ST1	PC2	ST1	RES	RES
IN2	PC4	PC4	PC4	PC4	ST2	ST2	PC4	ST2	HOME	HOME
IN3	PC8	PC8	PC8	PC8	ST3	0	PC8	ST3	TL	TL
IN4	PC16	PC16	PC16	PC16	ST4	0	PC16	ST4	CSTP	CSTP
IN5	PC32	PC32	PC32	PC32	ST5	0	0	0	DCLR	DCLR
IN6	0	MODE	PC64	PC64	ST6	0	0	0	BKRL	BKRL
IN7	0	JISL	PC128	PC128	0	0	0	0	RMOD	RMOD
IN8	0	JOG+	0	PC256	0	0	CLBR	CLBR	0	RSTR
IN9	BKRL	JOG-	BKRL	BKRL	BKRL	BKRL	BKRL	BKRL	0	0
IN10	RMOD	RMOD	RMOD	RMOD	RMOD	RMOD	RMOD	RMOD	0	0
IN11	HOME	HOME	HOME	HOME	HOME	0	HOME	HOME	0	0
IN12	*STP	*STP	*STP	*STP	*STP	0	*STP	*STP	0	0
IN13	CSTR	CSTR/ PWRT	CSTR	CSTR	0	0	CSTR	0	0	0
IN14	RES	RES	RES	RES	RES	RES	RES	RES	0	0
IN15	SON	SON	SON	SON	SON	SON	SON	SON	0	0

(Note 1) This mode is not equipped in SCON-C/CA.

	SCON-CB		ERC2 (P	IO Type)		ERC3 (PIO Type)			
	Servo press		PIO pattern				PIO pattern		
Port	-	0	1	2	3	0	1	2	
IN0	PC1	PC1	ST0	PC1	PC1	PC1	ST0	PC1	
IN1	PC2	PC2	ST1	PC2	PC2	PC2	ST1	PC2	
IN2	PC4	PC4	ST2	PC4	PC4	PC4	ST2	PC4	
IN3	PC8	HOME	0	PC8	PC8	HOME	0	PC8	
IN4	PC16	CSTR	RES	CSTR	CSTR	CSTR	RES	CSTR	
IN5	PC32	*STP	*STP	*STP	*STP	*STP	*STP	*STP	
IN6	PSTR	0	0	0	0	0	0	0	
IN7	RHOM	0	0	0	0	0	0	0	
IN8	ENMV	0	0	0	0	0	0	0	
IN9	FPST	0	0	0	0	0	0	0	
IN10	CLBR	0	0	0	0	0	0	0	
IN11	BKRL	0	0	0	0	0	0	0	
IN12	RMOD	0	0	0	0	0	0	0	
IN13	HOME	0	0	0	0	0	0	0	
IN14	RES	0	0	0	0	0	0	0	
IN15	SON	0	0	0	0	0	0	0	

5.3.11 I/O Port Output Signal Status Reading<<DOPM>>

(1) Function

This query reads the port output value of the RC controller regardless of the PIO pattern.

(2) Query format

Field	Number of data items	RTU mode	Remarks
	(number of bytes)	8-bit data	
Start	None		Silent interval
Slave address [H]	1	Arbitrary	Axis number + 1 $(01_H \text{ to } 10_H)$
Function code [H]	1	03	Register reading
Start address [H]	2	9004	Output port monitor register
Number of registers [H]	2	0001	Reading addresses 9004 _H
Error check [H]	2	CRC (16 bits)	
End	None		Silent interval
Total number of bytes	8		

(3) Response format

A response message contains to bits of data per register.										
Field	Number of data items	RTU mode	Remarks							
	(number of bytes)	8-bit data								
Start	None		Silent interval							
Slave address [H]	1	Arbitrary	Axis number + 1 (01 _H to 10_H)							
Function code [H]	1	03	Register reading							
Number of data bytes [H]	1	02	Reading 1 register = 2 bytes							
Data 1 [H]	2	D0 output value	Port output value [Hex]							
Error check [H]	2	CRC (16 bits)								
End	None		Silent interval							
Total number of bytes	7									

A sample query that output port (address 9004_H) of a controller of axis No. 0 is shown below.

Query (silent intervals are inserted before and after the query)
 01 03 90 04 00 01 E8 CB

Field	RTU mode			
	8-bit data			
Start	Silent interval			
Slave address [H]	01			
Function code [H]	03			
Start address [H]	9004			
Number of registers [H]	0001			
Error check [H]	E8CB (in accordance with			
	CRC calculation)			
End	Silent interval			

The response to the query is as follows.

Response (silent intervals are inserted before and after the response)
 01 03 02 68 00 97 84

Field	RTU mode 8-bit data
Start	Silent interval
Slave address [H]	01
Function code [H]	03
Number of data bytes [H]	02 (2 bytes = 1 register)
Data 1 [H]	68 00
Error check [H]	9784 (in accordance with CRC calculation)
End	Silent interval

(5) Port assignment [For details, refer to the operation manual that comes with each RC controller.] Write the port assignment of PIO patterns to each RC controller. 0 indicates that response data is always 0.

		PCC	N-C/CF/C	A/CFA/CB/	CFB			r than I-C/CF
			PIO p	attern			(Pulse Train Mode)	
Port	0	1	2	3	4	5	6	7
OUT0	PM1	PM1	PM1	PM1	PE0	LS0	PWR	PWR
OUT1	PM2	PM2	PM2	PM2	PE1	LS1	SV	SV
OUT2	PM4	PM4	PM4	PM4	PE2	LS2	INP	INP
OUT3	PM8	PM8	PM8	PM8	PE3	0	HEND	HEND
OUT4	PM16	PM16	PM16	PM16	PE4	0	TLR	TLR
OUT5	PM32	PM32	PM32	PM32	PE5	0	*ALM	*ALM
OUT6	MOVE	MOVE	PM64	PM64	PE6	0	*EMGS	*EMGS
OUT7	ZONE1	MODES	PM128	PM128	ZONE1	ZONE1	RMDS	RMDS
OUT8	PZONE/	PZONE/	PZONE/	PM256	PZONE/	PZONE/	ALM1	ALM1
0010	ZONE2	ZONE1	ZONE1	1 101250	ZONE2	ZONE2	ALIVII	
OUT9	RMDS	RMDS	RMDS	RMDS	RMDS	RMDS	ALM2	ALM2
OUT10	HEND	HEND	HEND	HEND	HEND	HEND	ALM4	ALM4
OUT11	PEND	PEND/ WEND	PEND	PEND	PEND	0	ALM8	ALM8
OUT12	SV	SV	SV	SV	SV	SV	*ALML	*ALML
OUT13	*EMGS	*EMGS	*EMGS	*EMGS	*EMGS	*EMGS	0	REND
OUT14	*ALM	*ALM	*ALM	*ALM	*ALM	*ALM	ZONE1	ZONE1
OUT15	LOAD/		LOAD/	LOAD/	LOAD/			
(Note 1)	TRQS/	*ALML	TRQS/	TRQS/	TRQS/	*ALML	ZONE2	ZONE2
	*ALML		*ALML	*ALML	*ALML			

(Note 1) Signals available for output may differ depending on models. Refer to an instruction manual for each controller for detail.

			PCON	-CYB		PCON-F	LB/POB	PCON-	-PL/PO	
			PIO pa	attern		PIO pattern		PIO pattern		
Port	0	1	2	3	4	5	0	1	0	1
OUT0	PM1	PE0	LS0	LS0/ PE0	LS0/ PE0		PWR	PWR	SV	SV
OUT1	PM2	PE1	LS1	LS1/ PE1	LS1/ PE1	Number	SV	SV	INP	INP/ TLR
OUT2	PM4	PE2	LS2	PSFL	PSFL	Σ ₂	INP	INP	HEND	HEND
OUT3	PM8	PE3	HEND	HEND	HEND		HEND	HEND	*ALM	*ALM
OUT4	HEND	PE4	SV	SV	SV	ect ®	TLR	TLR	0	0
OUT5	PZONE/ ZONE1	PE5	PZONE/ ZONE1	PZONE/ ZONE1	PZONE/ ZONE1	A Selected (Note	ZONE 1	ZONE 1	0	0
OUT6	PEND	PE6	*ALML	*ALML	*ALML	,	*ALML	REND	0	0
OUT7	*ALM	*ALM	*ALM	*ALM	*ALM		*ALM	*ALM	0	0
OUT8 to OUT15	0	0	0	0	0	0	0	0	0	0

(Note 2) Any number can be selected for those except for Complete Position Number Signal and PEND Signal.

[Refer to PCON-CYB/PLB/POB Operation Manual (ME0353).]

		ACON	-C/CA/CB,	DCON-C/	CA/CB		Other ACON	than I-C/CF
			PIO p	attern			(Pulse Tra	ain Mode)
Port	0	1	2	3	4	5	6	7
OUT0	PM1	PM1	PM1	PM1	PE0	LS0	PWR	PWR
OUT1	PM2	PM2	PM2	PM2	PE1	LS1	SV	SV
OUT2	PM4	PM4	PM4	PM4	PE2	LS2	INP	INP
OUT3	PM8	PM8	PM8	PM8	PE3	0	HEND	HEND
OUT4	PM16	PM16	PM16	PM16	PE4	0	TLR	TLR
OUT5	PM32	PM32	PM32	PM32	PE5	0	*ALM	*ALM
OUT6	MOVE	MOVE	PM64	PM64	PE6	0	*EMGS	*EMGS
OUT7	ZONE1	MODES	PM128	PM128	ZONE1	ZONE1	RMDS	RMDS
OUT8	PZONE/	PZONE/	PZONE/	PM256	PZONE/	PZONE/	ALM1	ALM1
0010	ZONE2	ZONE1	ZONE1		ZONE2	ZONE2	ALIVIT	ALIVII
OUT9	RMDS	RMDS	RMDS	RMDS	RMDS	RMDS	ALM2	ALM2
OUT10	HEND	HEND	HEND	HEND	HEND	HEND	ALM4	ALM4
OUT11	PEND	PEND/ WEND	PEND	PEND	PEND	0	ALM8	ALM8
OUT12	SV	SV	SV	SV	SV	SV	*ALML	*ALML
OUT13	*EMGS	*EMGS	*EMGS	*EMGS	*EMGS	*EMGS	0	REND
OUT14	*ALM	*ALM	*ALM	*ALM	*ALM	*ALM	ZONE1	ZONE1
OUT15 (Note 1)	*BALM/ *ALML	*BALM/ *ALML	*BALM/ *ALML	*BALM/ *ALML	*BALM/ *ALML	*BALM/ *ALML	ZONE2	ZONE2

(Note 1) Signals available for output may differ depending on models. Refer to an instruction manual for each controller for detail.

		AC	ON-CYB,	DCON-C		ACON, DCON -PLB/POB		ACON-PL/PO		
			PIO pa	attern	PIO p	attern	PIO p	attern		
Port	0	1	2	3	4	5	0	1	0	1
OUT0	PM1	PE0	LS0	LS0/ PE0	LS0/ PE0		PWR	PWR	SV	SV
OUT1	PM2	PE1	LS1	LS1/ PE1	LS1/ PE1	Number	SV	SV	INP	INP/ TLR
OUT2	PM4	PE2	LS2	PSFL	PSFL	אר 2)	INP	INP	HEND	HEND
OUT3	PM8	PE3	HEND	HEND	HEND		HEND	HEND	*ALM	*ALM
OUT4	HEND	PE4	SV	SV	SV	ect.	TLR	TLR	0	0
OUT5	PZONE/ ZONE1	PE5	PZONE/ ZONE1	PZONE/ ZONE1	PZONE/ ZONE1	A Selected	ZONE 1	ZONE 1	0	0
OUT6	PEND	PE6	*ALML	*ALML	*ALML	1	*ALML	REND	0	0
OUT7	*ALM	*ALM	*ALM	*ALM	*ALM		*ALM	*ALM	0	0
OUT8 to OUT15	0	0	0	0	0	0	0	0	0	0

(Note 2) Any number can be selected for those except for Complete Position Number Signal and PEND Signal.

[Refer to ACON-CYB/PLB/POB and DCON-CYB/PLB/POB Operation Manual (ME0354).]

		5	SCON-C/C	A/CAL/CE	3		SCON-	CA/CB	SCON-C/CA/CB	
				PIO p	attern				(Pulse Train Mode)	
Port	0	1	2	3	4	5	6	7	0	1 (Note 1)
OUT0	PM1	PM1	PM1	PM1	PE0	LS0	PM1	PE0	PWR	PWR
OUT1	PM2	PM2	PM2	PM2	PE1	LS1	PM2	PE1	SV	SV
OUT2	PM4	PM4	PM4	PM4	PE2	LS2	PM4	PE2	INP	INP
OUT3	PM8	PM8	PM8	PM8	PE3	0	PM8	PE3	HEND	HEND
OUT4	PM16	PM16	PM16	PM16	PE4	0	PM16	PE4	TLR	TLR
OUT5	PM32	PM32	PM32	PM32	PE5	0	TRQS	TRQS	*ALM	*ALM
OUT6	MOVE	MOVE	PM64	PM64	PE6	0	LOAD	LOAD	*EMGS	*EMGS
OUT7	ZONE1	MODES	PM128	PM128	ZONE1	ZONE1	CEND	CEND	RMDS	RMDS
OUT8	PZONE/	PZONE/	PZONE/	PM256	PZONE/	PZONE/	PZONE/	PZONE/	ALM1	ALM1
0018	ZONE2	ZONE1	ZONE1	FIVIZO	ZONE2	ZONE2	ZONE1	ZONE1	ALIVII	ALIVII
OUT9	RMDS	RMDS	RMDS	RMDS	RMDS	RMDS	RMDS	RMDS	ALM2	ALM2
OUT10	HEND	HEND	HEND	HEND	HEND	HEND	HEND	HEND	ALM4	ALM4
OUT11	PEND	PEND/ WEND	PEND	PEND	PEND	0	PEND	PEND	ALM8	ALM8
OUT12	SV	SV	SV	SV	SV	SV	SV	SV	*OVLW/ *ALML (Note 2)	*OVLW/ *ALML
OUT13	*EMGS	*EMGS	*EMGS	*EMGS	*EMGS	*EMGS	*EMGS	*EMGS	0	REND
OUT14	*ALM	*ALM	*ALM	*ALM	*ALM	*ALM	*ALM	*ALM	ZONE1	ZONE1
OUT15	*BALM	*BALM	*BALM	*BALM	*BALM	*BALM	*BALM	*BALM	ZONE2	ZONE2

(Note 1) This mode is not equipped in SCON-C/CA. (Note 2) SCON-C is not equipped with *OVLW and *ALML outputs.

	SCON-CB		ERC2 (PIO Type)				ERC3 (PIO Type)		
	Servo press		PIO pattern			F	PIO patte	rn	
Port	-	0	1	2	3	0	1	2	
OUT0	PCMP	PEND	PE0	PEND	PEND	PEND	PE0	PEND	
OUT1	PRUN	HEND	PE1	HEND	HEND	HEND	PE1	HEND	
OUT2	PORG	ZONE	PE2	ZONE	ZONE	ZONE1	PE2	PZONE/ ZONE1	
OUT3	APRC	*ALM	*ALM	*ALM	*ALM	*ALM	*ALM	*ALM	
OUT4	SERC	0	0	0	0	0	0	0	
OUT5	PRSS	0	0	0	0	0	0	0	
OUT6	PSTP	0	0	0	0	0	0	0	
OUT7	MPHM	0	0	0	0	0	0	0	
OUT8	JDOK	0	0	0	0	0	0	0	
OUT9	JDNG	0	0	0	0	0	0	0	
OUT10	CEND	0	0	0	0	0	0	0	
OUT11	RMDS	0	0	0	0	0	0	0	
OUT12	HEND	0	0	0	0	0	0	0	
OUT13	SV	0	0	0	0	0	0	0	
OUT14	*ALM	0	0	0	0	0	0	0	
OUT15	*ALML (Note)	0	0	0	0	0	0	0	

5.3.12 Controller Status Signal Reading 1 << DSS1>>

(1) Function

This bit reads the internal status of the controller. [Refer to 4.3.2 (12), "Data of device status register 1."]

(2) Query format

Field	Number of data items (number of bytes)	RTU mode 8-bit data	Remarks
Start	None		Silent interval
Slave address [H]	1	Arbitrary	Axis number + 1 (01 $_{\rm H}$ to 10 $_{\rm H}$)
Function code [H]	1	03	Register reading
Start address [H]	2	9005	Device status register 1
Number of registers [H]	2	0001	Reading address 9005 _H
Error check [H]	2	CRC (16 bits)	
End	None	_	Silent interval
Total number of bytes	8	_	

(3) Response format

A respense message contains to site of data per address.			,
Field	Number of data items	RTU mode	Remarks
	(number of bytes)	8-bit data	
Start	None		Silent interval
Slave address [H]	1	Arbitrary	Axis number + 1 (01_H to 10_H)
Function code [H]	1	03	Register reading
Number of data bytes [H]	1	02	Reading 1 register = 2 bytes
Data [H]	2	Status 1	Status 1 [Hex]
Error check [H]	2	CRC (16 bits)	
End	None		Silent interval
Total number of bytes	7		

A sample query that reads the device status (address $9005_{\rm H}$) of a controller with axis No. 0 is shown below.

Query (silent intervals are inserted before and after the query)
 01 03 90 05 00 01 B9 0B

Field	RTU mode	
	8-bit data	
Start	Silent interval	
Slave address [H]	01	
Function code [H]	03	
Start address [H]	9005	
Number of registers [H]	0001	
Error check [H]	B90B (in accordance with	
	CRC calculation)	
End	Silent interval	

The response to the query is as follows.

Response (silent intervals are inserted before and after the response)
 01 03 02 70 98 9C 2E

Field	RTU mode 8-bit data
Start	Silent interval
Slave address [H]	01
Function code [H]	03
Number of data bytes [H]	02 (2 bytes = 1 register)
Data 1 [H]	70 98
Error check [H]	9C2E (in accordance with CRC calculation)
End	Silent interval

5.3.13 Controller Status Signal Reading 2 << DSS2>>

(1) Function

This bit reads the internal status of the controller. [Refer to 4.3.2 (13), "Data of device status register 2."]

(2) Query format

Field	Number of data items (number of bytes)	RTU mode 8-bit data	Remarks
Start	None		Silent interval
Slave address [H]	1	Arbitrary	Axis number + 1 (01 $_{\rm H}$ to 10 $_{\rm H}$)
Function code [H]	1	03	Register reading
Start address [H]	2	9006	Device status register 2
Number of registers [H]	2	0001	Reading address 9006 _H
Error check [H]	2	CRC (16 bits)	
End	None		Silent interval
Total number of bytes	8		

(3) Response format

A response message contains to bits of data per register.			
Field	Number of data items	RTU mode	Remarks
	(number of bytes)	8-bit data	
Start	None		Silent interval
Slave address [H]	1	Arbitrary	Axis number + 1 (01 _H to 10_H)
Function code [H]	1	03	Internal status of controller
Number of data bytes [H]	1	02	Reading 1 register = 2 bytes
Data [H]	2	Status 2	Status 2 [Hex]
Error check [H]	2	CRC (16 bits)	
End	None		Silent interval
Total number of bytes	7		

A sample query that reads the device status (address $9006_{\rm H}$) of a controller with axis No. 0 is shown below.

Query (silent intervals are inserted before and after the query)
 01 03 90 06 00 01 49 0B

Field	RTU mode	
	8-bit data	
Start	Silent interval	
Slave address [H]	01	
Function code [H]	03	
Start address [H]	9006	
Number of registers [H]	0001	
Error check [H]	490B (in accordance with	
	CRC calculation)	
End	Silent interval	

The response to the query is as follows.

Response (silent intervals are inserted before and after the response)
 01 03 02 80 00 D9 84

Field	RTU mode 8-bit data
Start	Silent interval
Slave address [H]	01
Function code [H]	03
Number of data bytes [H]	02 (2 bytes = 1 register)
Data 1 [H]	80 00
Error check [H]	D984 (in accordance with CRC calculation)
End	Silent interval

5.3.14 Controller Status Signal Reading 3 << DSSE>>

(1) Function

This bit reads internal status (expansion device) of the controller. [Refer to 4.3.2 (14), "Data of expansion device status register."]

(2) Query format

Field	Number of data items (number of bytes)	RTU mode 8-bit data	Remarks
Start	None		Silent interval
Slave address [H]	1	Arbitrary	Axis number + 1 (01 $_{\rm H}$ to 10 $_{\rm H}$)
Function code [H]	1	03	Register reading
Start address [H]	2	9007	Expansion device status register
Number of registers [H]	2	0001	Reading address 9007 _H
Error check [H]	2	CRC (16 bits)	
End	None		Silent interval
Total number of bytes	8		

(3) Response format

7 troopened meddage	containe to bite of data	por regiotor.	
Field	Number of data items	RTU mode	Remarks
	(number of bytes)	8-bit data	
Start	None		Silent interval
Slave address [H]	1	Arbitrary	Axis number + 1 (01 $_{\rm H}$ to 10 $_{\rm H}$)
Function code [H]	1	03	Register reading
Number of data bytes [H]	1	02	Reading 1 register = 2 bytes
Data [H]	2	Expansion status	Expansion status [Hex]
Error check [H]	2	CRC (16 bits)	
End	None		Silent interval
Total number of bytes	7		

A sample query that reads the expansion device status (address 9007_H) of a controller of axis No. 0 is shown below.

Query (silent intervals are inserted before and after the query)
 01 03 90 07 00 01 18 CB

Field	RTU mode	
	8-bit data	
Start	Silent interval	
Slave address [H]	01	
Function code [H]	03	
Start address [H]	9007	
Number of registers [H]	0001	
Error check [H]	18CB (in accordance with	
	CRC calculation)	
End	Silent interval	

The response to the query is as follows.

Response (silent intervals are inserted before and after the response)
 01 03 02 33 C7 ED 26

Field	RTU mode 8-bit data
Start	Silent interval
Slave address [H]	01
Function code [H]	03
Number of data bytes [H]	02 (2 bytes = 1 register)
Data 1 [H]	33 C7
Error check [H]	ED26 (in accordance with CRC calculation)
End	Silent interval

5.3.15 Controller Status Signal Reading 4 <<STAT>>

(1) Function

This bit reads the internal operation status of the controller. [Refer to 4.3.2 (15), "Data of system status register."]

(2) Query format

Field	Number of data items (number of bytes)	RTU mode 8-bit data	Remarks
Start	None		Silent interval
Slave address [H]	1	Arbitrary	Axis number + 1 (01 $_{\rm H}$ to 10 $_{\rm H}$)
Function code [H]	1	03	Register reading
Start address [H]	2	9008	System status register
Number of registers [H]	2	0002	Reading addresses 9008 _H to 9009 _H
Error check [H]	2	CRC (16 bits)	
End	None		Silent interval
Total number of bytes	8	·	

(3) Response format

7 troopened medage	containe to bite of data	por rogiotor.	
Field	Number of data items	RTU mode	Remarks
	(number of bytes)	8-bit data	
Start	None		Silent interval
Slave address [H]	1	Arbitrary	Axis number + 1 (01 $_{\rm H}$ to 10 $_{\rm H}$)
Function code [H]	1	03	Internal status of controller
Number of data bytes [H]	1	04	Reading 2 registers = 4 bytes
Data [H]	4	System status	System status [Hex]
Error check [H]	2	CRC (16 bits)	
End	None		Silent interval
Total number of bytes	9		

A sample query that reads the system status (from address 9008_H) of a controller of axis No. 0 is shown below.

Query (silent intervals are inserted before and after the query)
 01 03 90 08 00 02 68 C9

RTU mode	
8-bit data	
Silent interval	
01	
03	
9008	
0002	
68C9 (in accordance with	
CRC calculation)	
Silent interval	

The response to the query is as follows.

Response (silent intervals are inserted before and after the response)
 01 03 04 00 0C 00 17 7A 3E

Field	RTU mode 8-bit data
Start	Silent interval
Slave address [H]	01
Function code [H]	03
Number of data bytes [H]	04 (4 bytes = 2 registers)
Data 1 [H]	00 0C 00 17
Error check [H]	7A3E (in accordance with CRC calculation)
End	Silent interval

5.3.16 Current Speed Reading << VNOW>>

(1) Function

The monitored data of actual motor speed is read. The speed may be positive or negative depending on the moving direction of the actuator.

The unit is 0.01 mm/sec.

(2) Query format

(-) -			
Field	Number of data items	RTU mode	Remarks
	(number of bytes)	8-bit data	
Start	None		Silent interval
Slave address [H]	1	Arbitrary	Axis number + 1 (01 $_{\rm H}$ to 10 $_{\rm H}$)
Function code [H]	1	03	Register reading
Start address [H]	2	900A	Current speed monitor
Number of registers [H]	2	0002	Reading addresses
	2		900A _H to 900B _H
Error check [H]	2	CRC (16 bits)	
End	None		Silent interval
Total number of bytes	8		

(3) Response format

A response message	contains to bits of data	per register.	
Field	Number of data items	RTU mode	Remarks
	(number of bytes)	8-bit data	
Start	None		Silent interval
Slave address [H]	1	Arbitrary	Axis number + 1 (01 $_{\rm H}$ to 10 $_{\rm H}$)
Function code [H]	1	03	Register reading
Number of data bytes [H]	1	04	Reading 2 registers = 4 bytes
Data [H]	4	Current speed	Current speed [Hex]
			Indicated in units of 0.01
			mm/sec.
Error check [H]	2	CRC (16 bits)	
End	None		Silent interval
Total number of bytes	9		

A sample query that reads the current speed monitor (from address $900A_H$) of a controller of axis No. 0 is shown below.

Query (silent intervals are inserted before and after the query)
 01 03 90 0A 00 02 C9 09

0 02 03 03	
Field	RTU mode
	8-bit data
Start	Silent interval
Slave address [H]	01
Function code [H]	03
Start address [H]	900A
Number of registers [H]	0002
Error check [H]	C909 (in accordance with
	CRC calculation)
End	Silent interval

The response to the query is as follows.

Response (silent intervals are inserted before and after the response)
 01 03 04 00 00 03 E4 FA 88

Field	RTU mode	
	8-bit data	
Start	Silent interval	
Slave address [H]	01	
Function code [H]	03	
Number of data bytes [H]	04 (4 bytes = 2 registers)	
Data 1 [H]	00 00 03 E4	
Error check [H]	FA88 (in accordance with CRC calculation)	
End	Silent interval	

The current speed is "000003E4" \rightarrow Convert into decimal number \rightarrow 996 (× 0.01 mm/sec) The current speed monitor is 9.96 mm/sec.

Example 2) : When the current speed reading is "FFFFF35" (moving in the direction opposite to the example above) \rightarrow

FFFFFFFH – FFFFFF35_H + 1 (make sure to add 1) \rightarrow

Convert into decimal number \rightarrow 203 (× 0.01 mm/sec) \rightarrow

The current speed is 2.03 mm/sec.

5.3.17 Current Ampere Reading << CNOW>>

(1) Function

This bit reads the monitor data of the motor current (torque current command value), indicated in units of mA.

(2) Query format

Field	Number of data items (number of bytes)	RTU mode 8-bit data	Remarks
Start	None		Silent interval
Slave address [H]	1	Arbitrary	Axis number + 1 (01 $_{\rm H}$ to 10 $_{\rm H}$)
Function code [H]	1	03	Register reading
Start address [H]	2	900C	Current ampere monitor
Number of registers [H]	2	0002	Reading addresses 900C _H to 900D _H
Error check [H]	2	CRC (16 bits)	
End	None		Silent interval
Total number of bytes	8		

(3) Response format

11100000000		p -	
Field	Number of data items	RTU mode	Remarks
	(number of bytes)	8-bit data	
Start	None		Silent interval
Slave address [H]	1	Arbitrary	Axis number + 1 $(01_H \text{ to } 10_H)$
Function code [H]	1	03	Register reading
Number of data bytes [H]	1	04	Reading 2 register = 4 bytes
Data [H]	4	Motor current monitor	Motor current monitor [Hex]
			The unit is mA.
Error check [H]	2	CRC (16 bits)	
End	None		Silent interval
Total number of bytes	9		

A sample query that read the current ampere monitor (from address 900C_H) of a controller of axis No. 0 is shown below.

Query (silent intervals are inserted before and after the query)
 01 03 90 0C 00 02 29 08

Field	RTU mode	
	8-bit data	
Start	Silent interval	
Slave address [H]	01	
Function code [H]	03	
Start address [H]	900C	
Number of registers [H]	0002	
Error check [H]	2908 (in accordance with	
	CRC calculation)	
End	Silent interval	

The response to the query is as follows.

Response (silent intervals are inserted before and after the response)
 01 03 04 00 00 01 C8 FA 35

Field	RTU mode 8-bit data
Start	Silent interval
Slave address [H]	01
Function code [H]	03
Number of data bytes [H]	04 (4 bytes = 2 registers)
Data 1 [H]	00 00 01 C8
Error check [H]	FA35 (in accordance with CRC calculation)
End	Silent interval

The current ampere value is "000001C8" \rightarrow Convert into decimal number \rightarrow 456 The current ampere monitor value is 456mA.

5.3.18 Deviation Reading <<DEVI>>

(1) Function

This bit reads the deviation over a 1-ms period between the position command value and the feedback value (actual position). The unit is pulse. The number of pulses per one motor revolution in mechanical angle varies depending on the encoder used.

(2) Query format

(=) 4.001)			
Field	Number of data items	RTU mode	Remarks
	(number of bytes)	8-bit data	
Start	None		Silent interval
Slave address [H]	1	Arbitrary	Axis number + 1 (01 _H to 10_H)
Function code [H]	1	03	Register reading
Start address [H]	2	900E	Deviation monitor
Number of registers [H]	2	0002	Reading addresses
			900E _H to 900F _H
Error check [H]	2	CRC (16 bits)	
End	None	·	Silent interval
Total number of bytes	8		

(3) Response format

Field	Number of data items	RTU mode	Remarks
	(number of bytes)	8-bit data	
Start	None		Silent interval
Slave address [H]	1	Arbitrary	Axis number + 1 (01 $_{\rm H}$ to 10 $_{\rm H}$)
Function code [H]	1	03	Register reading
Number of data bytes [H]	1	04	Reading 2 registers = 4 bytes
Data [H]	4	Deviation monitor	Deviation monitor [Hex]
			The unit is pulse.
Error check [H]	2	CRC (16 bits)	
End	None		Silent interval
Total number of bytes	9		

A sample query that reads the deviation monitor (from address $900E_{H}$) of a controller of axis No. 0 is shown below.

Query (silent intervals are inserted before and after the query)
 01 03 90 0E 00 02 88 C8

Field	RTU mode	
	8-bit data	
Start	Silent interval	
Slave address [H]	01	
Function code [H]	03	
Start address [H]	900E	
Number of registers [H]	0002	
Error check [H]	88C8 (in accordance with	
	CRC calculation)	
End	Silent interval	

The response to the query is as follows.

Response (silent intervals are inserted before and after the response)
 01 03 04 00 00 00 0B BB F4

Field	RTU mode 8-bit data
Start	Silent interval
Slave address [H]	01
Function code [H]	03
Number of data bytes [H]	04 (4 bytes = 2 registers)
Data 1 [H]	00 00 00 0B
Error check [H]	BBF4 (in accordance with CRC calculation)
End	Silent interval

The deviation monitor is "0000000B" \rightarrow Convert into decimal number \rightarrow 11 The deviation over a 1-ms period between the position command value and the feedback value (actual position) is 11 pulses.

5.3.19 Total Time after Power On Reading <<STIM>>

(1) Function

This bit reads the total time since the controller power was turned on. The unit is ms. The timer value is not cleared by software reset.

(2) Query format

Field	Number of data items (number of bytes)	RTU mode 8-bit data	Remarks
Start	None		Silent interval
Slave address [H]	1	Arbitrary	Axis number + 1 (01 _H to 10_H)
Function code [H]	1	03	Register reading
Start address [H]	2	9010	System timer
Number of registers [H]	2	0002	Reading addresses 9010 _H to 9011 _H
Error check [H]	2	CRC (16 bits)	
End	None		Silent interval
Total number of bytes	8		

(3) Response format

	containe to bite of data	,	
Field	Number of data items	RTU mode	Remarks
	(number of bytes)	8-bit data	
Start	None		Silent interval
Slave address [H]	1	Arbitrary	Axis number + 1 (01 _H to 10_H)
Function code [H]	1	03	Register reading
Number of data bytes [H]	1	04	Reading 2 registers = 4 bytes
Data [H]	4	System timer	System timer [Hex]
		-	The unit is ms.
Error check [H]	2	CRC (16 bits)	
End	None		Silent interval
Total number of bytes	9		

A sample query that reads the system timer value (from address 9010_{H}) of a controller of axis No. 0 is shown below.

Query (silent intervals are inserted before and after the query) 01 03 90 10 00 02 E8 CE

Field	RTU mode	
	8-bit data	
Start	Silent interval	
Slave address [H]	01	
Function code [H]	03	
Start address [H]	9010	
Number of registers [H]	0002	
Error check [H]	E8CE (in accordance with	
	CRC calculation)	
End	Silent interval	

The response to the query is as follows.

Response (silent intervals are inserted before and after the response) 01 03 04 00 02 7A 72 F8 B6

Field	RTU mode 8-bit data
Start	Silent interval
Slave address [H]	01
Function code [H]	03
Number of data bytes [H]	04 (4 bytes = 2 registers)
Data 1 [H]	00 02 7A 72
Error check [H]	F8B6 (in accordance with CRC calculation)
End	Silent interval

The system timer is "00027A72" \rightarrow Convert into decimal number \rightarrow 162418 (ms) The total time since the controller power was turned on is 162.418 sec.

5.3.20 Special Input Port Input Signal Status Reading<<SIPM>>

(1) Function

This bit reads the status of input ports other than the normal input port. [Refer to 4.3.2 (16), "Data of special input port monitor registers" for the data input via the special input port.]

(2) Query format

Field	Number of data items (number of bytes)	RTU mode 8-bit data	Remarks
Start	None		Silent interval
Slave address [H]	1	Arbitrary	Axis number + 1 (01 _H to 10_H)
Function code [H]	1	03	Register reading
Start address [H]	2	9012	Special input port monitor
Number of registers [H]	2	0001	Reading addresses 9012 _H
Error check [H]	2	CRC (16 bits)	
End	None		Silent interval
Total number of bytes	8		

(3) Response format

A respense message contains to site of data per register.			
Field	Number of data items	RTU mode	Remarks
	(number of bytes)	8-bit data	
Start	None		Silent interval
Slave address [H]	1	Arbitrary	Axis number + 1 $(01_H \text{ to } 10_H)$
Function code [H]	1	03	Register reading
Number of data bytes [H]	1	02	Reading 1 register = 2 bytes
Data [H]	2	Special port monitor	Refer to 4.3.2 (16), "List table."
Error check [H]	2	CRC (16 bits)	
End	None		Silent interval
Total number of bytes	7		

A sample query that reads the special input port (address 9012_{H}) of a controller of axis No. 0 is shown below.

Query (silent intervals are inserted before and after the query) 01 03 90 12 00 01 09 0F

1 00 01	
Field	RTU mode
	8-bit data
Start	Silent interval
Slave address [H]	01
Function code [H]	03
Start address [H]	9012
Number of registers [H]	0001
Error check [H]	090F (in accordance with
	CRC calculation)
End	Silent interval

The response to the query is as follows.

Response (silent intervals are inserted before and after the response) 01 03 02 43 00 89 74

Field	RTU mode 8-bit data
Start	Silent interval
Slave address [H]	01
Function code [H]	03
Number of data bytes [H]	02 (2 bytes = 1 register)
Data 1 [H]	43 00
Error check [H]	8974 (in accordance with CRC calculation)
End	Silent interval

5.3.21 Zone Output Signal Status Reading<<ZONS>>

(1) Function

This bit reads the status of zone output. [Refer to 4.3.2 (17), "Data of zone status registers."]

(2) Query format

Field	Number of data items (number of bytes)	RTU mode 8-bit data	Remarks
Start	None		Silent interval
Slave address [H]	1	Arbitrary	Axis number + 1 (01 $_{\rm H}$ to 10 $_{\rm H}$)
Function code [H]	1	03	Register reading
Start address [H]	2	9013	Zone status query
Number of registers [H]	2	0001	Reading address 9013 _H
Error check [H]	2	CRC (16 bits)	
End	None		Silent interval
Total number of bytes	8		

(3) Response format

A response message contains to bits of data per register.			
Field	Number of data items	RTU mode	Remarks
	(number of bytes)	8-bit data	
Start	None		Silent interval
Slave address [H]	1	Arbitrary	Axis number + 1 (01 _H to 10_H)
Function code [H]	1	03	Register reading
Number of data bytes [H]	1	02	Reading 1 register = 2 bytes
Data [H]	2	Zone status	Refer to 4.3.2 (17), "List table"
Error check [H]	2	CRC (16 bits)	
End	None		Silent interval
Total number of bytes	7		

A sample query that reads the zone output status (address 9013_H) of a controller of axis No. 0 is shown below.

Query (silent intervals are inserted before and after the query) 01 03 90 13 00 01 58 CF

1 00 01	
Field	RTU mode
	8-bit data
Start	Silent interval
Slave address [H]	01
Function code [H]	03
Start address [H]	9013
Number of registers [H]	0001
Error check [H]	58CF (in accordance with
	CRC calculation)
End	Silent interval

The response to the query is as follows.

Response (silent intervals are inserted before and after the response) 01 03 02 00 00 B8 44

Field	RTU mode 8-bit data
Start	Silent interval
Slave address [H]	01
Function code [H]	03
Number of data bytes [H]	02 (2 bytes = 1 register)
Data 1 [H]	00 00
Error check [H]	B844 (in accordance with CRC calculation)
End	Silent interval

5.3.22 Position Complete Number Reading<<POSS>> Exected Program Number Register (Servo Press Type) <<POSS>>

(1) Function

This bit reads the position complete number or exected program number. [Refer to 4.3.2 (18), "Data of position number status register."]

(2) Query format

(=) Garary rannan			
Field	Number of data items	RTU mode	Remarks
	(number of bytes)	8-bit data	
Start	None		Silent interval
Slave address [H]	1	Arbitrary	Axis number + 1 (01 _H to 10_H)
Function code [H]	1	03	Register reading
Start address [H]	2	9014	Position number / Exected
	2		program number status
Number of registers [H]	2	0001	Reading address 9014 _H
Error check [H]	2	CRC (16 bits)	
End	None		Silent interval
Total number of bytes	8		

(3) Response format

	No contained to bite of data		Damanda
Field	Number of data items	RTU mode	Remarks
	(number of bytes)	8-bit data	
Start	None		Silent interval
Slave address [H]	1	Arbitrary	Axis number + 1 (01 $_{\rm H}$ to 10 $_{\rm H}$)
Function code [H]	1	03	Register reading
Number of data bytes [H]	1	02	Reading 1 register = 2 bytes
Data [H]	2	Position number / Exected program	Refer to 4.3.2 (18), "List table."
Data [11]	_	number status	1.6.2 (16), 2.6.143.6.
Error check [H]	2	CRC (16 bits)	
End	None		Silent interval
Total number of bytes	7		

A sample query that reads the position complete (address 9014_{H}) of a controller of axis No. 0 is shown below.

Query (silent intervals are inserted before and after the query)

01 03 90 14 00 01 E9 0E

Field	RTU mode
	8-bit data
Start	Silent interval
Slave address [H]	01
Function code [H]	03
Start address [H]	9014
Number of registers [H]	0001
Error check [H]	E90E (in accordance with
	CRC calculation)
End	Silent interval

The response to the query is as follows.

Response (silent intervals are inserted before and after the response) 01 03 02 00 00 B8 44

Field	RTU mode 8-bit data
Start	Silent interval
Slave address [H]	01
Function code [H]	03
Number of data bytes [H]	02 (2 bytes = 1 register)
Data 1 [H]	00 00
Error check [H]	B844 (in accordance with CRC calculation)
End	Silent interval

5.3.23 Controller Status Signal Reading 5 <<SSSE>>

(1) Function

This query reads the internal operation status of the controller. [Refer to 4.3.2 (19), "Data of expansion system status register."]

(2) Query format

Field	Number of data items (number of bytes)	RTU mode 8-bit data	Remarks
Start	None		Silent interval
Slave address [H]	1	Arbitrary	Axis number + 1 (01 $_{\rm H}$ to 10 $_{\rm H}$)
Function code [H]	1	03	Register reading
Start address [H]	2	9015	Expansion system status register
Number of registers [H]	2	0001	Reading addresses 9015 _H
Error check [H]	2	CRC (16 bits)	
End	None		Silent interval
Total number of bytes	8		

(3) Response format

	containe to bite of data	p o	
Field	Number of data items	RTU mode	Remarks
	(number of bytes)	8-bit data	
Start	None		Silent interval
Slave address [H]	1	Arbitrary	Axis number + 1 $(01_H \text{ to } 10_H)$
Function code [H]	1	03	Internal status of controller
Number of data bytes [H]	1	02	Reading 1 registers = 2 bytes
Data [H]	2	Expansion system	Expansion system status
Data [H]	2	status register	register [Hex]
Error check [H]	2	CRC (16 bits)	
End	None		Silent interval
Total number of bytes	7		

A sample query that reads the expansion system status register (address 9015_H) of a controller of axis No. 0 is shown below.

Query (silent intervals are inserted before and after the query)
 01 03 90 15 00 01 B8 CE

0 0 1 00 0L	
Field	RTU mode
	8-bit data
Start	Silent interval
Slave address [H]	01
Function code [H]	03
Start address [H]	9015
Number of registers [H]	0001
Error check [H]	B8CE (in accordance with
	CRC calculation)
End	Silent interval

The response to the query is as follows.

Response (silent intervals are inserted before and after the response)
 01 03 02 01 00 B9 D4

Field	RTU mode 8-bit data
Start	Silent interval
Slave address [H]	01
Function code [H]	03
Number of data bytes [H]	02 (2 bytes = 1 registers)
Data 1 [H]	01 00
Error check [H]	B9D4 (in accordance with CRC calculation)
End	Silent interval

5.3.24 Current Load Reading <<FBFC>> --- SCON-CA/CB Only

(1) Function

The monitored data of load cell measurement (push force) is read. The unit is $0.01\ N_{\odot}$

(2) Query format

Field	Number of data items (number of bytes)	RTU mode 8-bit data	Remarks
Start	None		Silent interval
Slave address [H]	1	Arbitrary	Axis number + 1 (01 $_{\rm H}$ to 10 $_{\rm H}$)
Function code [H]	1	03	Register reading
Start address [H]	2	901E	Load monitor
Number of registers [H]	2	0002	Reading address 901E _H to 901F _H
Error check [H]	2	CRC (16 bits)	
End	None		Silent interval
Total number of bytes	8		

(3) Response format

	containe to bite of data	,	
Field	Number of data items	RTU mode	Remarks
	(number of bytes)	8-bit data	
Start	None		Silent interval
Slave address [H]	1	Arbitrary	Axis number + 1 (01 $_{\rm H}$ to 10 $_{\rm H}$)
Function code [H]	1	03	Register reading
Number of data bytes [H]	1	04	Reading 2 register = 4 bytes
Deta [H]	4	Load cell	Current push force [N]
Data [H]	4	measurement	Unit: 0.01 N
Error check [H]	2	CRC (16 bits)	
End	None	·	Silent interval
Total number of bytes	9		

An example of use is shown, where the current measurement on the load cell connected to controller axis 0 is read.

Query (silent intervals are inserted before and after the query)
 01 03 90 0A 00 02 89 0D

Field	RTU mode	
	8-bit data	
Start	Silent interval	
Slave address [H]	01	
Function code [H]	03	
Start address [H]	901E	
Number of registers [H]	0002	
Error check [H]	890D (in accordance with	
Endi check [H]	CRC calculation)	
End	Silent interval	

The response^(Note 1) to the query is as follows.

Response (silent intervals are inserted before and after the response)
 01 03 04 00 00 03 E4 FA 88

Field	RTU mode 8-bit data
Start	Silent interval
Slave address [H]	01
Function code [H]	03
Number of data bytes [H]	04 (4 bytes = 2 register)
Data 1 [H]	00 00 03 E4
Error check [H]	FA88 (in accordance with CRC calculation)
End	Silent interval

- Example 1) The current measurement on the load cell is "000003E4," convert into a decimal number, or 996 (× 0.01 N) \rightarrow The current push force is 9.96 N.
- Example 2) If the current measurement reading on the load cell is "FFFFF35" (tensile state (Note 2)), the formula FFFFFFFH FFFFFF35_H + 1 (1 must be added) applies.

The result is converted into decimal number, or 203 (× 0.01 N) \rightarrow The current tensile force^(Note 2) is 2.03 N.

- Note 1 This is only one example of response. The specific response varies depending on each situation.
- Note 2 Load cell cannot be used for pulling operation.

5.3.25 Overload Level Monitor Reading << OLLV>> --- SCON-CA/CAL/CB Only

(1) Function

Current load level to the motor is read in ratio. The unit is 1 %.

[4.3.2 (20) Refer to overload level monitors]

(2) Query format

Field	Number of data items (number of bytes)	RTU mode 8-bit data	Remarks
Start	None		Silent interval
Slave address [H]	1	Arbitrary	Axis number + 1 (01 $_{\rm H}$ to 10 $_{\rm H}$)
Function code [H]	1	03	Register reading
Start address [H]	2	9020	Overload level monitor
Number of registers [H]	2	0002	Reading address 9020 _H to 9021 _H
Error check [H]	2	CRC (16 bits)	
End	None		Silent interval
Total number of bytes	8		

(3) Response format

Field	Number of data items	RTU mode	Remarks
	(number of bytes)	8-bit data	
Start	None		Silent interval
Slave address [H]	1	Arbitrary	Axis number + 1 (01 $_{\rm H}$ to 10 $_{\rm H}$)
Function code [H]	1	03	Register reading
Number of data bytes [H]	1	04	Reading 2 register = 4 bytes
Data [H]	4	Overload level	Unit: 1 %
Error check [H]	2	CRC (16 bits)	
End	None		Silent interval
Total number of bytes	9		

An example of use is shown, where the overload level on the actuator connected to controller axis 0 is read.

 Query (silent intervals are inserted before and after the query) 01 03 90 20 00 02 E8 C1

0 02 L0 0 1	
Field	RTU mode
	8-bit data
Start	Silent interval
Slave address [H]	01
Function code [H]	03
Start address [H]	9020
Number of registers [H]	0002
Error check [H]	E8C1 (in accordance with
Elloi check [H]	CRC calculation)
End	Silent interval

The response (Note 1) to the query is as follows.

■ Response (silent intervals are inserted before and after the response) 01 03 04 00 00 00 46 7B C1

Field	RTU mode 8-bit data
Start	Silent interval
Slave address [H]	01
Function code [H]	03
Number of data bytes [H]	04 (4 bytes = 2 register)
Data 1 [H]	00 00 00 46
Error check [H]	7BC1 (in accordance with CRC calculation)
End	Silent interval

Example 1) The current overload level is "00000046," convert into a decimal number \rightarrow 70 \rightarrow The current overload level is 70 %.

Note 1 This is only one example of response. The specific response varies depending on each situation.

5.3.26 Press Program Alarm Code Reading <<ALMP>> --- Servo Press Type Only

(1) Function

Codes to show the program condition or alarm status are read.

00_H is stored in the normal condition.

[Refer to instruction manual of servo press type controller for alarm code for details]

[4.3.2 (21) Refer to press program alarm codes]

(2) Query format

(=) Quoi y ioiinat			
Field	Number of data items	RTU mode	Remarks
	(number of bytes)	8-bit data	
Start	None		Silent interval
Slave address [H]	1	Arbitrary	Axis number + 1 (01 $_{\rm H}$ to 10 $_{\rm H}$)
Function code [H]	1	03	Register reading
Start address [H]	2	9022	Current generated alarm code
Number of registers [H]	2	0001	Reading address 9022 _H
Error check [H]	2	CRC (16 bits)	
End	None		Silent interval
Total number of bytes	8		

(3) Response format

Field	Number of data items	RTU mode	Remarks
	(number of bytes)	8-bit data	
Start	None		Silent interval
Slave address [H]	1	Arbitrary	Axis number + 1 (01 _H to 10_H)
Function code [H]	1	03	Register reading
Number of data bytes [H]	1	02	Reading 1 register = 2 bytes
Data [H]	2	Alarm code	Alarm code [Hex]
Error check [H]	2	CRC (16 bits)	
End	None		Silent interval
Total number of bytes	7		

An example of use is shown, where the alarm code (address 9022_H) on the press program to controller axis 0 is read.

 Query (silent intervals are inserted before and after the query) 01 03 90 22 00 01 09 00

0 01 03 00	
Field	RTU mode
	8-bit data
Start	Silent interval
Slave address [H]	01
Function code [H]	03
Start address [H]	9022
Number of registers [H]	0001
Error check [H]	0900 (in accordance with
End check [H]	CRC calculation)
End	Silent interval

The response (Note 1) to the query is as follows.

■ Response (silent intervals are inserted before and after the response) 01 03 02 00 03 FB 45

Field	RTU mode 8-bit data
Start	Silent interval
Slave address [H]	01
Function code [H]	03
Number of data bytes [H]	02 (2 bytes = 1 register)
Data 1 [H]	00 03
Error check [H]	FB45 (in accordance with CRC calculation)
End	Silent interval

The alarm issued in this example is "0003" ... It is the program startup alarm at axis operation. [Refer to instruction manual of servo press type controller for alarm code for details]

Note 1 This is only one example of response. The specific response varies depending on each situation.

5.3.27 Alarm Generated Press Program No. Reading <<ALMP>> --- Servo Press Type Only

(1) Function

The press program number that an alarm is issued is read.

00_H is stored in the normal condition.

[4.3.2 (22) Refer to alarm generated press program No.]

(2) Query format

Field	Number of data items	RTU mode	Remarks
	(number of bytes)	8-bit data	
Start	None		Silent interval
Slave address [H]	1	Arbitrary	Axis number + 1 (01 $_{\rm H}$ to 10 $_{\rm H}$)
Function code [H]	1	03	Register reading
Start address [H]	2	9023	Alarm generated program
	2	9023	number
Number of registers [H]	2	0001	Reading address 9023 _H
Error check [H]	2	CRC (16 bits)	
End	None	·	Silent interval
Total number of bytes	8		

(3) Response format

Field	Number of data items	RTU mode	Remarks
	(number of bytes)	8-bit data	
Start	None		Silent interval
Slave address [H]	1	Arbitrary	Axis number + 1 (01 $_{\rm H}$ to 10 $_{\rm H}$)
Function code [H]	1	03	Register reading
Number of data bytes [H]	1	02	Reading 1 register = 2 bytes
Data [H]	2	Program No.	Program No. [Hex]
Error check [H]	2	CRC (16 bits)	
End	None		Silent interval
Total number of bytes	7		

An example of use is shown, where the press program alarm to controller axis 0 is read.

Query (silent intervals are inserted before and after the query)
 01 03 90 23 00 01 58 C0

Field	RTU mode
	8-bit data
Start	Silent interval
Slave address [H]	01
Function code [H]	03
Start address [H]	9023
Number of registers [H]	0001
Error check [H]	58C0 (in accordance with
	CRC calculation)
End	Silent interval

The response $^{(Note\ 1)}$ to the query is as follows.

Response (silent intervals are inserted before and after the response)
 01 03 02 00 05 78 47

Field	RTU mode 8-bit data
Start	Silent interval
Slave address [H]	01
Function code [H]	03
Number of data bytes [H]	02 (2 bytes = 1 register)
Data 1 [H]	00 05
Error check [H]	7847 (in accordance with CRC calculation)
End	Silent interval

The press program number that an alarm has been issued in this example is No. 5.

Note 1 This is only one example of response. The specific response varies depending on each situation.

5.3.28 Press Program Status Register Reading << PPST>> --- Servo Press Type Only

(1) Function

Internal operation condition in the press program is read. [4.3.2 (23) Refer to press program status registers]

(2) Query format

Field	Number of data items (number of bytes)	RTU mode 8-bit data	Remarks
Start	None		Silent interval
Slave address [H]	1	Arbitrary	Axis number + 1 (01 _H to 10 _H)
Function code [H]	1	03	Register reading
Start address [H]	2	9024	Press program status register
Number of registers [H]	2	0001	Reading address 9024 _H
Error check [H]	2	CRC (16 bits)	
End	None		Silent interval
Total number of bytes	8		

(3) Response format

7 t Tooponoo moooago	contains to bits of data	por rogiotor.	
Field	Number of data items	RTU mode	Remarks
	(number of bytes)	8-bit data	
Start	None		Silent interval
Slave address [H]	1	Arbitrary	Axis number + 1 $(01_H \text{ to } 10_H)$
Function code [H]	1	03	Register reading
Number of data bytes [H]	1	02	Reading 1 register = 2 bytes
Data [H]	2	Press program status register	Press program status [Hex]
Error check [H]	2	CRC (16 bits)	
End	None		Silent interval
Total number of bytes	7		

An example of use is shown, where the press program status (address 9024_H) on the press program to controller axis 0 is read.

 Query (silent intervals are inserted before and after the query) 01 03 90 24 00 01 E9 01

0 01 20 01		
Field	RTU mode	
	8-bit data	
Start	Silent interval	
Slave address [H]	01	
Function code [H]	03	
Start address [H]	9024	
Number of registers [H]	0001	
Error check [H]	E901 (in accordance with	
Endi check [H]	CRC calculation)	
End	Silent interval	

The response ^(Note 1) to the query is as follows.

■ Response (silent intervals are inserted before and after the response) 01 03 02 01 02 38 15

Field	RTU mode 8-bit data
Start	Silent interval
Slave address [H]	01
Function code [H]	03
Number of data bytes [H]	02 (2 bytes = 1 register)
Data 1 [H]	01 02
Error check [H]	3815 (in accordance with CRC calculation)
End	Silent interval

Note 1 This is only one example of response. The specific response varies depending on each situation.

5.3.29 Press Program Judgement Status Register Reading <<PPJD>> --- Servo Press Type Only

(1) Function

Judgement condition in the press program is read. [4.3.2 (24) Refer to press program judgement status register]

(2) Query format

(-) Quely lelinat			
Field	Number of data items	RTU mode	Remarks
	(number of bytes)	8-bit data	
Start	None		Silent interval
Slave address [H]	1	Arbitrary	Axis number + 1 (01 _H to 10_H)
Function code [H]	1	03	Register reading
Start address [H]	2	9025	Press program status register
Number of registers [H]	2	0001	Reading address 9025 _H
Error check [H]	2	CRC (16 bits)	
End	None		Silent interval
Total number of bytes	8		

(3) Response format

7 treepense meesage eentame te bite et aata per regieter.			
Field	Number of data items	RTU mode	Remarks
	(number of bytes)	8-bit data	
Start	None		Silent interval
Slave address [H]	1	Arbitrary	Axis number + 1 (01 $_{\rm H}$ to 10 $_{\rm H}$)
Function code [H]	1	03	Register reading
Number of data bytes [H]	1	02	Reading 1 register = 2 bytes
Data [H]	2	Press program judgement status register	Press program judgement status [Hex]
Error check [H]	2	CRC (16 bits)	
End	None		Silent interval
Total number of bytes	7		

An example of use is shown, where the press program judgement status (address 9025_H) on the press program to controller axis 0 is read.

 Query (silent intervals are inserted before and after the query) 01 03 90 25 00 01 B8 C1

Field	RTU mode	
	8-bit data	
Start	Silent interval	
Slave address [H]	01	
Function code [H]	03	
Start address [H]	9025	
Number of registers [H]	0001	
Error check [H]	B8C1 (in accordance with	
End check [H]	CRC calculation)	
End	Silent interval	

The response ^(Note 1) to the query is as follows.

■ Response (silent intervals are inserted before and after the response) 01 03 02 01 05 79 D7

Field	RTU mode 8-bit data	
Start	Silent interval	
Slave address [H]	01	
Function code [H]	03	
Number of data bytes [H]	02 (2 bytes = 1 register)	
Data 1 [H]	01 05	
Error check [H]	79D7 (in accordance with CRC calculation)	
End	Silent interval	

Note 1 This is only one example of response. The specific response varies depending on each situation.

Function

Axis operation permission

Program home return movement

Search stop

Program compulsoly finish

Program start

Symbol

ENMV

PHOM

SSTP

FPST

PSTR

Operation Commands and Data Rewrite (Used function code 05)

5.4.1 **Writing to Coil**

(1) Function

Change (write) the status of DO (Discrete Output) of a slave to either ON or OFF. In case of broadcast transmission, the coils at the specified address of all slaves are rewritten.

(2) Start address list			
Start address [H]	Symbol	Function	Start address [H]
0401	SFTY	Safety speed command	049B
0403	SON	Servo ON command	049C
0407	ALRS	Alarm reset command	049D
0408	BKRL	Brake forced-release command	049E
040A	STP	Pause command	049F
040B	HOME	Home return command	
040C	CSTR	Positioning start command	
0411	JISL	Jog/inch switching	
0414	MOD	Teaching mode command	
0415	TEAC	Position data load command	
0416	JOG+	Jog+ command	
0417	JOG-	Jog- command	
0418	ST7	Start position 7	
		(solenoid valve mode)	
0419	ST6	Start position 6	
		(solenoid valve mode)	
041A	ST5	Start position 5	
		(solenoid valve mode)	
041B	ST4	Start position 4	
		(solenoid valve mode)	
041C	ST3	Start position 3	
		(solenoid valve mode)	
041D	ST2	Start position 2	
		(solenoid valve mode)	
041E	ST1	Start position 1	
		(solenoid valve mode)	
041F	ST0	Start position 0	
		(solenoid valve mode)	
0426	CLBR	Load cell calibration	
		command	
0427	PMSL	PIO/Modbus switching	
0.400	OTOD	specification	
042C	STOP	Deceleration stop	

5.4.2 Safety Speed Enable/Disable Switching (SFTY)

(1) Function

This query enables/disables the speed specified by user parameter No. 35, "Safety speed." Enabling the safety speed in the MANU mode will limit the speeds of all movement commands.

(2) Query format

(2) Query format			
Field	Number of data items	RTU mode	Remarks
	(number of bytes)	8-bit data	
Start	None		Silent interval
Slave address [H]	1	Arbitrary	Axis number + 1 (01 $_{\rm H}$ to 10 $_{\rm H}$)
			00 _H when broadcast is
			specified
Function code [H]	1	05	Write to a single coil DO.
Start address [H]	2	0401	Safety speed command
Changed data [H]	2	Arbitrary	Safety speed enabled: FF00 _H
			Safety speed disabled: 0000 _H
Error check [H]	2	CRC (16 bits)	
End	None		Silent interval
Total number of bytes	8	_	

(3) Response

If the change is successful, the response message will be the same as the query. If invalid data is sent, an exception response (refer to section 7) will be returned, or no response will be returned.

A sample query that enables the safety speed of a controller of axis No. 0 is shown below. Query (silent intervals are inserted before and after the query) 01 05 04 01 FF 00 DC CA

2 2 0 0 1		
Field	RTU mode	
	8-bit data	
Start	Silent interval	
Slave address [H]	01	
Function code [H]	05	
Start address [H]	0401	
Changed data [H]	FF00	
Error check [H]	DCCA (in accordance with	
Endi check [rij	CRC calculation)	
End	Silent interval	

If the change is successful, the response message will be the same as the query.

5.4.3 Servo ON/OFF <<SON>>

(1) Function

Control ON/OFF of the servo.

When "Servo ON" is specified by the new data, the servo will turn ON after elapse of the manufacturer parameter "Servo ON delay time." However, the following conditions must be satisfied:

- The EMG status bit in device status register 1 is 0.
- The major failure status bit in device status register 1 is 0.
- The enable status bit in device status register 2 is 1.
- The auto servo OFF status in the system status register is 0.

(2) Query Format

(E) Query i dilliat			
Field	Number of data items (number of bytes)	RTU mode 8-bit data	Remarks
	(Hullibel of bytes)	0-มแ นสเส	
Start	None		Silent interval
Slave address [H]	1	Arbitrary	Axis number + 1 (01 $_{\rm H}$ to 10 $_{\rm H}$)
1		•	00 _H when broadcast is
			specified
Function code [H]	1	05	Write to a single coil DO.
Start address [H]	2	0403	Servo ON/OFF command
Changed data [H]	2	Arbitrary	Servo ON: FF00 _H
			Servo OFF: 0000 _H
Error check [H]	2	CRC (16 bits)	
End	None	·	Silent interval
Total number of bytes	8		

^{*} If a teaching pendant or PC software is connected before the control establishes communication with the host, the servo is turned OFF, and then the teaching pendant/PC software is removed, the servo cannot be turned ON/OFF via commands received from with the host.
In this case, restore the RC controller power, or make sure the SIO port connection is removed while the servo is ON.

(3) Response

If the change is successful, the response message will be the same as the query. If invalid data is sent, an exception response (refer to section 7) will be returned, or no response will be returned.

A sample query that turns on the servo of a controller of axis No. 0 is shown below. Query (silent intervals are inserted before and after the query) 01 05 04 03 FF 00 7D 0A

0 10 00	
Field	RTU mode
	8-bit data
Start	Silent interval
Slave address [H]	01
Function code [H]	05
Start address [H]	0403
Changed data [H]	FF00
Error check [H]	7D0A (in accordance with
	CRC calculation)
End	Silent interval

5.4.4 Alarm Reset <<ALRS>>

(1) Function

When the alarm reset edge is turned on (the data is first set to $FF00_H$ and then changed to 0000_H), alarms will be reset.

If any alarm cause has not been removed, the same alarm will be generated again. If the alarm reset edge is turned on while the actuator is paused, **the remaining travel will be cancelled**. When alarms are reset, make sure to write changed data of 0000_H to restore the normal status.

(2) Query format

(=) Queij ioiiiat			
Field	Number of data items	RTU mode	Remarks
	(number of bytes)	8-bit data	
Start	None		Silent interval
Slave address [H]	1	Arbitrary	Axis number + 1 (01 _H to 10_H)
			00 _H when broadcast is
			specified
Function code [H]	1	05	Write to a single coil DO.
Start address [H]	2	0407	Alarm reset command
Changed data [H]	2	Arbitrary	Execute alarm reset: FF00 _H
			Normal: 0000 _H
Error check [H]	2	CRC (16 bits)	
End	None	·	Silent interval
Total number of bytes	8	·	

(3) Response

A sample query that resets the alarms of a controller of axis No. 0 is shown below. Query (silent intervals are inserted before and after the query)

First time 01 05 04 07 FF 00 3C CB --- Execute alarm reset Second time 01 05 04 07 00 00 7D 3B --- Restore normal status

, 01 00 0+ 01 00 00 10 00	restore normal status
Field	RTU mode
	8-bit data
Start	Silent interval
Slave address [H]	01
Function code [H]	05
Start address [H]	0407
Changed data [H]	First time: FF00
	Second time: 0000
	(Write 0000 _H after resetting alarms to
	restore the normal status.)
Error check [H]	First time: 3CCB
	(in accordance with CRC calculation)
	Second time: 7D3B
	(in accordance with CRC calculation)
End	Silent interval

5.4.5 Brake Forced Release << BKRL>>

(1) Function

Brake control is linked to servo ON/OFF. The brake can be forcefully released even when the servo is ON.

(2) Query format

(2) Query lorillat			
Field	Number of data items	RTU mode	Remarks
	(number of bytes)	8-bit data	
Start	None		Silent interval
Slave address [H]	1	Arbitrary	Axis number + 1 (01 _H to 10 _H) 00 _H when broadcast is specified
Function code [H]	1	05	Write to a single coil DO.
Start address [H]	2	0408	Break forced release command
Changed data [H]	2	Arbitrary	Brake forced release: FF00 _H Normal: 0000 _H
Error check [H]	2	CRC (16 bits)	
End	None		Silent interval
Total number of bytes	8		

^{*} If a teaching pendant or PC software is connected before the control establishes communication with the host, the servo is turned OFF, and then the teaching pendant/PC software is removed, the servo cannot be turned ON/OFF via commands received from with the host. In this case, restore the RC controller power, or make sure the SIO port connection is removed while the servo is ON.

(3) Response

A sample query that forcefully releases the break of a controller of axis No. 0 is shown below. Query (silent intervals are inserted before and after the query) 01 05 04 08 FF 00 0C C8

Field	RTU mode
	8-bit data
Start	Silent interval
Slave address [H]	01
Function code [H]	05
Start address [H]	0408
Changed data [H]	FF00
Error check [H]	0CC8 (in accordance with
Ellor check [11]	CRC calculation)
End	Silent interval

5.4.6 Pause <<STP>>

(1) Function

If the pause command is transmitted during movement, the actuator decelerates and stops. If the status is set back to normal again, the actuator resumes moving for the remaining distance. As long as the pause command is being transmitted, all motor movement is inhibited. If the alarm reset command bit is set while the actuator is paused, the remaining travel will be cancelled.

If this bit is set during home return, the movement command will be held if the actuator has not yet reversed after contacting the mechanical end. If the actuator has already reversed after contacting the mechanical end, home return will be repeated from the beginning.

(2) Query format

Field	Number of data items (number of bytes)	RTU mode 8-bit data	Remarks
Start	None		Silent interval
Slave address [H]	1	Arbitrary	Axis number + 1 (01 _H to 10 _H) 00 _H when broadcast is specified
Function code [H]	1	05	Write to a single coil DO.
Start address [H]	2	040A	Pause command
Changed data [H]	2	Arbitrary	Pause command: FF00 _H Normal : 0000 _H
Error check [H]	2	CRC (16 bits)	
End	None	·	Silent interval
Total number of bytes	8		

(3) Response

A sample query that pauses a controller of axis No. 0 is shown below. Query (silent intervals are inserted before and after the query) 01 05 04 0A FF 00 AD 08

0 1 D 00		
Field	RTU mode	
	8-bit data	
Start	Silent interval	
Slave address [H]	01	
Function code [H]	05	
Start address [H]	040A	
Changed data [H]	FF00	
Error check [H]	AD08 (in accordance with	
End check [H]	CRC calculation)	
End	Silent interval	

5.4.7 Home Return <<HOME>>

(1) Function

Home return operation will start if a rising edge in the home return command signal is detected (the data is first set to 0000_H and then changed to $FF00_H$). Upon home return completion, the HEND bit will become 1. This command can be input as many times as desired even after home return completion.

(2) Query format

(=) Quoi y ioimat			
Field	Number of data items (number of bytes)	RTU mode 8-bit data	Remarks
Start	None		Silent interval
Slave address [H]	1	Arbitrary	Axis number + 1 (01 _H to 10 _H) 00 _H when broadcast is specified
Function code [H]	1	05	Write to a single coil DO.
Start address [H]	2	040B	Home return command
Changed data [H]	2	Arbitrary	Execute home return: FF00 _H Normal: 0000 _H
Error check [H]	2	CRC (16 bits)	
End	None		Silent interval
Total number of bytes	8		

^{*} The servo must be ON before a home return command is issued.

If a teaching pendant or PC software is connected before the control establishes communication with the host, the servo is turned OFF, and then the teaching pendant/PC software is removed, the servo cannot be turned ON/OFF via commands received from omit the host.

In this case, restore the RC controller power, or make sure the SIO port connection is removed while the servo is ON.

(3) Response

A query example that executes home return operation of a controller of axis No. 0 is shown here. Query (silent intervals are inserted before and after the query)

First time 01 05 04 0B 00 00 BD 38 --- Set normal status Second time 01 05 04 0B FF 00 FC C8 --- Execute home return

le 01 05 04 0B FF 00 FC C6 Execute nome return		
Field	RTU mode	
	8-bit data	
Start	Silent interval	
Slave address [H]	01	
Function code [H]	05	
Start address [H]	040B	
Changed data [H]	First time: 0000	
	Second time: FF00	
	(Send data twice to set the rising edge.)	
Error check [H]	First time: 3CCB	
	(in accordance with CRC calculation)	
	Second time: 7D3B	
	(in accordance with CRC calculation)	
End	Silent interval	

5.4.8 Positioning Start Command <<CSTR>>

(1) Function

If the rising edge of the positioning start command is detected (the data is first set to 0000_{H} and then changed to $FF00_{H}$), the actuator will move to the position specified by the position number stored in the position number command register (POSR:0D03_H). If nothing is done after the position start command (FF00_H is read and no new data is written), a position complete will not be output even when the actuator enters the positioning band (write 0000_{H} and restore the normal status).

If this command is executed when home return has never been performed after the power was turned on (when the HEND bit is 0), the actuator will perform home return and then start moving to the target position.

* The target position, speed and all other operation parameters must be set in the position table (nonvolatile memory) of the controller in advance.

(2) Query format

(=) \(\alpha \text{act} \) \(\text{10} \) \(\text{10} \)			
Field	Number of data items	RTU mode	Remarks
	(number of bytes)	8-bit data	
Start	None		Silent interval
Slave address [H]	1	Arbitrary	Axis number + 1 (01 _H to 10 _H) 00 _H when broadcast is specified
Function code [H]	1	05	Write to a single coil DO.
Start address [H]	2	040C	Positioning start command
Changed data [H]	2	Arbitrary	Positioning start command: FF00 _H Normal: 0000 _H
Error check [H]	2	CRC (16 bits)	
End	None		Silent interval
Total number of bytes	8		

(3) Response

A sample query that moves the actuator of a controller of axis No. 0 to the position specified by the position number stored in the position number command register (POSR: $0D03_H$) is shown below.

Query (silent intervals are inserted before and after the query)

First time 01 05 04 0C FF 00 4D 09 --- Move to the specified position Second time 01 05 04 0C 00 00 0C F9 --- Restore to the normal status

201 03 04 00 00 00 00 13 -	restore to the normal status	
Field	RTU mode	
	8-bit data	
Start	Silent interval	
Slave address [H]	01	
Function code [H]	05	
Start address [H]	040C	
Changed data [H]	First time: FF00	
	Second time: 0000	
	(Restore to the normal status.)	
Error check [H]	First time: 4D09	
	(in accordance with CRC calculation)	
	Second time: 0CF9	
	(in accordance with CRC calculation)	
End	Silent interval	

5.4.9 Jog/Inch Switching << JISL>>

(1) Function

This bit switches between jogging and inching.

If this bit switches while the actuator is jogging, the actuator will decelerate to a stop.

If this bit switches while the actuator is inching, the inching movement will continue.

(2) Query format

(2) Quoi y ioiinat			
Field	Number of data items (number of bytes)	RTU mode 8-bit data	Remarks
Start	None		Silent interval
Slave address [H]	1	Arbitrary	Axis number + 1 (01 _H to 10_H)
			00 _H when broadcast is
			specified
Function code [H]	1	05	Write to a single coil DO.
Start address [H]	2	0411	Jog/inch switching
Changed data [H]	2	Arbitrary	Inching operation status:
			FF00 _H
			Jogging operation status:
			0000 _H
Error check [H]	2	CRC (16 bits)	
End	None	_	Silent interval
Total number of bytes	8		

(3) Response

A sample query that switches the operation of a controller of axis No. 0 to inching is shown below. Query (silent intervals are inserted before and after the query) 01 05 04 11 FF 00 DD 0F

<u> </u>		
Field	RTU mode	
	8-bit data	
Start	Silent interval	
Slave address [H]	01	
Function code [H]	05	
Start address [H]	0411	
Changed data [H]	FF00	
Error check [H]	DD0F (in accordance with	
	CRC calculation)	
End	Silent interval	

5.4.10 Teaching Mode Command << MOD>>

(1) Function

This bit switches between the normal operation mode and teaching mode.

(2) Query format

(L) Query formut			
Field	Number of data items (number of bytes)	RTU mode 8-bit data	Remarks
Start	None		Silent interval
Slave address [H]	1	Arbitrary	Axis number + 1 (01 _H to 10 _H) 00 _H when broadcast is specified
Function code [H]	1	05	Write to a single coil DO.
Start address [H]	2	0414	Switch between the normal mode and the teaching mode.
Changed data [H]	2	Arbitrary	Teaching mode: FF00 _H Normal operation mode: 0000 _H
Error check [H]	2	CRC (16 bits)	
End	None		Silent interval
Total number of bytes	8		

(3) Response

A sample query that switches the operation mode of a controller of axis No. 0 to teaching mode is shown below.

Query (silent intervals are inserted before and after the query)

01 05 04 14 FF 00 CD 0E

Field	RTU mode
	8-bit data
Start	Silent interval
Slave address [H]	01
Function code [H]	05
Start address [H]	0414
Changed data [H]	FF00
Error check [H]	CD0E (in accordance with
	CRC calculation)
End	Silent interval

5.4.11 Position Data Load Command <<TEAC>>

(1) Function

The current position is acquired by writing this command (write FF00H) when the teaching mode command (5.4.10) is FF00H (teaching command).

The current position data will be written in the position number specified by the position number command register when the aforementioned condition was detected.

If other position data fields are empty, the default parameter values will be written at the same time in the empty fields other than the target position (positioning band INP, speed VCMD, acceleration/deceleration speed ACMD, and control flag CTLF).

After sending this command (write FF00_H), keep the status as is for 20 ms or longer.

(2) Query format

Field	Number of data items (number of bytes)	RTU mode 8-bit data	Remarks
Start	None		Silent interval
Slave address [H]	1	Arbitrary	Axis number + 1 (01 _H to 10 _H) 00 _H when broadcast is specified
Function code [H]	1	05	Write to a single coil DO.
Start address [H]	2	0415	Position data load command
Changed data [H]	2	Arbitrary	Position data load command: FF00 _H Normal: 0000 _H
Error check [H]	2	CRC (16 bits)	
End	None		Silent interval
Total number of bytes	8		

(3) Response

A sample query that acquires the current position when a controller of axis No. 0 is in the teaching mode is shown below.

Query (silent intervals are inserted before and after the query)

01 05 04 15 FF 00 9C CE

RTU mode	
8-bit data	
Silent interval	
01	
05	
0415	
FF00	
9CCE (in accordance with	
CRC calculation)	
Silent interval	

5.4.12 Jog+ Command << JOG+>>

(1) Function

- The actuator performs either jog or inching operation.
 - If the jog+ command (changed data FF00_H) is sent when the jog/inch switching command (5.4.9) is set to 0000_H (set to jog), the actuator will jog in the direction opposite home. The speed and acceleration/deceleration speed conform to the PIO jog speed set by user parameter No. 26 and rated acceleration/deceleration speed, respectively.
 - If the jog+ command (changed data 0000_H) is sent or the jog- command (5.4.13, changed data $FF00_H$) is sent while the actuator is moving jog, the actuator will decelerate to a stop.
- If the jog+ command rising edge is set (the data is first set to 0000H and changed to FF00H) while the jog/inch switching command (5.4.9) is FF00_H (set to inching), the actuator will inch in the direction opposite home. The speed, travel and acceleration/deceleration speed conform to user parameter No. 26 (PIO jogging speed), user parameter No. 48 (PIO inching distance), and rated acceleration/deceleration speed, respectively.

(2) Query format

(=) Quoi j 10111141			
Field	Number of data items	RTU mode	Remarks
	(number of bytes)	8-bit data	
Start	None		Silent interval
Slave address [H]	1	Arbitrary	Axis number + 1 (01 $_{\rm H}$ to 10 $_{\rm H}$)
			00 _H when broadcast is
			specified
Function code [H]	1	05	Write to a single coil DO.
Start address [H]	2	0416	Jog+ command
Changed data [H]	2	Arbitrary	Jog+ command: FF00 _H
		•	Normal: 0000 _H
Error check [H]	2	CRC (16 bits)	
End	None		Silent interval
Total number of bytes	8		

(3) Response

[1] A sample query that makes a controller of axis No. 0 jog is shown below. Query (silent intervals are inserted before and after the query) 01 05 04 16 FF 00 6C CE

1 00 00 OL		
Field	RTU mode	
	8-bit data	
Start	Silent interval	
Slave address [H]	01	
Function code [H]	05	
Start address [H]	0416	
Changed data [H]	FF00	
Error check [H]	6CCE (in accordance with	
	CRC calculation)	
End	Silent interval	

If the change is successful, the response message will be the same as the query.

Field	RTU mode 8-bit data
Start	Silent interval
Slave address [H]	01
Function code [H]	05
Start address [H]	0416
Changed data [H]	First time: FF00
	Second time: 0000
	(Restore the normal status.)
Error check [H]	First time: 6CCE
	(in accordance with CRC calculation)
	Second time: 2D3E
	(in accordance with CRC calculation)
End	Silent interval

5.4.13 Jog- Command << JOG->>

(1) Function

- The actuator performs either jog or inching operation.
 - If the jog- command (changed data FF00_H) is sent when the jog/inch switching command (5.4.9) is set to 0000_H (set to jog), the actuator will jog in the direction of home. The speed and acceleration/deceleration speed conform to the PIO jog speed set by user parameter No. 26 and rated acceleration/deceleration speed, respectively.
 - If the jog- command (changed data 0000_H) is sent or the jog+ command (5.4.12, changed data $FF00_H$) is sent while the actuator is moving, the actuator will decelerate to a stop.
- If the jog- command rising edge is set while the jog/inch switching command (5.4.9) is FF00_H (set to inching), the actuator will inch in the direction of home. The speed, travel and acceleration/deceleration speed conform to user parameter No. 26 (PIO jogging sped), user parameter No. 48 (PIO inching distance), and rated acceleration/deceleration speed, respectively.

(2) Query format

(=) wasing ioninat			
Field	Number of data items (number of bytes)	RTU mode 8-bit data	Remarks
Start	None		Silent interval
Slave address [H]	1	Arbitrary	Axis number + 1 (01 _H to 10 _H) 00 _H when broadcast is specified
Function code [H]	1	05	Write to a single coil DO.
Start address [H]	2	0417	Jog- command
Changed data [H]	2	Arbitrary	Jog- command: FF00 _H Normal: 0000 _H
Error check [H]	2	CRC (16 bits)	
End	None		Silent interval
Total number of bytes	8		

(3) Response

[1] A sample query that makes a controller of axis No. 0 jog is shown below. Query (silent intervals are inserted before and after the query) 01 05 04 17 FF 00 3D 0E

1 00 0D 0L		
Field	RTU mode	
	8-bit data	
Start	Silent interval	
Slave address [H]	01	
Function code [H]	05	
Start address [H]	0417	
Changed data [H]	FF00	
Error check [H]	3D0E (in accordance with	
	CRC calculation)	
End	Silent interval	

If the change is successful, the response message will be the same as the query.

[2] A sample query that makes a controller of axis No. 0 inch is shown below. Query (silent intervals are inserted before and after the query)

First time 01 05 04 17 FF 00 3D 0E ··· Perform inching movement Second time 01 05 04 17 00 00 7C FE ··· Restore the normal status

Field	RTU mode	
	8-bit data	
Start	Silent interval	
Slave address [H]	01	
Function code [H]	05	
Start address [H]	0417	
Changed data [H]	First time: FF00	
	Second time: 0000	
	(Restore the normal status)	
Error check [H]	First time: 3D0E	
	(in accordance with CRC calculation)	
	Second time: 7CFE	
	(in accordance with CRC calculation)	
End	Silent interval	

5.4.14 Start Positions 0 to 7 <<ST0 to ST7>> Movement Command (Limited to solenoid valve mode)

(1) Function

The actuator moves to the specified position number position.

The movement command for start position 0 to 7 is effective only when solenoid valve mode is selected.

The movement command is sent by enabling either one of ST0 to ST7 in 5.4.14 (5), "Start address" (write new value $FF00_H$ when 0000_H is set).

If a position other than the valid start positions is selected, "085: Moving position number error" will be generated.

Either level operation or edge operation can be selected using user parameter No. 27, "Movement command type."

(2) Query format

(2) Query format			
Field	Number of data items	RTU mode	Remarks
	(number of bytes)	8-bit data	
Start	None		Silent interval
Slave address [H]	1	Arbitrary	Axis number + 1 (01 $_{\rm H}$ to 10 $_{\rm H}$)
			00 _H when broadcast is specified
Function code [H]	1	05	Write to a single coil DO
Start address [H]	2	Arbitrary	Refer to 5.4.14 (5), "Start address."
Changed data [H]	2	Arbitrary	*1 Operation command ON: FF00 _H
			Operation command OFF: 0000 _H
Error check [H]	2	CRC (16 bits)	
End	None		Silent interval
Total number of bytes	8		

^{*1} If user parameter No. 27, "Movement command type" is set to "level operation," the actuator decelerates to a stop by overwriting FF00_H with 0000_H.

(3) Response

A sample query that moves a controller of axis No. 0 to start position 2 is shown below. An example of start position setting.

0	0.00	150.00	0.30	0.30
1	25.00	150.00	0.30	0.30
2	50.00	150.00	0.30	0.30
3	0.00	150.00	0.20	0.20

Fig. 5.2

Query (silent intervals are inserted before and after the query)

First time 01 05 04 1D 00 00 5C FC --- Write 0000_H to set the edge Second time 01 05 04 1D FF 00 1D 0C --- Movement command

3 04 1B 11 00 1B 00 === Wovernerit command			
Field	RTU mode		
	8-bit data		
Start	Silent interval		
Slave address [H]	01		
Function code [H]	05		
Start address [H]	041D		
Changed data [H]	First time: 0000		
	Second time: FF00		
Error check [H]	First time: 5CFC		
	(in accordance with CRC		
	calculation)		
	Second time: 1D0C		
	(in accordance with CRC		
	calculation)		
Fnd	Silent interval		

If the change is successful, the response message will be the same as the query.

(5) Start address

(3) Start address					
Address	Symbol	Name	Function		
0418	ST7	Start position 7	Move to position 7		
0419	ST6	Start position 6	Move to position 6		
041A	ST5	Start position 5	Move to position 5		
041B	ST4	Start position 4	Move to position 4		
041C	ST3	Start position 3	Move to position 3		
041D	ST2	Start position 2	Move to position 2		
041E	ST1	Start position 1	Move to position 1		
041F	ST0	Start position 0	Move to position 0		

5.4.15 Load Cell Calibration Command <<CLBR>> --- A dedicated load cell must be connected.

(1) Function --- SCON-CA/CB only

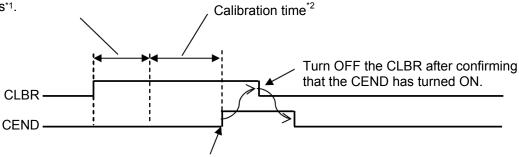
The dedicated load cell is calibrated.

The factory setting of your load cell is that the ON status corresponds to a no-load state. If you want to define the reference state as a condition where a work part (load) is installed, calibrate the load cell.

Also calibrate the load cell in other situations as necessary (readjustment, inspection, etc.).

(2) Query format

(=) 4.6.7			
Field	Number of data items	RTU mode	Remarks
	(number of bytes)	8-bit data	
Start	None		Silent interval
Slave address [H]	1	Arbitrary	Axis number + 1 (01 _H to 10_H)
			00 _H when broadcast is
			specified
Function code [H]	1	05	Write to a single coil DO
Start address [H]	2	0426	Load cell calibration
			command
Changed data [H]	2	Arbitrary	Calibration command: FF00 _H
			Normal operation: 0000 _H
Error check [H]	2	CRC (16 bits)	
End	None		Silent interval
Total number of bytes	8		


(3) Calibration procedure

- [1] Stop the actuator operation. (The load cell cannot be calibrated while the actuator is performing any axis operation or push-motion operation or being paused, in which case 0E1 (load cell calibration error) alarm generates.)
- [2] Turn this signal ON and keep it ON for at least 20 ms.
- [3] When the calibration is complete, the calibration complete signal (CEND of device status register 1 explained in 4.3.2 (12)) turns ON. After confirming that the CEND has turned ON, turn OFF the CLBR.
 - If the calibration was unsuccessful, a 0E1 (load cell calibration error) alarm generates.

Caution: Normal operation commands are not accepted while the CLBR is ON.

Input is recognized after the signal remains ON for 20 ms*1.

When the calibration was successful, the CEND turns ON. While the CLBR is OFF, the CEND remains OFF.

- *1 If the CLBR is turned OFF during this period, calibration will not be performed because the signal is not yet recognized as having been input.
- *2 If the CLBR is turned OFF during this period, an alarm will generate.

(4) Response

A response message to be sent following a successful change should be the same as the query. If any invalid data has been sent, an exception response (refer to 7) will be returned or no response will be returned at all.

(5) Example of use

Calibrate the dedicated load cell connected to controller axis 0. Query (Silent intervals are inserted before and after the query.) 01 05 04 26 FF 00 6C C1

<u> </u>		
Field	RTU mode	
	8-bit data	
Start	Silent interval	
Slave address [H]	01	
Function code [H]	05	
Start address [H]	0426	
Changed data [H]	FF00	
Error check [H]	6CC1 (in accordance with	
	CRC calculation)	
End	Silent interval	

5.4.16 PIO/Modbus Switching Setting << PMSL>>

(1) Function

PIO external command signals can be enabled or disabled.

(2) Query format

Field	Number of data items	RTU mode	Remarks
	(number of bytes)	8-bit data	
Start	None		Silent interval
Slave address [H]	1	Arbitrary	Axis number + 1 (01 _H to 10_H)
			00 _H when broadcast is specified
Function code [H]	1	05	Write to a single coil DO.
Start address [H]	2	0427	PIO/Modbus switching setting
Changed data [H]	2	Arbitrary	*1 Enable Modus commands: FF00 _H
			Disable Modbus commands: 0000 _H
Error check [H]	2	CRC (16 bits)	
End	None		Silent interval
Total number of bytes	8		

- *1 Enable Modbus commands (ON) (disable PIO command): FF00_H Operation via PIO signals is not possible.
 - Disable Modbus commands (OFF) (enable PIO command): 0000_H
 Operation via external PIO signals is possible.

Supplement

If the Modbus command is enabled, the PIO status at change is maintained. If the Modbus command is switched to disabled, the operation status changes according to the current PIO status. Note that even if the status of signals that operate via edge detection has been changed, edge detection is ignored.

(3) Precaution

- In the models equipped with operation model setting switch, it should be set to "PIO Command Valid" when it is set to AUTO mode, and "PIO Command Invalid" when set to MANU mode.
- On a non-PIO model, the default setting is "Disable PIO commands."
- If IAI's tool (teaching pendant or PC software) is connected, "Teaching modes 1, 2" and "Monitor modes 1, 2" are available as tool modes. The correspondence between these modes and PIO enable/disable specifications are as follows:
 - "Monitor modes 1, 2" → "Enable PIO commands"
 - "Teaching modes 1, 2" → "Disable PIO commands"

(4) Response

If the change is successful, the response message will be the same as the query. If invalid data is sent, an exception response (refer to section 7) will be returned, or no response will be returned.

(5) Query sample

A sample query that enables the Modbus command of the operation of a controller of axis No. 0 is shown below.

Query (silent intervals are inserted before and after the query) 01 05 04 27 FF 00 3D 01 $\,$

Field	RTU mode 8-bit data
Start	Silent interval
Slave address [H]	01
Function code [H]	05
Start address [H]	0427
Changed data [H]	FF00
Error check [H]	3D01 (in accordance with CRC calculation)
End	Silent interval

5.4.17 Deceleration Stop <<STOP>>

(1) Function

The actuator will start decelerating to a stop when the deceleration stop command edge (write $FF00_H$) is turned on.

(2) Query format

(2) Query lorinat			
Field	Number of data items	RTU mode	Remarks
	(number of bytes)	8-bit data	
Start	None		Silent interval
Slave address [H]	1	Arbitrary	Axis number + 1 (01 _H to 10_H)
			00 _H when broadcast is
			specified
Function code [H]	1	05	Write to a single coil DO.
Start address [H]	2	042C	Deceleration stop setting
Changed data [H]	2	Arbitrary	Deceleration stop command
			(ON): FF00 _H
			* The controller automatically
			resets the value to 0000 _H .
Error check [H]	2	CRC (16 bits)	
End	None		Silent interval
Total number of bytes	8		

(3) Response

A sample query that decelerates to a stop of a controller of axis No. 0 is shown below. Query (silent intervals are inserted before and after the query) 01 05 04 2C FF 00 4C C3

0 +0 00		
Field	RTU mode	
	8-bit data	
Start	Silent interval	
Slave address [H]	01	
Function code [H]	05	
Start address [H]	042C	
Changed data [H]	FF00	
Error check [H]	4CC3 (in accordance with CRC calculation)	
End	Silent interval	

5.4.18 Axis operation permission << ENMV>> --- Servo Press Type Only

(1) Function

The setting can be switched on permission activated/inactivated.

(2) Query format

(=) Gabiy format			
Field	Number of data items	RTU mode	Remarks
	(number of bytes)	8-bit data	
Start	None		Silent interval
Slave address [H]	1	Arbitrary	Axis number + 1 (01 $_{\rm H}$ to 10 $_{\rm H}$)
			00 _H when broadcast is
			specified
Function code [H]	1	05	Write to a single coil DO.
Start address [H]	2	049B	Axis operation permission
			setting
Changed data [H]	2	Arbitrary	Permission activated: FF00 _H
Error check [H]	2	CRC (16 bits)	Permission inactivated: 0000 _H .
End	None		Silent interval
Total number of bytes	8		

(3) Response

Movement of the actuator connected to Axis No. 0 gets activated. Query (silent intervals are inserted before and after the query) 01 05 04 9B FF 00 FC E5

0:0=0		
Field	RTU mode	
	8-bit data	
Start	Silent interval	
Slave address [H]	01	
Function code [H]	05	
Start address [H]	049B	
Changed data [H]	FF00	
Error check [H]	FCE5 (in accordance with CRC calculation)	
End	Silent interval	

5.4.19 Program Home Position Movement << PHOM>> --- Servo Press Type Only

(1) Function

Raise the program home-return edge (write $FF00_H$ under the condition of change data being 0000_H), and the movement will be made to the program home position set in each press program.

(2) Query format

(=) Quoi y Torrinat			
Field	Number of data items	RTU mode	Remarks
	(number of bytes)	8-bit data	
Start	None		Silent interval
Slave address [H]	1	Arbitrary	Axis number + 1 (01 $_{\rm H}$ to 10 $_{\rm H}$)
			00 _H when broadcast is
			specified
Function code [H]	1	05	Write to a single coil DO.
Start address [H]	2	049C	Setting
Changed data [H]	2	Arbitrary	Home-return movement
			execution: FF00 _H
			Normally : 0000 _H
Error check [H]	2	CRC (16 bits)	
End	None		Silent interval
Total number of bytes	8		

(3) Response

Movement of the actuator connected to Axis No. 0 gets activated. Query (silent intervals are inserted before and after the query)

First time : 01 05 04 9C 00 00 0C D4···Write the 0000H twice to raise the edge

Second time: 01 05 04 9C FF 00 4D 24···Home position movement

Field	RTU mode	
	8-bit data	
Start	Silent interval	
Slave address [H]	01	
Function code [H]	05	
Start address [H]	049C	
Changed data [H]	First time : 0000 Second time: FF00 (Send the data twice to raise the edge)	
Error check [H]	First time: 0CD4 (in accordance with CRC calculation) Second time: 4D24 (in accordance with CRC calculation)	
End	Silent interval	

5.4.20 Search Stop <<SSTP>> --- Servo Press Type Only

(1) Function

Setting can be switched whether to finish the press program or not after search operation is completed.

(2) Query format

\=/ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\			
Field	Number of data items	RTU mode	Remarks
	(number of bytes)	8-bit data	
Start	None		Silent interval
Slave address [H]	1	Arbitrary	Axis number + 1 (01 _H to 10 _H)
			00 _H when broadcast is
			specified
Function code [H]	1	05	Write to a single coil DO.
Start address [H]	2	049D	Search operation stop setting
Changed data [H]	2	Arbitrary	Stopped after search
			operation: FF00 _H
			Not stopped after search
			operation: 0000 _H
Error check [H]	2	CRC (16 bits)	
End	None	·	Silent interval
Total number of bytes	8		

(3) Response

After search of the actuator connected to Axis No. 0, press program will be stopped. Query (silent intervals are inserted before and after the query) 01 05 04 9D FF 00 1C E4

0 10 = 1		
Field	RTU mode	
	8-bit data	
Start	Silent interval	
Slave address [H]	01	
Function code [H]	05	
Start address [H]	049D	
Changed data [H]	FF00	
	1CE4	
Error check [H]	(in accordance with CRC	
	calculation)	
End	Silent interval	

5.4.21 Program compulsoly finish <<FPST>> --- Servo Press Type Only

(1) Function

Raise the press program compulsory complete edge (write $FF00_H$ under the condition of change data being 0000_H), and the press program will be compulsorily finished. While the change data retains $FF00_H$, the start command of the press program cannot be received.

(2) Query format

Field	Number of data items (number of bytes)	RTU mode 8-bit data	Remarks
Start	None		Silent interval
Slave address [H]	1	Arbitrary	Axis number + 1 (01 _H to 10 _H) 00 _H when broadcast is specified
Function code [H]	1	05	Write to a single coil DO.
Start address [H]	2	049E	Program compulsoly finish setting
Changed data [H]	2	Arbitrary	Program compulsoly
Error check [H]	2	CRC (16 bits)	finish: FF00 _H Normal: 0000 _H .
End	None		Silent interval
Total number of bytes	8		

(3) Response

(4) Query sample

Press program of the actuator connected to Axis No. 0 will be compulsorily finished.

Query (silent intervals are inserted before and after the query)

First time : 01 05 04 9E 00 00 AD 14···Write the 0000H twice to raise the edge

Second time: 01 05 04 9E FF 00 EC E4···Compulsoly finish

	, ,
Field	RTU mode
	8-bit data
Start	Silent interval
Slave address [H]	01
Function code [H]	05
Start address [H]	049E
Changed data [H]	First time: 0000 Second time: FF00 (Send the data twice to raise the edge)
Error check [H]	First time : AD14 (in accordance with CRC calculation) Second time: ECE4 (in accordance with CRC calculation)
End	Silent interval

If the change is successful, the response message will be the same as the query.

5.4.22 Program Start << PSTR>> --- Servo Press Type Only

(1) Function

Raise the program start edge (write $FF00_H$ under the condition of change data being 0000_H), and the press program in the program number set in POSR Register will be executed.

(2) Query format

Field	Number of data items (number of bytes)	RTU mode 8-bit data	Remarks
Start	None		Silent interval
Slave address [H]	1	Arbitrary	Axis number + 1 (01 _H to 10 _H) 00 _H when broadcast is specified
Function code [H]	1	05	Write to a single coil DO.
Start address [H]	2	049F	Program start setting
Changed data [H]	2	Arbitrary	Program start: FF00 _H
Error check [H]	2	CRC (16 bits)	Nomal: 0000 _H .
End	None		Silent interval
Total number of bytes	8		

(3) Response

If the change is successful, the response message will be the same as the query. If invalid data is sent, an exception response (refer to section 7) will be returned, or no response will be returned.

(4) Query sample

Press program of the actuator connected to Axis No. 0 will be exected.

Query (silent intervals are inserted before and after the query)

First time : 01 05 04 9F 00 00 FC D4···Write the 0000H twice to raise the edge

Second time: 01 05 04 9F FF 00 BD 24···Program exected

Field	RTU mode	
	8-bit data	
Start	Silent interval	
Slave address [H]	01	
Function code [H]	05	
Start address [H]	049F	
Changed data [H]	First time: 0000 Second time: FF00 (Send the data twice to raise the edge)	
Error check [H]	First time: FCD4 (in accordance with CRC calculation) Second time: BD24 (in accordance with CRC calculation)	
End	Silent interval	

If the change is successful, the response message will be the same as the query.

5.5 Direct Writing of Control Information (Used function code 06)

5.5.1 Writing to Registers

(1) Function

These queries change (write) data in registers of a slave.

In case of broadcast, data of registers of the same address of all slaves is changed.

[Refer to the details of device controller register 1 in 4.3.2 (5).]

[Refer to the details of device controller register 2 in 4.3.2 (6).]

[Refer to the details of the position number command register and position movement specification register and program number command register (Servo Press) type in 4.3.2 (7).]

(2) Start address list

Address	Symbol	Name	Byte
0D00	DRG1	Device control register 1	2
0D01	DRG2	Device control register 2	2
0D03	POSR	Position number command register/ Program number command register	2
9800	POSR	Position movement command register	2

The registers above are control command registers. The bits of these registers are assigned to input ports by PIO patterns when "PIO/Modbus Switch Status (PMSS) (refer to 4.3.2 (14)) is set to "disable Modbus commands (enable PIO commands). These registers can be rewritten when the Modbus commands are enabled (PIO commands are disabled).

(3) Query format

Specify the address and data of the register whose data is to be changed in the query message. Data to be changed shall be specified as 16-bit data in the changed data area of the query.

Data to be changed shall be specified as 10-bit data in the changed data area of the query.				
Field	Number of data items	RTU mode	Remarks	
	(number of bytes)	8-bit data		
Start	None		Silent interval	
Slave address [H]	1	Arbitrary	Axis number + 1 (01 $_{\rm H}$ to 10 $_{\rm H}$)	
			00 _H when broadcast is	
			specified	
Function code [H]	1	06	Writing to registers	
Start address [H]	2	Arbitrary	Refer to 5.5.1 (2),	
			"Start address list."	
Changed data [H]	2	Arbitrary	4.3.2 (5) to 4.3.2 (7)	
			Refer to List of changed data.	
Error check [H]	2	In accordance with		
		the calculation result		
End	None		Silent interval	
Total number of bytes	8			

(4) Response

If the change is successful, the response message will be the same as the query. If invalid data is sent, an exception response (refer to section 7) will be returned, or no response will be returned.

(5) Query sample

Examples of different operations are shown in [1] to [3] below.

[1] A sample query that turns the servo ON a controller of axis No. 0 on and then executes home return operation is performed.

Query (silent intervals are inserted before and after the query)

First time 01 06 0D 00 10 00 86 A6 --- Servo ON Second time 01 06 0D 00 10 10 87 6A --- Home return

Field	RTU mode
	8-bit data
Start	Silent interval
Slave address [H]	01
Function code [H]	06
Start address [H]	0D00
Changed data [H]	First time: 1000
	Second time: 1010
	(Keep the servo ON bit 1 in cases
	other than when the servo is OFF.)
Error check [H]	First time: 86A6
	(in accordance with CRC calculation)
	Second time: 876A
	(in accordance with CRC calculation)
End	Silent interval

Note 1 Home return is not performed even if 1010_H is sent to change the data while the servo is OFF (refer to the timing chart at startup of each RC controller).

Note 2 To keep the previous status, send the previous status even if there is no change. As in the example above, keep the servo ON bit as 1 at home return as well. If the change is successful, the response message will be the same as the query.

[2] Move to position No. 1 using the position movement specification register (address 9800_H). Before this operation, perform the operation in example [1] above to complete a home return. Query (Silent intervals are inserted before and after the query.) 01 06 98 00 00 01 67 6A

00 00 01 07 07	
Field	RTU mode
	8-bit data
Start	Silent interval
Slave address [H]	01
Function code [H]	06
Start address [H]	9800
Changed data [H]	0001
Error check [H]	676A (in accordance with CRC
	calculation)
End	Silent interval

Note As soon as a position number is written to this register, the actuator starts moving. The CSTR (start signal) is not required.

If the change is successful, the response message will be the same as the query.

[3] Move to position No. 1 using the position number command register (address 0D03_H). Before this operation, perform the operation in example [1] above to complete a home return. Query (Silent intervals are inserted before and after the query.)

First time 01 06 0D 03 00 01 BA A6 --- Specify position No. 1

Second time 01 06 0D 00 10 00 86 A6--- Turn OFF the CSTR (start signal) Third time 01 06 0D 00 10 08 87 60--- Turn ON the CSTR (start signal)

	\		
Field	RTU mode		
	8-bit data		
Start	Silent interval		
Slave address [H]	01		
Function code [H]	06		
Start address [H]	First time: 0D03		
	Second time: 0D00		
	Third time: 0D00		
Changed data [H]	First time: 0001		
	Second time: 1000		
	Third time: 1008		
Error check [H]	First time: BAA6 (in accordance		
	with CRC calculation)		
	Second time: 86A6 (in accordance		
	with CRC calculation)		
	Third time: 8760 (in accordance		
	with CRC calculation)		
End	Silent interval		

Note To keep the previous status, send the previous status even if there is no change. As in the example above, keep the servo ON bit as 1 at other than servo OFF. If the change is successful, the response message will be the same as the query.

5.6 Direct Writing of Positioning Data (Used function code 10)

5.6.1 Numerical Value Movement Command

(1) Function

Specify the target position in PTP positioning operation using absolute coordinates. It is possible to command the actuator to move via numerical values by writing directly to the group of registers at addresses from $9900_{\rm H}$ to $9908_{\rm H}$ (can be set in one message).

Values of all registers, other than the control flag specification register (address: $9908_{\rm H}$), will become effective once the values are sent. If there is no need to change the target position, positioning band, speed, acceleration/deceleration, push-current limiting value and control specification, therefore, each subsequent numerical movement command can be issued simply by writing a desired register that can effect an actual movement command based on changing of the applicable register alone (refer to "Start address list").

(2) Start address list

This group of registers is used to move the actuator by specifying the target position coordinates, positioning band, speed acceleration/deceleration, push-operation current limit control specification flags and so on as numerical values.

Data of start addresses in the list (8 registers in total) can be changed with one transmission.

Date	Data of start addresses in the list (8 registers in total) can be changed with one transmission.						
Address [H]	Symbol	Name	Sign	Able to effect an actual movement command by changing the applicable register alone	Register size	Byte size	Unit
9900	PCMD	Target position specification register	0	0	2	4	0.01 mm
9902	INP	Positioning band specification register		×	2	4	0.01 mm
9904	VCMD	Speed specification register		0	2	4	0.01 mm/sec
9906	ACMD	Acceleration/deceleration specification register		0	1	2	0.01 G
9907	PPOW	Push-current limiting value specification register		0	1	2	%
9908	CTLF	Control flag specification register		× Initialization after each movement	1	2	-

(3) Query format

1 register = 2 bytes = 16-bit data

1 Togistor 2 bytos			
Field	Number of data items	RTU mode	Remarks
	(number of bytes)	8-bit data	
Start		None	Silent interval
Slave address [H]	1	Arbitrary	Axis number + 1 (01 _H to 10 _H)
			00 _H if broadcast is specified
Function code [H]	1	10	Numerical value specification
Start address [H]	2	Arbitrary	Refer to 5.6.1 (2), "Start
			address list"
Number of registers [H]	2	Arbitrary	Refer to 5.6.1 (2), "Start
			address list"
Number of bytes [H]	1	In accordance with	Enter the value twice as large
		the number of	as the number of registers
		registers above	specified above
Changed data 1 [H]	2		Refer to 5.6.1 (2), "Start
			address list "
Changed data 2 [H]	2		Refer to 5.6.1 (2), "Start
			address list"
Changed data 3 [H]	2		Refer to 5.6.1 (2), "Start
			address list"
:	:		:
Error check [H]	2	CRC (16 bits)	
End	None		Silent interval
Total number of bytes	Up to 256		

(4) Response format

When normally changed, the response message responds with a copy of the query message excluding the number of bytes and changed data.

Field	Number of data items (number of bytes)	RTU mode 8-bit data	Remarks
Start	(Hamber of bytes)	None	Silent interval
Slave address [H]	1	Arbitrary	Axis number + 1 (01 _H to 10 _H)
			00 _H if broadcast is specified
Function code [H]	1	10	Numerical value specification
Start address [H]	2	Arbitrary	Refer to 5.6.1 (2), "Start
			address list"
Number of registers [H]	2	Arbitrary	Refer to 5.6.1 (2), "Start
		•	address list"
Error check [H]	2	CRC (16 bits)	
End	None	·	Silent interval
Total number of bytes	8		

(5) Detailed explanation of registers

■ Target position specification register (PCMD)
This register specifies the target position in PTP positioning operation using absolute coordinates. The value of this register is set in units of 0.01 mm in a range of –999999 to 999999 (FFF0BDC1_H^(Note 1) to 000F423F_H). When the absolute coordinate is indicated, operation starts with 0.2mm in front ^(Note 2) of the soft limit setting value as the target position if the setting of the parameter exceeds the soft limit. The actuator will start moving when the lower word of this register (symbol: PCMD, address: 9900_H) is rewritten. In other words, and numerical movement command can be issued simply by writing a target position in this register.

Note 1 To set a negative value, use a two's complement.

Note 2 For a revolution axis set to Index Mode, the soft limit setting value is the target position.

■ Positioning band register (INP)

This register is used in two different ways depending on the type of operation. The first way is the normal positioning operation, where it specifies the allowable difference between the target position and current position to be used in the detection of position complete. The second way is the push-motion operation, where it specifies the push-motion band. The value of this register is set in units of 0.01 mm in a range of 1 to 999999 ($1_{\rm H}$ to 000F423F_H). Whether the normal operation or push-motion operation is specified by the applicable bit in the control flag specification register as explained later.

Changing this register alone will not start actuator movement.

Caution: It is necessary that the positioning band is at or more than the value figured out with the formulas below.

- For Servomotor: Actuator Lead Length ÷ Encoder Pulse
- For Pulse Motor: Actuator Lead Length ÷ Encoder Pulse × 3 Apply the servomotor formula for RCP6 Actuator
- Speed specification register (VCMD)

This register specifies the moving speed. The value of this register is set in units of 0.01 mm/sec in a range of 1 to 999999 ($1_{\rm H}$ to $000F423F_{\rm H}$). If the specified value exceeds the maximum speed set by a parameter, an alarm will generate the moment a movement start command is issued.

The actuator will start moving when this lower word of this register is rewritten. In other words, the speed can be changed while the actuator is moving, simply by rewriting this register.

■ Acceleration/deceleration specification register (ACMD)

This register specifies the acceleration or deceleration. The value of this register is set in units of 0.01 G in a range of 1 to 300 ($1_{\rm H}$ to $012C_{\rm H}$). If the specified value exceeds the maximum acceleration or deceleration set by a parameter, an alarm will generate the moment a movement start command is issued.

<u>The actuator will start moving when this register is rewritten.</u> In other words, the acceleration/deceleration can be changed while the actuator is moving, simply by rewriting this register.

■ Push-current limiting value (PPOW)
Set the current limit during push-motion operation in PPOW. Set an appropriate value by

referring to the table below.

Actuator model name	Pushable range [%]	Settable range (input value) [H]
Actuator other than	20 to 70 ^(Note)	33 to B2
RCS2-RA13R		
RCS2-RA13R	20 to 200	33 to 1FE

(Note) The setting ranges may vary depending on the actuator.

[For details, refer to the IAI catalog or operation manual of each actuator.]

<u>The actuator will start moving when this register is rewritten.</u> In other words, the current limiting value can be changed during push-motion operation simply by rewriting this register. Sample push-motion current setting

• When setting the current to 20% $255(100\%) \times 0.2 (20\%) = 51 \rightarrow 33_H$ (convert into hexadecimal number)

■ Control Flag Specification Register (CTLF) Set the method of operation.

If push-motion operation or incremental operation (pitch feed) is selected, set this register every time a movement command is issued. (This is because the register will be overwritten with the default value every time the actuator moves.)

CTLF bit structure

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
MSB	-	ı	NTC1	NTCO	ı	ı	1	ı	MOD1	MODO	GSL1	GSL0	INC	DIR	PUSH	ı	LSB

Bit 1 (PUSH) = 0: Normal operation (default)

1: Push-motion operation

Bit 2 (DIR) =

- 0: The direction of push-motion operation after completion of approach is defined as the forward direction (default).
- 1: The direction of push-motion operation after completion of approach is defined as the reverse direction.

This bit is used to calculate the direction of final stop position from PCMD. If this bit is set incorrectly, therefore, the target position will deviate from the specified position by a distance corresponding to "2 × INP," as shown in Fig. 5.3 below.

If bit 1 is set to 0, the setting of this bit is invalid.

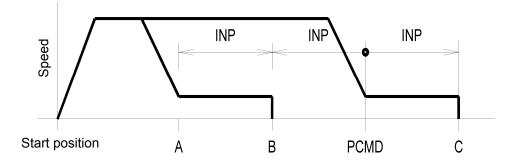


Fig. 5.3 Operating Direction in Push-motion Operation

Bit 3 (INC) = 0: Normal operation (default)

1: Incremental operation (pitch feed)

Setting this bit to 1 will enable the actuator to operate relative to the current position. In this operation, the actuator behaves differently between normal operation and push-motion operation (CTLF bit 1). While the travel is calculated with respect to the target position (PCMD) in normal operation, it is calculated relative to the current position in push-motion operation (when bit 1 = 1).

Here, since relative coordinate calculation involves adding up pulses in mm, followed by conversion, unlike a calculation method involving addition after pulse conversion, "repeated relative movements will not cause position deviation as a result of cumulative errors corresponding to fraction pulses that are not divisible with certain lead settings".

Bit 4 (GSL0), 5 (GSL1) = Refer to the table below.

(ACON-CA/CB/CYB, SCON-CA/CAL/CB/Servo Press Type and RCM-P6AC only)

Do not attempt to change the number from 0 for those other than the models above.

Doing so may cause an error in operation.

GSL1	GSL0	Function
0	0	Select parameter set 0 (default).
0	1	Select parameter set 1
1	0	Select parameter set 2
1 1		Select parameter set 3

You can register a maximum of four servo gain parameter sets consisting of six parameters and move the actuator to each position by selecting a different parameter set every time. [For details, refer to the operation manual for your controller.]

Bit 6 (MOD0), 7 (MOD1) = Refer to the table below.

(ACON-C/CY/SE/CA/CB/CYB, DCON-CA/CB/CYB, PCON-CA/CFA/CB/CFB/CYB, SCON-C/CA/CAL/CB,

ERC3, RACON and RCM-P6AC only, and SCON Servo Press Type is not applicable)

MO	D1	MOD0	Function
C)	0	Trapezoid pattern (default)
C)	1	S-motion
1		0	Primary delay filter
1		1	Cannot be used.

These signals are used to select the acceleration/deceleration pattern characteristics. Set one of the patterns before issuing an actuator movement command. [For details, refer to the operation manual for your controller.]

Bit 12 (NTC0), 13 (NTC1) = Refer to the table below.

(ACON-CA/CB/CYB, SCON-CA/CAL/CB and RCM-P6AC only, and SCON Servo Press Type is not

applicable)

NTC1	NTC0	Function
0	0	Do not use vibration control
		(default).
0	1	Select parameter set 1
1	0	Select parameter set 2
1	1	Select parameter set 3

When vibration control is used, you can register a maximum of three parameter sets and move the actuator to each position by selecting a different parameter set every time. [For details, refer to the operation manual for your controller.]

(6) Example of use

Examples of different operations are shown in [1] to [7] below.

[1] Move by changing the target position. (All data other than the target position are the default values of their respective parameters.)

Conditions: The operation conditions conform to the default speed, default

acceleration/deceleration and default positioning band set by the controller's user parameters. Only the target position is changed to move the actuator.

Supplement: Controller's user parameters

 Default speed (parameter No. 8) → Maximum speed of the applicable actuator as specified in the catalog

 Default acceleration/deceleration (parameter No. 9) → Rated acceleration of the applicable actuator as specified in the catalog

• Default positioning band (parameter No. 10) → Default value = 0.1 mm

Write the target position specification register (9900_H) (Example 1)

Start of movement

(Example 1) Target position: 50 mm

(-::::::	1 - 1 - 3 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -					
Target position [mm]	Positioning band [mm]	Speed [mm/s]	Acceleration/ deceleration [G]	Push [%]	Control flag	
50	Need not be set.					

- Query :01 10 9900 0002 04 0000 1388 38FF
- Response :01 10 9900 0002 6F54
 - --- The query message is copied, except for the number of bytes and new data, and returned as a response.

■ Breakdown of Query Message

Field	RTU mode 8-bit data	Remarks
Start	None	Silent interval
Slave address	01 _H	Axis number + 1
Function code	10 _H	
Start address	9900 _H	The starting address corresponds to the setting of target position specification register 9900 _H .
Number of registers	0002 _H	Addresses 9900 _H to 9901 _H are written.
Number of bytes	04 _H	2 (registers) × 2 = 4 (bytes) → 4 _H
New data 1, 2 (target position)	0000н	All upper bits of the 32-bit data are 0.
Input unit (0.01 mm)	1388 _H	50 [mm] × 100 = 5000 → 1388 _H
Error check	38FF _H	CRC checksum calculation result → 38FF _H
End	None	Silent interval
Total number of bytes	13	

[2] Move by changing the target position. (As well as data other than the target position).

Conditions: Want to move the actuator by changing the target position, speed and acceleration/deceleration every time.

Write the target position specification register (9900_H) through acceleration/deceleration specification register (9906_H) $^{\text{(Example 2)}}$

(Example 2) Target position: 50 mm

Target position [mm]	Positioning band [mm]	Speed [mm/s]	Acceleration/ deceleration [G]	Push [%]	Control flag
50	0.1	100	0.3	Need	not be set.

- Query: 01 10 9900 0007 0E 0000 1388 0000 000A 0000 2710 001E 50CF
- Response : 01 10 9900 0007 AF57
 - --- The query message is copied, except for the number of bytes and new data, and returned as a response.

■ Breakdown of Query Message

■ Dieakdown of Query Message				
Field	RTU mode 8-bit data	Remarks		
Start	None	Silent interval		
Slave address	01 _H	Axis number + 1		
Function code	10 _H			
Start address	9900 _H	The starting address corresponds to the setting of target position specification register 9900 _H .		
Number of registers	0007 _H	Addresses 9900 _H to 9906 _H are written.		
Number of bytes	0E _H	7 (registers) × 2 = 14 (bytes) → E _H		
New data 1, 2	0000 _H	All upper bits of the 32-bit data are 0.		
(target position) Input unit (0.01 mm)	1388 _H	50 [mm] × 100 = 5000 → 1388 _H		
New data 3, 4	0000 _H	All upper bits of the 32-bit data are 0.		
(Positioning band) Input unit (0.01 mm)	000A _H	0.1 [mm] × 100 = 10 → 000A _H		
New data 5, 6 (Speed)	0000 _H	All upper bits of the 32-bit data are 0.		
Input unit (0.01 mm/sec)	2710 _H	100 [mm/s] ×100 = 10000 → 2710 _H		
New data 7 (Acceleration/deceleration) Input unit (0.01 G)	001E _H	0.3 [G] × 100 = 30 → 001E _H		
Error check	50CF _H	CRC checksum calculation result → 50CF _H		
End	None	Silent interval		
Total number of bytes	23			

[3] Change the speed while the actuator is moving.

Conditions: Change the target position, speed and acceleration/deceleration each time the actuator is moved, with the actuator speed changed at a given time during movement.

Write the target position specification register (9900_H) through acceleration/deceleration specification register (9906_H) $^{\text{(Example 2)}}$

Start of movement

Write the speed specification registers (9904_H and 9905_H)^(Example 3)

The actuator continues with the normal operation at the new speed

(Example 3) Change the speed from 100 mm/s to 50 mm/s while the actuator is moving.

_	<u> </u>	, ,					
	Target position [mm]	Positioning band [mm]	Speed [mm/s]	Acceleration/ deceleration [G]	Push [%]	Control flag	
	50 0.1		100 → 50	0.3	Need no	ot be set.	

(1) Start the movement at a speed of 100 mm/s. [Refer to Example [2], "Move by changing the speed" above.]

■ Query: 01 10 9900 0007 0E 0000 1388 0000 000A 0000 2710 001E 50CF

■ Response : 01 10 9900 0007 AF57

(2) Change the speed to 50 mm/s.

Query: 01 10 9904 0002 04 0000 1388 395C

■ Response: 01 10 9904 0002 2E95

--- The query message is copied, except for the number of bytes and new data, and returned as a response.

■ Breakdown of Query Message (Change the speed to 50 mm/s. [Refer to the above example for the

query message used to start the movement at 100 mm/s.])

Field	RTU mode 8-bit data	Remarks
Start	None	Silent interval
Slave address	01 _H	Axis number + 1
Function code	10 _H	
Start address	9904 _H	The starting address corresponds to the setting of target position specification register 9904 _H .
Number of registers	0002 _H	Addresses 9904 _H to 9905 _H are written.
Number of bytes	04 _H	2 (registers) × 2 = 4 (bytes) \rightarrow 4 _H
New data 5, 6 (Speed)	0000 _H	All upper bits of the 32-bit data are 0.
Input unit (0.01 mm/s)	1388 _H	50 [mm/s] × 100 = 5000 → 1388 _H
Error check	395C _H	CRC checksum calculation result → 395C _H
End	None	Silent interval
Total number of bytes	13	

[4] Move in the incremental (pitch feed) mode.

Conditions:

The operation conditions conform to the default speed, default acceleration/deceleration and default positioning band set by the controller's user parameters. Only the pitch width is changed to move the actuator.

Write the target position specification register (9900_H) through control flag specification register (9908_H: Incremental setting) $^{(\text{Example 4})}$

Start of movement

Supplement:

Addresses $9900_{\rm H}$ and $9908_{\rm H}$ alone cannot be changed in a single data transmission. Since all addresses are sequential, send two messages if $9900_{\rm H}$ and $9908_{\rm H}$ alone are changed. If you want to send only one message, write all addresses from $9900_{\rm H}$ to $9908_{\rm H}$.

(Example 4) Move in the incremental mode by setting the pitch to 10 mm.

Pitch [mm]	Positioning band [mm]	Speed [mm/s]	Acceleration/ deceleration [G]	Push [%]	Control flag
10	0.1	100	0.3	0	Incremental (bit3 = 1)

- Query: 01 10 9900 0009 12 0000 03E8 0000 000A 0000 2710 001E 0000 0008 F3A0
- Response: 01 10 9900 0009 2E93
 - --- The query message is copied, except for the number of bytes and new data, and returned as a response.

■ Breakdown of Query Message

Breakdown of Query Message					
Field	RTU mode 8-bit data	Remarks			
Start	None	Silent interval			
Slave address	01 _H	Axis No. 0 + 1			
Function code	10 _H				
Start address	9900 _H	The start address is the target position specification register 9900 _H .			
Number of registers	0009 _H	Specify 9900 _H through 9908 _H as the addresses to be written.			
Number of bytes	12 _H	9 (registers) × 2 = 18 (bytes) \rightarrow 12 _H			
New data 1, 2 (target position)	0000 _H	All upper bits of the 32-bit data are 0.			
Input unit (0.01 mm)	03E8 _H	10 [mm] × 100 = 1000 \rightarrow 03E8 _H			
New data 3, 4 (positioning band)	0000 _H	All upper bits of the 32-bit data are 0.			
Input unit (0.01 mm)	000A _H	0.1 [mm] × 100 = 10 → 000A _H			
New data 5, 6 (speed)	0000 _H	All upper bits of the 32-bit data are 0.			
Input unit (0.01 mm/sec)	2710 _H	100 [mm/s] × 100 = 10000 → 2710 _H			
New data 7 (acceleration/deceleration) Input unit (0.01 G)	001E _H	0.3 [G] × 100 = 30 → 001E _H			
New data 8 (push) Input unit [%]	0000 _H	0 [%] → 0 _H			
New data 9 (control flag)	0008 _H	(Incremental setting) 1000b → 0008 _H			
Error check	F3A0 _H	CRC check calculation result → F3A0 _H			
End	None	Silent interval			
Total number of bytes	27				

[5] Change the speed during incremental movement (pitch feed).

Conditions: Change the target position, speed and acceleration/deceleration each time the actuator is moved, with the positioning band changed at a given time during movement.

Write the target position specification register (9900_H) through control flag specification register (9908_H: Incremental setting) $^{(Example\ 4)}$

Start of incremental movement

Write the speed specification register (9904_H) through control flag specification register (9908_H: Incremental setting) (Example 5)

The actuator continues with the incremental movement at the new speed.

Supplement:

After the control flag specification register (9908_H) is set, the register will return to the default value (0_H: Normal movement) once the actuator starts moving. Accordingly, you must set the control flag specification register (9908_H) and send it again if another incremental or push-motion operation is to be performed.

(Example 5) Change the speed from 100 mm/s to 50 mm/s while the actuator is moving.

Pitch [mm]	Positioning band [mm]	Speed [mm/s]	' I deceleration I		Control flag
10	0.1	100 → 50	0.3	0	Incremental (bit3 = 1)

- (1) Start moving at a speed of 100 mm/s. [Refer to Example [4], "Moving in the incremental (pitch feed) mode" above.]
 - Query: 01 10 9900 0009 12 0000 03E8 0000 000A 0000 2710 001E 0000 0008 F3A0
 - Response : 01 10 9900 0009 2E93
- (2) Change the speed to 50 mm/s.
 - Query: 01 10 9904 0005 0A 0000 1388 001E 0000 0008 BD83
- Response: 01 10 9904 0005 6F57
 - --- The query message is copied, except for the number of bytes and new data, and returned as a response.

■ Breakdown of Query Message (Change the speed to 50 mm/s. [Refer to the above example for the query message used to start the movement at 100 mm/s.])

query message used to sta	it the movement at it	70 Hilli 3.] <i>)</i>
Field	RTU mode 8-bit data	Remarks
Start	None	Silent interval
Slave address	01 _H	Axis No. 0 + 1
Function code	10 _H	
Start address	9904 _H	The start address is the target position specification register 9904 _H .
Number of registers	0005 _H	Specify 9904 _H through 9908 _H as the addresses to be written.
Number of bytes	0A _H	5 (registers) × 2 = 10 (bytes) → A _H
New data 5, 6 (speed)	0000 _H	All upper bits of the 32-bit data are 0.
Input unit (0.01 mm/s)	1388 _H	50 [mm/s] × 100 = 5000 → 1388 _H
New data 7 (acceleration/deceleration) Input unit (0.01 G)	001E _H	0.3 [G] × 100 = 30 → 001E _H
New data 8 (push) Input unit [%]	0000 _H	0 [%]→ 0 _H
New data 9 (control flag)	0008 _H	(Incremental setting) 1000b→0008 _н
Error check	BD83 _H	CRC check calculation result → BD83 _н
End	None	Silent interval
Total number of bytes	19	

Modbus

[6] Perform a push-motion operation. (changing pushing force during push-operation)

Conditions: Perform push-motion operation by changing the push force at a desired time while the actuator is pushing the work part.

Write the target position specification register (9900_H) through control flag specification register (9908_H: Push-motion setting) $^{(Example\ 6)}$

Start push-motion operation

Write the push-current limit specification register (9907_H) through control flag specification register (9908_H: Push-motion setting) $^{(Example 7)}$

The actuator continues with the push-motion operation with the new push force

(Example 6) Perform a push-motion operation for 20 mm from the 50-mm position at a current-limiting value of 70%.

Target position [mm]	Positioning band [mm]	Speed [mm/s]	Acceleration/ deceleration [G]	Push [%]	Control flag
50	20	100	0.3	70	Push-motion operation (bit1 = 1, bit2 = 0, 1)

- Query: 01 10 9900 0009 12 0000 1388 0000 07D0 0000 2710 001E 00B2 0006 C377
- Response: 01 10 9900 0009 2E93
 - --- The query message is copied, except for the number of bytes and new data, and returned as a response.

■ Breakdown of Query Message

■ Breakdown of Query Message					
Field	RTU mode 8-bit data	Remarks			
Start	None	Silent interval			
Slave address	01 _H	Axis No. 0 + 1			
Function code	10 _H				
Start address	9900 _H	The start address is the target position specification register 9900 _H .			
Number of registers	0009 _H	Specify 9900 _H through 9908 _H as the addresses to be written.			
Number of bytes	12 _H	9 (registers) × 2 = 18 (bytes) \rightarrow 12 _H			
New data 1, 2 (target position)	0000 _H	All upper bits of the 32-bit data are 0.			
Input unit (0.01 mm)	1388 _H	50 [mm] × 100 = 5000 → 1388 _H			
New data 3, 4 (positioning band)	0000 _H	All upper bits of the 32-bit data are 0.			
Input unit (0.01 mm)	07D0 _H	20 [mm] × 100 = 2000 \rightarrow 07D0 _H			
New data 5, 6 (speed)	0000 _H	All upper bits of the 32-bit data are 0.			
Input unit (0.01 mm/sec)	2710 _H	100 [mm] × 100 = 10000 → 2710 _H			
New data 7 (acceleration/deceleration) Input unit (0.01 G)	001E _H	0.3 [G] × 100 = 30 → 001E _H			
New data 8 (push) Input unit [%]	00B2 _H	70 [%] → B2 _H			
New data 9 (control flag)	0006 _H	(Push setting) 0110b → 0006 _н			
Error check	C377 _H	CRC check calculation result → C377 _H			
End	None	Silent interval			
Total number of bytes	27				

(Example 7) Change the push current limit from 70% to 50% during a push-motion operation.

Target position [mm]	Positioning band [mm]	Speed [mm/s]	Acceleration/ deceleration [G]	Push [%]	Control flag
50	20	100	0.3	70 → 50	Push-motion operation (bit1 = 1, bit2 = 1)

- Query: 01 10 9907 0002 04 007F 0006 C5C5
- Response : 01 10 9907 0002 DE95
 - --- The query message is copied, except for the number of bytes and new data, and returned as a response.

■ Breakdown of Query Message

Breakdown of Query Message					
Field	RTU mode 8-bit data	Remarks			
Start	None	Silent interval			
Slave address	01 _H	Axis No. 0 + 1			
Function code	10 _H				
Start address	9907 _H	The start address is the target position specification register 9907 _H .			
Number of registers	0002 _H	Specify 9907 _H through 9908 _H as the addresses to be written.			
Number of bytes	04 _H	2 (registers) × 2 = 4 (bytes) → 4 _H			
New data 8 (push) Input unit [%]	007F _H	50 [%]→7F _H			
New data 9 (control flag)	0006 _H	(Push setting) 0110b→0006 _H			
Error check	C5C5 _H	CRC check calculation result → C5C5 _H			
End	None	Silent interval			
Total number of bytes	13				

[7] Note (changing positioning band during movement)

The positioning band cannot be changed while the actuator is moving.

Conditions:

Change the target position, speed and acceleration/deceleration each time the actuator is moved, with the positioning band changed at a given time during movement.

(Cannot be changed. If data is written, the data is reflected in the next positioning.)

Write the target position specification register (9900_H) through acceleration/deceleration specification register (9906_H)

Start normal operation

Write the positioning band specification registers (9902_H and 9903_H)

The actuator continues with the normal operation at the original positioning band setting

Supplement:

Writing the positioning band specification registers alone cannot effect an actual movement command.

Therefore, the data changed by writing the positioning band specification registers (9902_H and 9903_H) will become effective when the next movement command is executed.

5.6.2 Writing Position Table Data

(1) Function

Position table data can be changed using this query.

Every time an access is made to the start address list (address +0000_H to +000E_H), it is read out of the non-volatile memory in the unit of 1 position data, and gets stored to the non-volatile memory (EEPROM, FeRAM) after the writing is executed. Check the limit for number of writing from the basic specifications described in an instruction manual for each controller.

* The EEPROM has a rewrite life of approx. 100, 000 times due to device limitations. If the position table data is written frequently, the EEPROM will reach its rewrite life quickly and a failure may occur. Accordingly, be careful not to let unexpected loops, etc., occur due to the logics on the host side. There is no limit to number of writing for FeRAM.

(2) Start address list

In a query input, each address is calculated using the formula below: $1000_H + (16 \times Position number)_H + Address (Offset)_H$

Example Change the speed command register for position No. 200 $1000_H + (16 \times 200 = 3200)_H + 4_H$

 $= 1000_{H} + C80_{H} + 4_{H}$

= 1C84_H

"1C84" becomes the input value for the start address field of this query.

Note The maximum position number varies depending on the controller model and the PIO pattern currently specified.

■ Position data change registers

Address	Symbol	Name	Sign	Register size	Byte size	Input unit
+0000	PCMD	Target position	0	2	4	0.01 mm
+0002	INP	Positioning band		2	4	0.01 mm
+0004	VCMD	Speed command		2	4	0.01 mm/sec
+0006	ZNMP	Individual zone boundary +	0	2	4	0.01 mm
+0008	ZNLP	Individual zone boundary -	0	2	4	0.01 mm
+000A	ACMD	Acceleration command		1	2	0.01 G
+000B	DCMD	Deceleration command		1	2	0.01 G
+000C	PPOW	Push-current limiting value		1	2	%
+000D	LPOW	Load current threshold		1	2	%
+000E	CTLF	Control flag specification		1	2	

 ^{*} Addresses starting with "+" indicate offsets.

Note RCP6S, RCM-P6PC, RCM-P6AC and RCM-P6DC cannot write in to this address. They return an exceptional response.

(3) Query format 1 register = 2 bytes = 16-bit data

r register – 2 bytes -	10 bit data		
Field	Number of data items (Number of bytes)	RTU mode 8-bit data	Remarks
Start	None		Silent interval
Slave address [H]	1	Arbitrary	Axis number + 1 (01 _H to 10 _H) 00 _H when broadcast is specified
Function code [H]	1	10	Numerical value command
Start address [H]	2	Arbitrary	Refer to 5.6.2 (2), "Start address list."
Number of registers [H]	2	Arbitrary	Refer to 5.6.2 (2), "Start address list."
Number of bytes [H]	1	In accordance with the above registers	A value corresponding to twice the number of registers specified above is input.
Changed data 1 [H]	2		Refer to "5.6.2 (2) Start address list."
Changed data 2 [H]	2		Refer to "5.6.2 (2) Start address list."
Changed data 3 [H]	2		Refer to "5.6.2 (2) Start address list."
:	:		:
Error check [H]		CRC (16 bits)	
End	None		Silent interval
Total number of bytes	Up to 256		

(4) Response format

If the change is successful, a response message that is effectively a copy of the query message,

except for the byte count and new data, will be returned.

Field	Number of data items (Number of bytes)	RTU mode 8-bit data	Remarks
Start	None		Silent mode
Slave address [H]	1	Arbitrary	Axis number + 1 (01 $_{H}$ to 10 $_{H}$)
			00 _H when broadcast is specified
Function code [H]	1	10	Numerical value command
Start address [H]	2	Arbitrary	Refer to 5.6.2 (2), "Start address list."
Number of registers [H]	2	Arbitrary	Refer to 5.6.2 (2), "Start address list."
Error check [H]	2	CRC (16 bits)	
End	None		Silent interval
Total number of bytes	8		

(5) Detailed explanation of registers

■ Target Position (PCMD)

This register specifies the target position using absolute coordinates or by an relative distance. The value of this register is set in units of 0.01 mm in a range of -999999 to 999999 (FFF0BDC1_H (Note 1) to 000F423F_H). When the absolute coordinate is indicated, operation starts with 0.2mm in front (Note 2) of the soft limit setting value as the target position if the setting of the parameter exceeds the soft limit. The actuator will start moving when the lower word of this register (symbol: PCMD, address: 9900_H) is rewritten. In other words, a numerical movement command can be issued simply by writing a target position in this register.

Note 1 To set a negative value, use a two's complement.

Note 2 For a revolution axis set to Index Mode, the soft limit setting value is the target position.

■ Positioning band Specification Register (INP)

This register is used in two different ways depending on the type of operation. The first way is the normal positioning operation, where it specifies the allowable difference between the target position and current position to be used in the detection of position complete. The second way is the push-motion operation, where it specifies the push-motion band. The value of this register is set in units of 0.01 mm in a range of 1 to 999999 ($1_{\rm H}$ to 000F423F $_{\rm H}$). Whether the normal operation or push-motion operation is specified by the applicable bit in the control flag specification register as explained later.

Caution: It is necessary that the positioning band is at or more than the value figured out with the formulas below.

- For Servomotor: Actuator Lead Length + Encoder Pulse
- For Pulse Motor: Actuator Lead Length ÷ Encoder Pulse × 3

Apply the servomotor formula for RCP6 Actuator

■ Speed Specification Register (VCMD)

This register specifies the moving speed in positioning. The value of this register is set in units of 0.01 mm/sec in a range of 1 to 999999 (1_H to $000F423F_H$). If the specified value exceeds the maximum speed set by a parameter, an alarm will generate the moment a movement start command is issued.

■ Individual Zone Boundaries ± (ZNMP, ZNLP)

These registers output zone signals that are effective only during positioning, separately from the zone boundaries set by parameters.

Set in ZNMP the positive zone signal output boundary expressed using absolute coordinates, and set the negative zone signal output boundary in ZNLP. The corresponding bit in the zone register remains ON while the current position is within these positive and negative boundaries. The value of this register is set in units of 0.01 mm, and in a range of -999999 to 999999 (FFF0BDC1_H^{(Note} to 000F423F_H) for both registers. However, ZNMP must be greater than ZNLP.

Set the same value in both ZNMP and ZNLP to disable the individual zone output. (Note) To set a negative value, use a two's complement.

■ Acceleration specification register (ACMD)

This register specifies the acceleration during positioning. The value of this register is set in units of 0.01~G in a range of 1 to $300~(1_H~to~012C_H)$. If the specified value exceeds the maximum acceleration set by a parameter, an alarm will generate the moment a movement start command is issued.

■ Deceleration specification register (DCMD)

This register specifies the deceleration during positioning. The value of this register is set in units of 0.01~G in a range of 1 to $300~(1_H$ to $012C_H$). If the specified value exceeds the maximum deceleration set by a parameter, an alarm will generate the moment a movement start command is issued.

■ Push-current limiting value (PPOW)

Set the current limit during push-motion operation in PPOW. Set an appropriate value by referring to the table below.

Actuator model name	Pushable range [%]	Settable range (input value) [H]
Actuator other than	20 to 70 ^(Note)	33 to B2
RCS2-RA13R		
RCS2-RA13R	20 to 200	33 to 1FE

Note The setting ranges may vary depending on the actuator.

[For details, refer to the IAI catalog or operation manual of each actuator.]

Sample push-motion current setting

- When setting the current to 20% 255 (100%) × 0.2 (20%)= 51 \rightarrow 33_H (Convert into hexadecimal number)
- Load Output Current Threshold (LPOW)

 To perform load output judgment, set the current threshold in LPOW. Set an appropriate value according to the actuator used, just like the push current limit (PPOW). If load output judgment is not performed, set 0.
- Control Flag Specification Register (CTLF) [Refer to the control flag specification register in 5.6.1 (5).]

(6) Sample query

A sample query that rewrites all data of position No. 12 of axis No. 0 is shown below. Axis No. 0

Target position [mm]	Positioning band [mm]	Speed [mm/sec]	Individual zone boundary+ [mm]	Individual zone boundary- [mm]	Acceleration [G]	Deceleration [G]	Push [%]	Threshold	Movement control
100	0.1	200	60	40	0.01	0.3	0	0	Normal movement

■ Query (silent intervals are inserted before and after the query)
01 10 10 C0 00 0F 1E 00 00 27 10 00 00 0A 00 00 4E 20 00 00 17 70 00 00 0F A0 00 01
00 1E 00 00 00 00 00 00 1E

- Received response 01 10 10 C0 00 0F 84 F1
 - --- The query message is copied, except for the number of bytes and new data, and returned as a response.

■ Breakdown of Query Message

Dieakdown of Query Message					
Field	RTU mode 8-bit data	Remarks			
Start	None	Silent interval			
Slave address	01 _H	Axis No. 0 + 1			
Function code	10 _H				
Start address	10C0 _H	The start address is the target position specification register 10C0 _H for position No. 12. *1			
Number of registers	000F _H	Total 15 registers of register symbols PCMD to CTLF are specified to be written.			
Number of bytes	1E _H	15 (registers) × 2 = 30 (bytes) → 1E _H			
New data 1, 2 (target position)	0000 _H	All upper bits of the 32-bit data are 0.			
Input unit (0.01 mm)	2710 _H	100 (mm) × 100 = 10000 → 2710 _H			
New data 3, 4 (positioning band)	0000 _H	All upper bits of the 32-bit data are 0.			
Input unit (0.01 mm)	000A _H	0.1 (mm) × 100 = 10 → 000A _H			
New data 5, 6 (speed)	0000 _H	All upper bits of the 32-bit data are 0.			
Input unit (0.01 mm/sec)	4E20 _H	200 (mm/sec) × 100 = 20000 → 4E20 _H			

Continue to the next page

Continued from the previous page

Continued from the previous page					
Field	RTU mode 8-bit data	Remarks			
New data 7, 8 (individual zone boundary +)	0000 _H	All upper bits of the 32-bit data are 0.			
Input unit (0.01 mm)	1770 _H	60 (mm) × 100 = 6000 → 1770 _H			
New data 9, 10 (individual zone boundary -)	0000 _H	All upper bits of the 32-bit data are 0.			
Input unit (0.01 mm)	0FA0 _H	40 (mm) × 100 = 4000 → 0FA0 _H			
New data 11 (acceleration) Input unit (0.01 G)	0001 _H	0.01 (G) × 100 = 1 → 0001 _H			
New data 12 (deceleration) Input unit (0.01 G)	001E _H	0.3 (G) × 100 = 30 → 001E _H			
New data 13 (push) Input unit (%)	0000 _H	0 (%) → 0 _H			
New data 14 (threshold) Input unit (%)	0000 _H	0 (%) → 0 _H			
New data 15 (control flag)	0000 _H	All bits are 0, because normal operation is specified. $0000_b \rightarrow 0000_H$			
Error check	701E _H	CRC check calculation result → 701E _H			
End		Silent interval			
Total number of bytes	39				

*1) Calculation of start address

In the example, all data of position No. 12 is changed. Accordingly, the target position address of position No. 12 is set in the start address field of this query.

$$1000_{H}$$
 + $(16 \times 12 = 192)_{H}$ + 0_{H}

 $^{= 1000}_{H} + C0_{H} + 0_{H}$

 $^{= 10}C0_{H}$

[&]quot;10C0" becomes the input value for the start address field of this query.

Shown below are the screens of IAI's PC software for RC controllers, indicating how position data changes before and after a query message is sent.

(Note) It is not possible to connect both PC software and Modbus at the same time. The example below shows the case when switching the connection between PC software and Modbus.

■ Before a query is sent

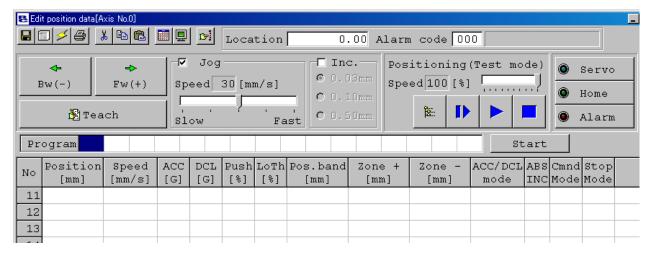
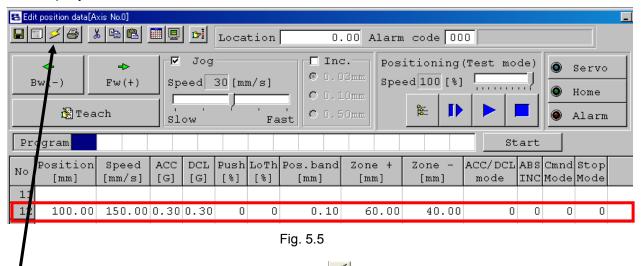



Fig. 5.4

■ After a query is sent

* The overwritten data is not displayed until the button is pressed or the Edit Position Data window is reopened.

6 Modbus ASCII

Note ROBONET and RCP6S Series + PLC Connection Unit are not applicable for ASCII Mode.

[RCP6S Series: RCP6S, RCM-P6PC, RCM-P6AC, RCM-P6DC]

6.1 Message Frames (Query and Response)

Start	Address	Function code	Data	LRC Check	End
1 character	2 characters	2 characters	n characters	2 characters	2 characters
1 byte	2 bytes	2 bytes	nx2 bytes	2 bytes	2 bytes

^{* 1} character is expressed with 1 byte (2 characters) in ASCII code (refer to 6.2 "ASCII Code Table").

(1) Start

The Start field is equivalent to the header field and ":" (colon) is used in the ASCII mode. It is expressed as $3A_H$ in ASCII code.

(2) Address

This field specifies the addresses of connected RC controllers (01_H to 10_H). Set Address = axis number + 1

in ASCII code. Example) The axis number/is 30_H32_H.

<u>/ì</u>\

Note: The address is not equal to the corresponding axis number: be careful when making settings.

(3) Function

The table below summarizes the function codes and functions that can be used with RC controllers.

Code		Name	Function	
[Hex]	(ASCII)	ivaille	Function	
01 _H	30 _H 31 _H .	Read Coil Status	Read coils/DOs.	
02 _H	30 _H 32 _H .	Read Input Status	Read input statuses/DIs.	
03_{H}	30 _H 33 _H .	Read Holding Registers	Read holding registers.	
04 _H	30 _H 34 _H .	Read Input Registers	Read input registers.	
05 _H	30 _H 35 _H .	Force Single Coil	Write one coil/DO.	
06 _H	30 _H 36 _H .	Preset Single Register	Write holding register.	
07 _H	30 _H 37 _H .	Read Exception Status	Read exception statuses.	
0F _H	30 _H 46 _H .	Force Multiple Coils	Write multiple coils/DOs at once.	
10 _H	31 _H 30 _H .	Preset Multiple Registers	Write multiple holding registers at once.	
11 _H	31 _H 31 _H .	Report Slave ID	Query a slave's ID.	
17 _H	31 _H 37 _H .	Read / Write Registers	Read/write registers.	

- * This manual uses \(\square\) mark function codes.
- * The ROBONET gateway and RCP6S Series + PLC Connection Unit do not support the ASCII mode.

[RCP6S Series: RCP6S, RCM-P6PC, RCM-P6AC, RCM-P6DC]

(4) Data

Use this field to add data specified by a function code. It is also allowed to omit data if data addition is not specified by function codes.

(5) LRC Check

In the ASCII mode, an error check field conforming to the LRC method is automatically (*) included in order to check the message content excluding the first colon and CR/LF. Moreover, checking is carried out regardless of the parity check method of individual characters in messages.

The LRC field consists of two ASCII code characters. The LRC value is calculated by the sender that appends the LRC field to the message. The recipient recalculates the LRC value while receiving the message, and compares the calculation result against the actual value received in the LRC field. If the two values do not match, an error will generate.

- * The host side must create a function that calculates the LRC value.
 - <LRC check calculation example> area is the target range of error check
 In case the message query is as follows: [':'] ["01] ["05"] ["040B"] ["0000"] [LRC] [CR] [LF]
 - [1] First, add all numerical values in units of bytes. Total value added = $01_H + 05_H + 04_H + 00_H + 00_H = 15_H$
 - [2] Next, an 8-bit-based 2's complement of this value is computed, yielding the value FFFFFEB_H. The LRC value is obtained by extracting the least significant byte. Thus the LRC value is "EB."

(6) End

This is equivalent to the trailer, and use "CR/LF" in the ASCII mode. In ASCII code, 00_H and 0A_H are displayed.

(7) Broadcast

It is possible to send a query containing same data to all connected axes by specifying the address 00_H . In this case, no response is returned from the RC controllers.

Note, however, that the function codes etc. that can be used with this function are limited; care should be taken when using the function. Please check the function codes that can be used in 6.3, "List of ASCII Mode Queries."

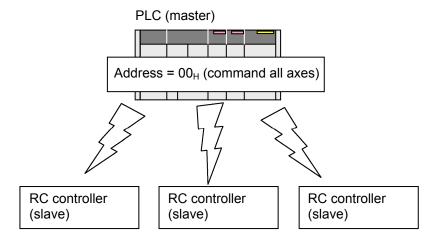
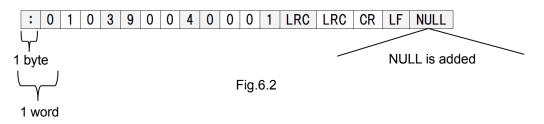


Fig.6.1



- The sizes of send/receive buffers are set to 256 bytes for the RC controllers, respectively. Make sure to keep the messages small enough such that messages sent from the host side do not exceed the receive buffer and data requests do not exceed send buffer.
- If the number of data items results in an odd number of bytes, caution must be taken for the reasons below.

The data is communicated on a byte-by-byte basis in Modbus communication.

In many cases, however, the data is treated in units of 2 bytes on the master side. If the number of data items becomes odd, 00_H (i.e., NULL) may be added automatically at the end of a packet in some cases.

RC controllers are configured such that the Modbus RTU is basically used as the interface on the master side. Since the controller normally stands by for reception in the RTU mode, and then makes judgment whether the code is ASCII or not after the reception, it cannot manage header/delimiter fields. For this reason, communication in the ASCII mode is disabled in such cases. Example: In case of querying output ports of axis No. 0

6.2 ASCII Code Table

ASCII Code (numbers and characters enclosed with \square are converted and sent.)

Most significant Least 3bit significant 4bit	0	1	2	3	4	5	6	7
0	NUL	DLE	SP	0	@	Р		р
1	SOH	DC1	!	1	Α	Q	а	q
2	STX	DC2	44	2	В	R	b	r
3	ETX	DC3	#	3	С	S	С	S
4	EOT	DC4	\$	4	D	Т	d	t
5	ENQ	NAK	%	5	E	U	e	u
6	ACK	SYN	&	6	F	٧	f	٧
7	BEL	ETB	4	7	G	W	g	w
8	BS	CAN	(8	Н	Х	h	х
9	HT	EM)	9	I	Y	i	у
Α	LF	SUB	*	:	J	Z	j	Z
В	VT	ESC	+	;	K	[k	{
С	FF	IS4	,	<	L	¥	I	I
D	CR	IS4	_	=	М]	m	}
Е	SO	IS4		>	N	^	n	
F	SI	IS4	/	?	0	_	0	DEL

• NUL: Null character

• ETX: End of text

ACK: Acknowledgment

HT: Horizontal tab

• FF: Form feed

• SI: Shift in

• NAC: Negative acknowledgment

• CAN: Cancel

• ESC: Escape

SOH: Start of header

EOT: End of

transmission

• BEL: Bell

• LF: Line feed

• CR: Carriage return

DLE: Data link escape

• SYN: Synchronized characters

• EM: End of media

• SP: Space

· STX: Start of text

ENQ: Enquiry

• BS: Backspace

• VT: Vertical tab

• SO: Shift out

• DC*: Device control *

• ETB: End of

transmission block

• DEL: Delete

Example: "1" is 31_H in ASCII code and "00110001" in binary number presentation.

6.3 List of ASCII Mode Queries

FC: Function code

PIO: Parallel I/O (input/output of an I/O connector)

The circle marks in the Simultaneous use with PIO and Broadcast columns indicate queries that can be used simultaneously with PIO and in broadcast communication, respectively.

FC	Function	Symbol	Function	Combination with PIO	Broad- cast	Page
03	Multiple FC03 register reading	None	This function can be used to successively read multiple registers that use function 03.	0		215
03	Alarm detail description reading	ALA0 ALC0 ALT0	This bit reads the alarm codes, alarm addresses, detail codes and alarm occurrence time (passed time) that lately occurred.	0		219
03	Position data reading	Refer to right	This bit reads the indicated number in the position data. (PCMD, INP, VCMD, ZNMP, ZNLP, ACMD, DCMD, PPOW, LPOW, CTLF)	0		221
03	Total moving count reading	TLMC	This bit reads the Total moving count.	0		224
03	Total moving distance reading	ODOM	This bit reads the Total moving distance in units of 1 m.	0		226
03	Present time reading	TIMN	This bit reads the present time. (PCON-CA/CFA/CB/CFB, ACON-CA/CB, DCON-CA/CB and SCON-CA/CAL/CB only)	0		228
03	Total FAN driving time reading	TFAN	This bit reads the Total FAN driving time. (PCON-CFA/CFB, SCON-CAL, SCON-CB [400W or more] only)	0		231
03	Current position reading	PNOW	This function reads the current actuator position in units of 0.01 mm.	0		233
03	Present alarm code reading	ALMC	This function reads alarm codes that are presently detected.	0		235
03	I/O port input status reading	DIPM	This function reads the ON/OFF statuses of PIO input ports.	0		237
03	I/O port output status reading	DOPM	This function reads the ON/OFF statuses of PIO output ports.	0		242
03	Controller status signal reading 1 (device status 1) (Operation preparation status)	DSS1	This function reads the following 14 statuses: [1] Emergency stop [2] Safety speed enabled/disabled [3] Controller ready [4] Servo ON/OFF [5] Missed work part in push-motion operation [6] Major failure [7] Minor failure [8] Absolute error [9] Brake [10] Pause [11] Home return completion [12] Position complete [13] Load cell calibration status	0		247

FC	Function	Symbol	Function	Combination with PIO	Broad- cast	Page
03	Controller status signal reading 2 (device status 2) (Operation preparation 1 status)	DSS2	This function reads the following 15 statuses: [1] Enable [2] Load output judgment (check-range load current threshold) [3] Torque level (load current threshold) [4] Teaching mode (normal/teaching) [5] Position data load (normal/complete) [6] Jog+ (normal/command active) [7] Jog- (normal/command active) [8] Position complete 7 [9] Position complete 6 [10] Position complete 5 [11] Position complete 4 [12] Position complete 3 [13] Position complete 2 [14] Position complete 0	0		249
03	Controller status signal reading 3 (extended device status) (Operation preparation 2 status)	DSSE	 This function reads the following 9 statuses: [1] Emergency stop (emergency stop input port) [2] Motor voltage low [3] Operation mode (AUTO/MANU) [4] Home return [5] Push-motion operation in progress [6] Excitation detection [7] PIO/Modbus switching [8] Position-data write completion status [9] Moving 	0		251
03	Controller status signal reading 4 (System status) (Controller status)	STAT	This function reads the following 7 statuses: [1] Automatic servo OFF [2] Nonvolatile memory being accessed [3] Operation mode (AUTO/MANU) [4] Home return completion [5] Servo ON/OFF [6] Servo command [7] Drive source ON (normal/cut off)	0		253
03	Current speed reading	VNOW	This function reads the current actuator speed in units of 0.01 mm/sec.	0		255
03	Current ampere reading	CNOW	This function reads the motor-torque current command value of the actuator in mA.	0		257
03	Deviation reading	DEVI	This function reads the deviation over a 1-ms period in pulses.	0		259
03	Total power on time reading	STIM	This function reads the total time in msec since the controller power was turned on.	0		261
03	Special input port input signal status reading (Sensor input status)	SIPM	This function reads the following 8 statuses: [1] Command pulse NP [2] Command pulse PP [3] Mode switch [4] Belt breakage sensor [5] Home check sensor [6] Overtravel sensor [7] Creep sensor [8] Limit sensor	0		263

FC	Function	Symbol	Function	Combination with PIO	Broad- cast	Page
03	Zone status query	ZONS	 This function reads the following 6 statuses: [1] LS2 (PIO pattern solenoid valve mode [3-point type] [2] LS1 (PIO pattern solenoid valve mode [3-point type] [3] LS0 (PIO pattern solenoid valve mode [3-point type] [4] Position zone [5] Zone 2 [6] Zone 1 	0		265
03	Positioning completed position number reading Executed program number register reading	POSS	This function reads the following next statuses: Complete position number bit 256 to 1 Executed program number bit 32 to1	. 0		267
03	Controller status signal reading 5	SSSE	This function reads the following 2 statuses: [1] Cold start level alarm occurred/not occurred [2] RTC (calendar) function used/not used (ERC3, PCON-CA/CFA/CB/CFB, ACON-CA/CB and DCON-CA/CB only)	0		269
03	Current load reading	FBFC	The current measurement on the load cell is read in units of 0.01 N.	0		271
03	Press program status register reading	PPST	This function reads the following 12 statuses: [1] Waiting [2] While in returning operation [3] While in depression operation [4] Pressurize during the stop [5] While in pressurizing operation [6] While in probing operation [7] While in approaching the operation [8] Program home return during the movement [9] Program alarm [10] Program finished in normal condition [11] While in executing program [12] Program home position	0		279
03	Press program judgement status register	PPJD	This function reads the following 6 statuses: [1] Load judgement NG [2] Load judgement OK [3] Position (distance) judgement NG [4] Position (distance) judgement OK [5] Total judgement NG [6] Total judgement OK	0		281
05	Safety speed mode switching	SFTY	This function issues a command to enable/disable the safety speed.		0	284
05	Servo ON/OFF	SON	This function issues a command to turn the servo ON/OFF.		0	286

Modbus

FC	Function	Symbol	Function	Combination with PIO	Broad- cast	Page
05	Alarm reset	ALRS	This function issues a command to reset alarms/cancel the remaining travel.		0	288
05	Brake forced release	BKRL	This function issues a command to forcibly release the brake.		0	290
05	Pause	STP	This function issues a pause command.		0	292
05	Home return	HOME	This function issues a home return operation command.		0	294
05	Positioning start command	CSTR	This signal starts a position number specified movement.		0	296
05	Jog/inch switching	JISL	This function switches between the jogging mode and the inching mode		0	298
05	Teaching mode command	MOD	This function switches between the normal mode and the teaching mode		0	300
05	Position data load	TEAC	This function issues a current position load command in the teaching mode.		0	302
05	Jog+ command	JOG+	This function issues a jogging/inching command in the direction opposite home.		0	304
05	Jog- command	JOG-	This function issues a jogging/inching command in the direction of home.		0	306
05	Position number command 0 to 7	ST0 to ST7	This function specifies position numbers effective only in the solenoid valve mode. The actuator can be operated with this command alone.		0	308
05	Load cell calibration command	CLBR	Calibrate the load cell.		0	310
05	PIO/Modbus switching setting	PMSL	This function issues a command to enable/disable PIO external command signals.		0	312
05	Deceleration stop	STOP	This function can decelerate the actuator to a stop.		0	314
05	Axis operation permission	ENMV	Setting can be made whether to permit the operation of the connected axes.		0	316
05	Program home return movement	PHOM	Movement is made to the program home position set in each press program.		0	318
05	Search stop	SSTP	It can be stopped after search operation is complete.		0	320
05	Program compulsoly finish	FPST	It compulsoly finishes the press program.		0	322
05	Program exected	PSTR	Press program execute it.		0	324
06	Direct writing of control information		Change (write) the content of the controller's register.		0	326
10	Numerical value movement command	None	This function can be used to send the target position, positioning band, speed, acceleration/deceleration, push, and control setting in a single message to operate the actuator. Normal movement, relative movement and push-motion operation are supported.		0	330
10	Write Position data table	None	This function can be used to change all data of the specified position number for the specified axis.		0	348
Indeter- minable	Exception response	None	This response will be returned when the message contains invalid data.			357

6.4 Data and Status Reading (Used function code 03)

6.4.1 Reading Consecutive Multiple Registers

*) Please refer to "6.2 ASCII Code Table."

(1) Function

These registers read the contents of registers in a slave.

This function is not supported in broadcast communication.

(2) Start address list

With RC Series controllers, the sizes of send/receive buffers are set to 256 bytes, respectively. Accordingly, a maximum of 123 registers worth of data consisting of 247 bytes (one register uses two bytes), which is 9 bytes (header + slave address + function code + error check + trailer) of 256 bytes, can be queried in the ASCII mode. In other words, all of the data listed below can be queried in a single communication. It is also available to refer to multiple registers of the addresses in a row at one time of sending and receiving.

Address [H]	Symbol	Name	Sign	Register size	Byte
0500	ALA0	Alarm detail code		1	2
0501	ALA0	Alarm address		1	2
0502	-	Always 0	-	-	2
0503	ALC0	Alarm code		1	2
0504,0505	ALT0	Alarm occurrence time		2	4
1000 to	PCMD	Target position	0	2	4
3FFF	INP	Positioning band	0	2	4
	VCMD	Speed command		2	4
(Note) Assignment is	ZNMP	Individual zone boundary +	0	2	4
made in order	ZNLP	Individual zone boundary -	0	2	4
from small	ACMD	Acceleration command		1	2
position numbers.	DCMD	Deceleration command		1	2
	PPOW	Push-current limiting value		1	2
	LPOW	Load current threshold		1	2
	CTLF	Control flag specification		1	2
8400, 8401	TLMC	Total moving count (Note1)		2	4
8402, 8403	ODOM	Total moving distance (Note1)		2	4
841E, 841F	TIMN	Present time (SCON-CA/CAL/CB only)		2	4
8420, 8421	TIMN	Present time (PCON-CA/CFA/CB/CFB only)		2	4
8422, 8423	TIMN	Present time (ACON-CA/CB and DCON-CA/CB only)		2	4
842A, 842B	TFAN	Total FAN driving time (SCON-CAL, SCON-CB [400W or more] only)		2	4
842E, 842F	TFAN	Total FAN driving time (PCON-CFA/CFB only)		2	4

Modbus

Address [H]	Symbol	Name	Sign	Register size	Byte
9000, 9001	PNOW	Current position monitor	0	2	4
9002	ALMC	Present alarm code query		1	2
9003	DIPM	Input port query		1	2
9004	DOPM	Output port monitor query		1	2
9005	DSS1	Device status query 1		1	2
9006	DSS2	Device status query 2		1	2
9007	DSSE	Expansion device status query		1	2
9008, 9009	STAT	System status query		2	4
900A, 900B	VNOW	Current speed monitor	0	2	4
900C, 900D	CNOW	Current ampere monitor	0	2	4
900E, 900F	DEVI	Deviation monitor	0	2	4
9010, 9011	STIM	System timer query		2	4
9012	SIPM	Special input port query		1	2
9013	ZONS	Zone status query		1	2
9014	POSS	Positioning complete position No. status query Exected program No. register (Servo Press)		1	2
9015	SSSE	Expansion system status register		1	2
901E	FBFC	Current load monitor	0	2	4
9020	OLLV	Overload level monitor		1	2
9022	ALMP	Press program alarm code		1	2
9023	ALMP	Alarm generated press program No.		1	2
9024	PPST	Pres program status register		1	2
9025	PPJD	Press program judgements status register		1	2

Note 1 PCON-CA/CFA/CB/CYB/PLB/POB, ACON-CA/CB/CYB/PLB/POB, DCON-CA/CB/CYB/PLB/POB, SCON-CA/CAL/CB, ERC3, RCP6S, RCM-P6PC, RCM-P6AC and RCM-P6DC only

(3) Query format

In a query message, specify the address of the register from which to start reading data, and number of bytes in registers to be read.

1 register = 2 bytes = 16-bit data

Field	Number of characters	ASCII mode	Remarks
	(Number of bytes)	fixed character string	
Header	1	4.7	
Slave address [H]	2	Arbitrary	Axis number + 1 $(01_H \text{ to } 10_H)$
Function code [H]	2	'0', '3'	Register reading code
Start address [H]	4	Arbitrary	Refer to 6.4.1 (2), "Start address list."
Number of registers [H]	4	Arbitrary	Refer to "Start address list."
Error check [H]	2	LRC calculation result	
Trailer	2	'CR', 'LF'	
Total number of bytes	17		

(4) Response format

(+) Response format			
Field	Number of characters (Number of bytes)	ASCII mode fixed character string	Remarks
Header	1	·.,	
Slave address [H]	2	Arbitrary	Axis number + 1 $(01_H \text{ to } 10_H)$
Function code [H]	2	'0', '3'	"Read Holding Registers" code
Number of data bytes [H]	2		Number of specified registers in a query format × 2
Data 1 [H]	4		
Data 2 [H]	4		
Data 3 [H]	4		
Data 4 [H]	4		
:	:		
:	:		
Error check [H]	2	LRC calculation result	
Trailer	2	'CR', 'LF'	
Total number of bytes	Up to 256		

(5) Sample query

A sample query that reads addresses 9000_H to 9009_H in a RC controller of axis No. 0 is shown below:

Query: 01039000000A62 [CR][LF]

Field	ASCII mode fixed character string	Converted ASCII code data [H]
Header		3A
Slave address [H]	'0', '1'	3031
Function code [H]	'0', '3'	3033
Start address [H]	'9', '0', '0', '0'	39303030
Number of registers [H]	'0', '0', '0', 'A'	30303041
Error check [H]	'6', '2' (in accordance with LRC calculation)	3632
Trailer	'CR', 'LF'	0D0A

The response to the query is as follows. Response: 0103140000000000000B80162002000800031C7000800111C [CR][LF]

Field	ASCII mode fixed character string	Converted ASCII code data [H]
Header		3A
Slave address [H]	'0', '1'	3031
Function code [H]	'0', '3'	3033
Number of data bytes [H]	'1', '4' (20 bytes = 10 registers)	3134
Data 1 [H]	'0', '0', '0', '0', '0', '0', '0', '0'	3030303030303030
Data 2 [H]	'0', '0', '0', '0'	30303030
Data 3 [H]	'B', '8', '0', '1'	42383031
Data 4 [H]	'6', '2', '0', '0'	36323030
Data 5 [H]	'2', '0', '0', '0'	32303030
Data 6 [H]	'8', '0', '0', '0'	38303030
Data 7 [H]	'3', '1', 'C', '7'	33314337
Data 8 [H]	'0', '0', '0', '8', '0', '0', '1', '1'	3030303830303131
Error check [H]	'1', 'C' (in accordance with LRC calculation)	3143
Trailer	'CR', 'LF'	0D0A

6.4.2 Alarm Detail Description Reading <<ALA0, ALC0, ALT0>>

(1) Function

This bit reads the alarm codes, alarm detail codes and alarm occurrence time that lately occurred. When any alarm is not issued, it is " 0_H ". [Refer to 4.3.2 (1) to (3) for detail]

(2) Query format

(=) Quoi y ioimat			
Field	Number of characters	ASCII mode character string (fixed)	Remarks
Header	1	· ·	
Slave address [H]	2	Arbitrary	Axis number + 1 $(01_{H} \text{ to } 10_{H})$
Function code [H]	2	'0', '3'	Register reading
Start address [H]	4	'0', '5', '0', '0'	Alarm detail code
Number of registers [H]	4	'0', '0', '0', '6'	Reading addresses 0500 _H to 0505 _H
Error check [H]	2	LRC calculation result	
Trailer	4	'CR', 'LF'	
Total number of bytes	17		

(3) Response format

Field	Number of characters	ASCII mode character string (fixed)	Remarks
Header	1		
Slave address [H]	2	Arbitrary	Axis number + 1 $(01_H \text{ to } 10_H)$
Function code [H]	2	'0', '3'	Register reading
Number of data bytes [H]	2	'0', 'C'	Reading 6 registers = 12 bytes
Data 1 [H]	8	Alarm detail code Alarm address	Alarm detail code(0500 _H) [Hex] Alarm address(0501 _H) [Hex]
Data 2 [H]	8	Alarm code	Alarm code [Hex]
Data 3 [H]	8	Alarm occurrence time ^(Note1)	Alarm occurrence time [Hex]
Error check [H]	2	'CR', 'LF'	
Trailer	2		
Total number of bytes	35		

Note 1 The contents of data differ for the case when the model is equipped with RTC (calendar) function and RTC is effective [1] and the case when RTC is ineffective or the model is not equipped with RTC [2].

- [1] It shows the alarm occurrence time.
- [2] It shows the time [msec] passed since the power was turned on.

(4) Query sample

A sample guery that reads the contents of last occurred alarm (addresses 0500_H to 0505_H) of a controller with axis No. 0 is shown below.

Query: 010305000006F [CR][LF]

Field	ASCII mode	Converted ASCII code
	fixed character string	data [H]
Header	• •	3A
Slave address [H]	(0', '1'	3031
Function code [H]	(0', '3'	3033
Start address [H]	'0', '5', '0', '0'	30353030
Number of registers [H]	'0', '0', '0', '6'	30303036
Error check	'F', '1' (in accordance with	4631
	CRC calculation)	
Trailer	'CR', 'LF'	0D0A

The response to the query is as follows.

Response: 01030C0000FFFF00000E8172C643F24[CR][LF]

Field	ASCII mode	Converted ASCII code
	fixed character string	data [H]
Header		3A
Slave address [H]	'0', '1'	3031
Function code [H]	'0', '3'	3033
Number of data bytes [H]	'0', 'C' (12 bytes = 6 registers)	3034
Data 1 [H]	'0', '0', '0', '0'	30303030
Data 2 [H]	'F', 'F', 'F', 'F'	46464646
Data 3 [H]	'0', '0', '0', '0', '0', '6', 'E', '8'	3030303030304538
Data 4 [H]	'1', '7', '2', 'C', '6', '4', '3', 'F'	3137324336343346
Error check [H]	'2', '4' (in accordance with	3234
	LRC calculation)	J2J 4
Trailer	'CR', 'LF'	0D0A

0000_H····No detail code Alarm detail code:

FFFF_H···Disable(no detail code) Alarm address: Alarm code:

00E8_H=0E8···Encoder AB phase break error 172C643F_H(conversion)⇒2012/04/26 19:53:35[Conversion is refer Alarm occurrence time:

to the Section 4.3.2(4)]

Note 1 The data of the response example is simply an example and will vary depending on

various conditions.

Note 2 For the detail of an alarm code, check in the instruction manual of the each

controller.

6.4.3 Position Data Description Reading << PCMD, INP, VCMD, ZNMP, ZNLP, ACMD, DCMD, PPOW, LPOW, CTLF>>

(1) Function

This reads the value set in the indicated position number.

(2) Start address list

With RC Series controllers, the sizes of send/receive buffers are set to 256 bytes, respectively. Accordingly, a maximum of 123 registers' worth of data consisting of 251 bytes (one register uses two bytes), except 9 bytes (header + slave address + function code + error check + trailer) of the above 247 bytes, can be queried in the ASCII mode. In other words, all of the data listed below can be queried in a single communication.

It is also available to refer to multiple registers of the addresses in a row at one time of sending and receiving.

Address [H]	Top Address of Each Position Number [H]	Offset from Top Address [H]	Symbol	Registers name	Sign	Register size	Byte	Unit
1000 to	Тор	+0	PCMD	Target position	0	2	4	0.01mm
3FFF	Address =	+2	INP	Positioning band	0	2	4	0.01mm
	1000 _H +(16	+4	VCMD	Speed command		2	4	0.01mm/s
	× position No.)	+6	ZNMP	Individual zone boundary +	0	2	4	0.01mm
	,	+8	ZNLP	Individual zone boundary -	0	2	4	0.01mm
		+A	ACMD	Acceleration command		1	2	0.01G
		+B	DCMD	Deceleration command		1	2	0.01G
		+C	PPOW	Push-current limiting value		1	2	% (100%= FF _н)
		+D	LPOW	Load current threshold		1	2	% (100%= FF _н)
		+E	CTLF	Control flag specification		1	2	,

In a query input, each address is calculated using the formula below: $1000_{\rm H}$ + $(16 \times {\rm Position\ number})_{\rm H}$ + Address (Offset) $_{\rm H}$

Example Change the speed command register for position No. 200

 $1000_{\rm H}$ + $(16 \times 200 = 3200)_{\rm H}$ + $4_{\rm H}$

 $= 1000_{H} + C80_{H} + 4_{H}$

 $= 1C84_{H}$

Note The maximum position number varies depending on the controller model and the PIO pattern currently specified.

Note RCP6S, RCM-P6PC, RCM-P6AC and RCM-P6DC return 0_H in all the addresses once they read this address.

[&]quot;1C84" becomes the input value for the start address field of this query.

(3) Query format

In a query message, specify the address of the register from which to start reading data, and number of bytes in registers to be read. 1 register (1 address) = 2 bytes = 16-bit data

Field	Number of characters	ASCII mode	Remarks
	(number of bytes)	character string	
Header	1	4.1	
Slave address [H]	2	Arbitrary	Axis number + 1
			(01 _H to 10 _H)
Function code [H]	2	'0', '3'	Register reading
Start address [H]	4	Arbitrary	Refer to (2),
Number of registers [H]	4	Arbitrary	"Start address list"
Error check [H]	2	LRC calculation result	
Trailer	2	'CR', 'LF'	
Total number of bytes	17		

(4) Response format
A response message contains 16 bits of data per register.

A response message contains to bits of data per register.				
Field	Number of characters		Remarks	
	(number of bytes)	string (fixed)		
Header	1	(,) ·		
Slave address [H]	2	Arbitrary	Axis number + 1	
			$(01_{\rm H} \text{ to } 10_{\rm H})$	
Function code [H]	2	'0', '3'	Register reading	
Number of data bytes [H]	2		Total number of bytes of	
			registers specified in the	
			query	
Data 1 [H]	4			
Data 2 [H]	4			
Data 3 [H]	4			
Data 4 [H]	4			
:	:			
:	:			
Error check [H]	2	LRC calculation result		
Trailer		'CR', 'LF'		
Total number of bytes	Up to 256			

(5) Query sample

Shown below is an example for a use referring to the target position, positioning band and Speed command in Position No. 1 (Address 1010_H to 1015_H) on Axis No. 0 controller.

Query: 010310100006D6 [CR][LF]

Field	ASCII mode	Converted ASCII code
	fixed character string	data [H]
Header	•	3A
Slave address [H]	'0', '1'	3031
Function code [H]	'0', '3'	3033
Start address [H]	'1', '0', '1', '0'	31303130
Number of registers [H]	'0', '0', '0', '6' (6 registers)	30303036
Error check [H]	'D', '6' (in accordance with	4436
	CRC calculation)	
Trailer	'CR', 'LF'	0D0A

The response to the query is as follows.

 Response (silent intervals are inserted before and after the response) 01030C00007D000001F4000003A98E8 [CR][LF]

Field	ASCII mode	Converted ASCII
	fixed character string	code data [H]
Header	•	3A
Slave address [H]	(0', '1'	3031
Function code [H]	'0', '3'	3033
Number of data bytes [H]	'0', 'C' (12 bytes = 6 registers)	3034
Data 1 [H]	'0', '0', '0', '0', '0', '7', 'D', '0' (target position query)	3030303030374430
Data 2 [H]	'0', '0', '0', '0', '1', 'F', '4', '0' (positioning band query)	3030303031463430
Data 3 [H]	'0', '0', '0', '0', '3', 'A', '9', '8' (speed command query)	3030303033413938
Error check [H]	'E', '8' (in accordance with LRC calculation)	4538
Trailer	'CR', 'LF'	0D0A

Target position "7D0_H" \rightarrow Convert into decimal number \rightarrow 2000×[unit 0.01mm]= 20.00[mm] Positioning band "1F40_H" \rightarrow Convert into decimal number \rightarrow 8000×[unit 0.01mm]= 80.00[mm] Speed command "3A98_H" \rightarrow Convert into decimal number \rightarrow 15000×[unit 0.01mm]= 150.00[mm]

6.4.4 Total moving count Reading <<TLMC>>

(1) Function

This bit reads the total moving count. [Refer to Section 4.3.2(8)]

(2) Query format

Field	Number of characters (number of bytes)	ASCII mode character string (fixed)	Remarks
Header	1	· · ·	
Slave address [H]	2	Arbitrary	Axis number + 1 $(01_{H} \text{ to } 10_{H})$
Function code [H]	2	'0', '3'	Register reading
Start address [H]	4	'8', '4', '0', '0'	Total moving count
Number of registers [H]	4	'0', '0', '0', '2'	Reading addresses 8400 _H to 8401 _H
Error check [H]	2	LRC calculation result	
Trailer	4	'CR', 'LF'	
Total number of bytes	17		

(3) Response format

A response message contains to bits of data per register.				
Field	Number of characters	ASCII mode character	Remarks	
	(number of bytes)	string (fixed)		
Header	1			
Slave address [H]	2	Arbitrary	Axis number + 1	
			(01 _H to 10 _H)	
Function code [H]	2	'0', '3'	Register reading	
Number of data bytes [H]	2	'0', '4'	Reading 2 registers	
		0, 4	= 4 bytes	
Data 1 [H]	4	Total moving count	Total moving count(0500 _H)	
			[Hex] (most significant digit)	
Data 2 [H]	4	Total moving count	Total moving count(0501 _H)	
			[Hex] (least significant	
			digit)	
Error check [H]	2	LRC calculation result		
Trailer	2	'CR', 'LF'		
Total number of bytes	19			

(4) Query sample

A sample query that reads the Total moving count (addresses 8400_{H} to 8401_{H}) of a controller with axis No. 0 is shown below.

Query: 01038400000276 [CR][LF]

Field	ASCII mode fixed character string	Converted ASCII code data [H]
Header	• • •	3A
Slave address [H]	'0', '1'	3031
Function code [H]	'0', '3'	3033
Start address [H]	'8', '4', '0', '0'	38343030
Number of registers [H]	'0', '0', '0', '2'	30303032
Error check [H]	'7', '6' (in accordance with CRC calculation)	3736
Trailer	'CR', 'LF'	0D0A

The response to the query is as follows.

Response: 0103040000021FD7[CR][LF]

Field	ASCII mode	Converted ASCII code
	fixed character string	data [H]
Header	4.7	3A
Slave address [H]	(0', '1'	3031
Function code [H]	'0', '3'	3033
Number of data bytes [H]	'0', '4'	3034
Data 1 [H]	'0', '0', '0', '0'	30303030
Data 2 [H]	'0', '2', '1', 'F'	30323146
Error check [H]	'D', '7' (in accordance with LRC calculation)	4337
Trailer	'CR', 'LF'	0D0A

The Total moving count is "21 F_H " \rightarrow Convert into decimal number \rightarrow 543[times]

6.4.5 Total moving distance Reading << ODOM>> (in 0.01 mm units)

(1) Function

This bit reads the total moving distance in units of 1m.

(2) Query format

Field	Number of characters	ASCII mode character string (fixed)	Remarks
Header	1		
Slave address [H]	2	Arbitrary	Axis number + 1 $(01_{H} \text{ to } 10_{H})$
Function code [H]	2	'0', '3'	Register reading
Start address [H]	4	'8', '4', '0', '2'	Total moving distance
Number of registers [H]	4	'0', '0', '0', '2'	Reading addresses 8402 _H to 8403 _H
Error check [H]	2	LRC calculation result	
Trailer	2	'CR', 'LF'	
Total number of bytes	17		

(3) Response format

Field	Number of characters	ASCII mode character string (fixed)	Remarks
Header	1	·.,	
Slave address [H]	2	Arbitrary	Axis number + 1 (01 _H to 10 _H)
Function code [H]	2	'0', '3'	Register reading
Number of data bytes [H]	2	'0', '4'	Reading 2 registers = 4 bytes
Data 1 [H]	4	Total moving distance	Total moving distance [Hex] (most significant digit)
Data 2 [H]	4	Total moving distance	Total moving distance [Hex] (least significant digit)
Error check [H]	2	LRC calculation result	
Trailer	2	CR', 'LF'	
Total number of bytes	19		

(4) Query sample

A sample query that reads the Total moving distance (addresses 8402_{H} to 8403_{H}) of a controller with axis No. 0 is shown below.

Query: 0138402000274 [CR][LF]

	<u> </u>	
Field	ASCII mode	Converted ASCII code
	fixed character string	data [H]
Header	• •	3A
Slave address [H]	'0', '1'	3031
Function code [H]	(0', '3'	3033
Start address [H]	'8', '4', '0', '2'	38343030
Number of registers [H]	'0', '0', '0', '2'	30303032
Error check [H]	'7', '4' (in accordance with	3734
	CRC calculation)	
Trailer	'CR', 'LF'	0D0A

The response to the query is as follows.

Response: 01036040000409E1A[CR][LF]

Field	ASCII mode	Converted ASCII code
	fixed character string	data [H]
Header	•	3A
Slave address [H]	'0', '1'	3031
Function code [H]	'0', '3'	3033
Number of data bytes [H]	'0', '4'	3034
Data 1 [H]	'0', '0', '0', '0'	30303030
Data 2 [H]	'4', '0', '9', 'E'	34303945
Error check [H]	'1', 'A' (in accordance with LRC calculation)	3141
Trailer	'CR', 'LF'	0D0A

The Total moving distance is "0000409 E_H " \rightarrow Convert into decimal number \rightarrow 16542 m

6.4.6 Present Time Reading <<TIMN>>

(1) Function

This bit reads the present time. [PCON-CA/CFA/CB/CFB, ACON-CA/CB, DCON-CA/CB and SCON-CA/CAL/CB only]

(2) Query format

(2) Query format			
Field	Number of characters	ASCII mode character string (fixed)	Remarks
Header	1	• •	
Slave address [H]	2	Arbitrary	Axis number + 1
			(01 _H to 10 _H)
Function code [H]	2	'0', '3'	Register reading
Start address [H]	4	SCON-CA/CAL/CB:	Present time monitor
		'8', '4', '1', 'E'	
		PCON-CA/CFA/CB/CFB:	
		'8', '4', '2', '0'	
		ACON-CA/CB and	
		DCON-CA/CB:	
		'8', '4', '2', '2'	
Number of registers [H]	4	'0', '0', '0', '2'	Reading addresses 8402 _H
		0, 0, 0, 2	to 8403 _H
Error check [H]	2	LRC calculation result	
Trailer	2	'CR', 'LF'	
Total number of bytes	17		

(3) Response format

Field	Number of characters	ASCII mode character string (fixed)	Remarks
Header	1	· . ·	
Slave address [H]	2	Arbitrary	Axis number + 1 $(01_{H} \text{ to } 10_{H})$
Function code [H]	2	'0', '3'	Register reading
Number of data bytes [H]	2	'0', '4'	Reading 2 registers = 4 bytes
Data [H]	8	Present time	Refer to (4) for conversion at time.
Error check [H]	2	LRC calculation result	
Trailer	2	'CR', 'LF'	
Total number of bytes	19		

(4) Conversion of Read Data into Time

The read data output the current time by the setting on the controller.

- [1] For the models that are equipped with the calendar function (RTC), when RTC is set effective, it shows the time of alarm issuance.
- [2] When RTC is set ineffective or for the models that is not equipped with RTC, it shows the passed time [sec] since the power to the controller is turned on.

[1] How present time is calculated

The data of present time shows the seconds passed from the origin time (00hr: 00min: 00sec 1January2000).

Passed second from the origin time is expressed with S, passed minute with M, passed hour with H, passed day with D and passed year with Y, and the calculation is conducted with a formula as shown below:

S= Data of read alarm issuance time

M= S/60 (decimal fraction to be rounded down)

H= M/60 (decimal fraction to be rounded down)

D= H/24 (decimal fraction to be rounded down)

Y= D/365.25 (decimal fraction to be rounded down)

L (Leap year) = Y/4 (decimal fraction to be rounded up)

Assuming the second of time is SA, minute is MA, hour is HA, passed day in this year is DA and year is YA, the time can be calculated with a formula as shown below:

SA= Remainder of S/60

MA= Remainder of M/60

HA= Remainder of H/24

DA= D- (Y×365+L)

Year and day can be figured out by subtracting the number of days in each month from DA.

YA= Y+2000 (A.D.)

Example) Assuming present time data is 172C1B8B_H;

[Procedure 1] Convert into decimal number: S= 172C1B8B_H⇒388766603

[Procedure 2] Calculate M, H, D, Y and L.

M= 388766603/60= 6479443

H= 6479443/60= 107990

D= 107990/24= 4499

Y= 4499/365.25= 12

L= 12/4= 3

[Procedure 3] Figure out SA, MA, HA and DA.

SA= Remainder of 388766603/60= 23

MA= Remainder of 6479443/60= 43

HA= Remainder of 107990/24= 14

DA= 4499-(12×365+3)

= 116 (116 days has passed in this year and the time of alarm issuance is on the day 117.)

Year and day= $117 - \{31 \text{ (Jan)} - 29 \text{ (Feb)} - 31 \text{ (Mar)}\} = 26 \text{ (since the number becomes a negative if days in April is subtracted, the time of present is on 26April)}$

YA= 12+2000= 2012

As figured out with the calculation above, the present time is 14:43:23 26Apr2012.

[2] How to Calculate Passed Time

Example) Assuming the current time data is E1B8B_H:

Convert into decimal number: E1B8B_H⇒924555

Therefore, it means 924555sec (15min. 49sec. 256h) has passed since the power was turned on.

(5) Query sample

A sample query that reads the present time of PCON-CA (addresses $8420_{\rm H}$ to $8421_{\rm H}$) of a controller with axis No. 0 is shown below.

Query: 01038420000256 [CR][LF]

Field	ASCII mode	Converted ASCII code
	fixed character string	data [H]
Header [H]	• •	3A
Slave address [H]	(0', '1'	3031
Function code [H]	(0', '3'	3033
Start address [H]	(8', '4', '2', '0'	38343230
Number of registers [H]	'0', '0', '0', '2'	30303032
Error check [H]	'5', '6' (in accordance with	3536
	CRC calculation)	
Trailer	'CR', 'LF'	0D0A

The response to the query is as follows.

Response: 010304172C1B8B56 [CR][LF]

Field	ASCII mode	Converted ASCII code
	fixed character string	data [H]
Header	•	3A
Slave address [H]	'0', '1'	3031
Function code [H]	'0', '3'	3033
Number of data bytes [H]	'0', '4'	3034
Data [H]	'1', '7', '2', 'C', '1', 'B', '8', 'B'	3137324331423842
Error check [H]	'5', '6' (in accordance with LRC calculation)	3536
Trailer	'CR', 'LF'	0D0A

Current time is 14h:43m:23s April 26, 2012.

6.4.7 Total FAN Driving Time Reading <<TFAN>>

(1) Function

This bit reads the Total FAN driving time (in 1 sec units) [PCON-CFA/CFB, SCON-CAL, SCON-CB [400W or more] only]

(2) Query format

(2) Query lorinat			
Field	Number of characters	ASCII mode character string (fixed)	Remarks
Header	1	.,,	
Slave address [H]	2	Arbitrary	Axis number + 1 (01 _H to 10 _H)
Function code [H]	2	'0', '3'	Register reading
Start address [H]	4	SCON-CAL, SCON-CB [400W or more]: '8', '4', '2', 'A' PCON-CFA/CFB: '8', '4', '2', 'E'	Total FAN driving time
Number of registers [H]	4	'0', '0', '0', '2'	Reading addresses 842E _H to 842F _H
Error check [H]	2	LRC calculation result	
Trailer	2	'CR', 'LF'	
Total number of bytes	17		

(3) Response format

Field	Number of characters	ASCII mode character string (fixed)	Remarks
Header	1	.,,	
Slave address [H]	2	Arbitrary	Axis number + 1
			(01 _H to 10 _H)
Function code [H]	2	'0', '3'	Register reading
Number of data bytes [H]	2	'0', '4'	Reading 2 registers
		0,4	= 4 bytes
Data 1 [H]	4	Total FAN driving time	Total FAN driving time
			[Hex] (most significant digit)
Data 2 [H]	4	Total FAN driving time	Total FAN driving time
			[Hex] (least significant digit)
Error check [H]	2	LRC calculation result	
Trailer	2	'CR', 'LF'	
Total number of bytes	19		

(4) Query sample

A sample query that reads the total FAN driving time (addresses $842E_H$ to $842F_H$) of a controller with axis No. 0 (PCON-CFA/CFB) is shown below.

Query: 013742E000248 [CR][LF]

Field	ASCII mode	Converted ASCII code
	fixed character string	data [H]
Header	• •	3A
Slave address [H]	'0', '1'	3031
Function code [H]	'0', '3'	3033
Start address [H]	'8', '4', '2', 'E'	38343245
Number of registers [H]	'0', '0', '0', '2'	30303032
Error check [H]	'4', '8' (in accordance with	3438
	CRC calculation)	
Trailer	'CR', 'LF'	0D0A

The response to the query is as follows.

Response: 010304000002AF47

Field	ASCII mode fixed character string	Converted ASCII code data [H]
Header	·.·	3A
Slave address [H]	'0', '1'	3031
Function code [H]	'0', '3'	3033
Number of data bytes [H]	'0', '4'	3034
Data 1 [H]	'0', '0', '0', '0'	30303030
Data 2 [H]	'0', '2', 'A', 'F'	30324146
Error check [H]	'4', '7' (in accordance with	3437
	LRC calculation)	
Trailer	'CR', 'LF'	0D0A

The total FAN driving time is "000002AF_H" \rightarrow Convert into decimal number \rightarrow 687[sec]

6.4.8 Current Position Reading (in 0.01 mm units) Monitor << PNOW>>

(1) Function

This query reads the current in units of 0.01 mm. The sign is effective.

(2) Query format

(2) Query format			
Field	Number of characters	ASCII mode character string (fixed)	Remarks
Header	1	·.·	
Slave address [H]	2	Arbitrary	Axis number + 1 $(01_{H} \text{ to } 10_{H})$
Function code [H]	2	'0', '3'	Reading registers
Start address [H]	4	'9', '0', '0', '0'	Current position monitor
Number of registers [H]	4	'0', '0', '0', '2'	Reading addresses 9000 _H to 9001 _H
Error check [H]	2	LRC calculation result	
Trailer	2	'CR', 'LF'	
Total number of bytes	17		

(3) Response format

Field	Number of characters	ž	Remarks
		(fixed)	
Header	1		
Slave address [H]	2	Arbitrary	Axis number + 1 $(01_{H} \text{ to } 10_{H})$
Function code [H]	2	'0', '3'	Reading registers
Number of data bytes [H]	2	'0', '4'	Reading 2 registers = 4 bytes
Data 1 [H]	4	In accordance with the current value	Current value data [Hex]
Data 2 [H]	4	In accordance with the current value	Current value data [Hex]
Error check [H]	2	LRC calculation result	·
Trailer	2	'CR', 'LF'	
Total number of bytes	19		·

(4) Sample query (Axis No. 0)

A sample query that reads address 9000_H in a controller of axis No. 0 is shown below: Query: 0103900000026A [CR][LF]

Que. y. e : e e e e e e e e e e e e e e e e e			
Field	ASCII mode	Converted ASCII code	
	fixed character string	data [H]	
Header		3A	
Slave address [H]	'0', '1'	3031	
Function code [H]	'0', '3'	3033	
Start address [H]	'9', '0', '0', '0'	39303030	
Number of registers [H]	'0', '0', '0', '2'	30303032	
Error check [H]	'6', 'A'	3641	
Trailer	'CR', 'LF'	0D0A	

The response to the query is as follows.

Response: 010304000013885D [CR][LF]

Field	ASCII mode	Converted ASCII code
	fixed character string	data [H]
Header	•	3A
Slave address [H]	(0', '1'	3031
Function code [H]	(0', '3'	3033
Number of data bytes [H]	'0', '4' (4 bytes = 2 registers)	3034
Data 1 [H]	'0', '0', '0', '0'	30303030
Data 2 [H]	(1', '3', '8', '8')	31333838
Error check [H]	'5', 'D' (in accordance with LRC calculation)	3544
Trailer	'CR', 'LF'	0D0A

The current position is "00001388" \rightarrow Convert into decimal number \rightarrow 5000 (× 0.01 mm) The current position is 50 mm.

6.4.9 Present Alarm Code Query <<ALMC>>

(1) Function

Whether the controller is normal or any alarm presently (cold start level, operation cancellation level and message level) detected is indicated by a code.

If no alarm is present, 00_H is stored.

[For details on alarm codes, refer to the operation manual that comes with each controller.]

(2) Query format

Field	Number of characters	ASCII mode character string (fixed)	Remarks
Header	1	·.,	
Slave address [H]	2	Arbitrary	Axis number + 1 (01 _H to 10 _H)
Function code [H]	2	'0', '3'	Reading registers
Start address [H]	4	'9', '0', '0', '2'	Present alarm codes
Number of registers [H]	4	'0', '0', '0', '1'	Reading address 9002 _H
Error check [H]	2	LRC calculation result	
Trailer	2	'CR', 'LF'	
Total number of bytes	17		

(3) Response format

Field	Number of characters	ASCII mode character string (fixed)	Remarks
Header	1	.,,	
Slave address [H]	2	Arbitrary	Axis number + 1 $(01_{H} \text{ to } 10_{H})$
Function code [H]	2	'0', '3'	Reading registers
Number of data bytes [H]	2	'0', '2'	Reading 1 register = 2 bytes
Data 1 [H]	4	Alarm code	Alarm code [Hex]
Error check [H]	2	LRC calculation result	
Trailer	2	'CR', 'LF'	
Total number of bytes	15		

(4) Sample query (Axis No. 0)

A sample query that reads address 9002_H in an RC controller of axis No. 0 is shown below: Query: 01039002000169 [CR][LF]

Que, j. 0 : 00000=000		1
Field	ASCII mode	Converted ASCII code
	fixed character string	data [H]
Header		3A
Slave address [H]	'0', '1'	3031
Function code [H]	'0', '3'	3033
Start address [H]	'9', '0', '0', '2'	39303032
Number of registers [H]	'0', '0', '0', '1'	30303031
Error check [H]	'6', '9'	3639
Trailer	'CR', 'LF'	0D0A

The response to the query is as follows.

Response: 01030200E812 [CR][LF]

Field	ASCII mode	Converted ASCII code
	fixed character string	data [H]
Header	4.1	3A
Slave address [H]	'0', '1'	3031
Function code [H]	'0', '3'	3033
Number of data bytes [H]	'0', '2' (2 bytes = 1 register)	3032
Data 1 [H]	'0', '0', 'E', '8'	30304538
Error check [H]	'1', '2' (in accordance with LRC calculation)	3132
Trailer	'CR', 'LF'	0D0A

The most important alarm presently detected is "0E8"_H, which is a phase A/B open alarm. [For details on alarm codes, refer to the operation manual that comes with each controller.]

6.4.10 I/O Port Input Signal Status Reading << DIPM>>

(1) Function

Port input values of the RC controller are read directly regardless of the PIO pattern. Note that the values are the states of ports recognized by the RC controller as inputs.

(2) Query format

Field	Number of characters	ASCII mode character string (fixed)	Remarks
Header	1	.,	
Slave address [H]	2	Arbitrary	Axis number + 1 $(01_{H} \text{ to } 10_{H})$
Function code [H]	2	'0', '3'	Reading registers
Start address [H]	4	'9', '0', '0', '3'	Input port monitor register
Number of registers [H]	4	'0', '0', '0', '1'	Reading address 9003 _H
Error check [H]	2	LRC calculation result	
Trailer	2	'CR', 'LF'	
Total number of bytes	17		

(3) Response format

Field	Number of characters	ASCII mode character string (fixed)	Remarks
Header	1	.,,	
Slave address [H]	2	Arbitrary	Axis number + 1 $(01_{H} \text{ to } 10_{H})$
Function code [H]	2	'0', '3'	Reading registers
Number of data bytes [H]	2	'0', '2'	Reading 1 register = 2 bytes
Data 1 [H]	4	DI input value	DI input value [Hex]
Error check [H]	2	LRC calculation result	
Trailer	2	'CR', 'LF'	
Total number of bytes	15		

(4) Sample query (Axis No. 0)

A sample query that reads input ports (address 9003_H) in a controller of axis No. 0 is shown below.

Query: 01 03 90 03 00 01 68 [CR] [LF]

Field	ASCII mode fixed character string	Converted ASCII code data [H]
Start		3A
Slave address [H]	(0', '1'	3031
Function code [H]	(0', '3'	3033
Start address [H]	(9', '0', '0', '3'	39303033
Number of registers [H]	(0', '0', '0', '1'	30303031
Error check [H]	'6', '8' (In accordance with LRC calculation)'	3638
End	'CR', 'LF'	0D0A

The response to the query is as follows.

Response: 01 03 02 B8 01 14 [CR] [LF]

Field	ASCII mode fixed character string	Converted ASCII code data [H]
Start		3A
Slave address [H]	(0', '1'	3031
Function code [H]	(0', '3'	3033
Number of data bytes [H]	'0', '2' (2 bytes = 1 register)	3032
Data 1 [H]	(B', '8', '0', '1'	42383031
Error check [H]	'1', '4' (in accordance with LRC calculation)	3134
End	'CR', 'LF'	0D0A

The input port data area is "B801" $_{H} \rightarrow$ Convert into binary number "101110000000001"

(5) Port assignment [For details, refer to the operation manual that comes with each RC controller.]
Write the port assignment of PIO patterns to each RC controller.
0 indicates that response data is always 0.

		PCOI		Other than PCON-C/CF				
				(Pulse Train Mode)				
Port	0 1 2 3 4 5						6	7
IN0	PC1	PC1	PC1	PC1	ST0	ST0	SON	SON
IN1	PC2	PC2	PC2	PC2	ST1	ST1	RES	RES
IN2	PC4	PC4	PC4	PC4	ST2	ST2	HOME	HOME
IN3	PC8	PC8	PC8	PC8	ST3	0	TL	TL
IN4	PC16	PC16	PC16	PC16	ST4	0	CSTP	CSTP
IN5	PC32	PC32 PC32 PC32 ST5 0						DCLR
IN6	0	MODE	PC64	PC64	ST6	0	BKRL	BKRL
IN7	0	JISL	PC128	PC128	0	0	RMOD	RMOD
IN8	0	JOG+	0	PC256	0	0	0	RSTR
IN9	BKRL	JOG-	BKRL	BKRL	BKRL	BKRL	0	0
IN10	RMOD	RMOD	RMOD	RMOD	RMOD	RMOD	0	0
IN11	HOME	HOME	HOME	HOME	HOME	0	0	0
IN12	*STP	*STP	*STP	*STP	*STP	0	0	0
IN13	CSTR	CSTR/ PWRT	CSTR	CSTR	0	0	0	0
IN14	RES	RES	RES	RES	RES	RES	0	0
IN15	SON	SON	SON	SON	SON	SON	0	0

			PCON	N-CYB			PCON-F	LB/POB	PCON-	-PL/PO
			PIO p	attern			PIO p	attern	PIO pattern	
Port	0	1	2	3	4	5	0	1	0	1
IN0	PC1	ST0	ST0	ST0	ST0		SON	SON	SON	SON
IN1	PC2	ST1	ST1	0	ST1	Ser	RES	RES	TL	TL
IN2	PC4	ST2	ST2	0	ASTR	Number	HOME	HOME	HOME	HOME
IN3	PC8	ST3	0	0	0	_	TL	TL	RES	RES/
1143	1 00	515	U	U		cted (Note		I L	INLO	DCLR
IN4	HOME	ST4	SON	SON	SON	ect	CSTP	CSTP	0	0
IN5	*STR	ST5	0	*STR	*STR	Selected (Note	DCLR	DCLR	0	0
IN6	CSTR	ST6	0	0	0	₹	BKRL	BKRL	0	0
IN7	RES	RES	RES	RES	RES		0	RSTR	0	0
IN8										
to	0	0	0	0	0	0	0	0	0	0
IN15										

(Note 1) Any number can be selected for those except for Command Position Number Signal and CSTR Signal.

[Refer to PCON-CYB/PLB/POB Operation Manual (ME0353).]

		ACON-	C/CA/CB,	DCON-C	/CA/CB		Other than ACON-C/CF	
			PIO p	attern			(Pulse Tr	ain Mode)
Port	0	1	2	3	4	5	6	7
IN0	PC1	PC1	PC1	PC1	ST0	ST0	SON	SON
IN1	PC2	PC2	PC2	PC2	ST1	ST1	RES	RES
IN2	PC4	PC4	PC4	PC4	ST2	ST2	HOME	HOME
IN3	PC8	PC8	PC8	PC8	ST3	0	TL	TL
IN4	PC16	PC16	PC16	PC16	ST4	0	CSTP	CSTP
IN5	PC32	PC32	PC32	PC32	ST5	0	DCLR	DCLR
IN6	0	MODE	PC64	PC64	ST6	0	BKRL	BKRL
IN7	0	JISL	PC128	PC128	0	0	RMOD	RMOD
IN8	0	JOG+	0	PC256	0	0	0	RSTR
IN9	BKRL	JOG-	BKRL	BKRL	BKRL	BKRL	0	0
IN10	RMOD	RMOD	RMOD	RMOD	RMOD	RMOD	0	0
IN11	HOME	HOME	HOME	HOME	HOME	0	0	0
IN12	*STP	*STP	*STP	*STP	*STP	0	0	0
IN13	CSTR	CSTR/ PWRT	CSTR	CSTR	0	0	0	0
IN14	RES	RES	RES	RES	RES	RES	0	0
IN15	SON	SON	SON	SON	SON	SON	0	0

		AC	ON-CYB,	DCON-C			DCON /POB	ACON-PL/PO		
			PIO p	attern		PIO p	PIO pattern PIO patte		attern	
Port	0	2	3	0	1	0	1			
IN0	PC1	ST0	ST0	ST0	ST0		SON	SON	SON	SON
IN1	PC2	ST1	ST1	0	ST1	Ser	RES	RES	TL	TL
IN2	PC4	ST2	ST2	0	ASTR	Number	HOME	HOME	HOME	HOME
IN3	PC8	ST3	0	0	0	_	TL	TL	RES	RES/ DCLR
IN4	HOME	ST4	SON	SON	SON	Selected (Note	CSTP	CSTP	0	0
IN5	*STR	ST5	0	*STR	*STR	Sele	DCLR	DCLR	0	0
IN6	CSTR	ST6	0	0	0	₹	BKRL	BKRL	0	0
IN7	RES	RES	RES	RES	RES		0	RSTR	0	0
IN8 to IN15	0	0	0	0	0	0	0	0	0	0

(Note 1) Any number can be selected for those except for Command Position Number Signal and CSTR Signal.
[Refer to ACON-CYB/PLB/POB and DCON-CYB/PLB/POB Operation Manual (ME0354).]

		S	CON-C/C	A/CAL/C	В		SCON-	CA/CB	SCON-0	C/CA/CB
				PIO p	attern				(Pulse Tra	ain Mode)
Port	0	1	2	3	4	5	6	7	0	1 ^(Note 1)
IN0	PC1	PC1	PC1	PC1	ST0	ST0	PC1	ST0	SON	SON
IN1	PC2	PC2	PC2	PC2	ST1	ST1	PC2	ST1	RES	RES
IN2	PC4	PC4	PC4	PC4	ST2	ST2	PC4	ST2	HOME	HOME
IN3	PC8	PC8	PC8	PC8	ST3	0	PC8	ST3	TL	TL
IN4	PC16	PC16	PC16	PC16	ST4	0	PC16	ST4	CSTP	CSTP
IN5	PC32	PC32	PC32	PC32	ST5	0	0	0	DCLR	DCLR
IN6	0	MODE	PC64	PC64	ST6	0	0	0	BKRL	BKRL
IN7	0	JISL	PC128	PC128	0	0	0	0	RMOD	RMOD
IN8	0	JOG+	0	PC256	0	0	CLBR	CLBR	0	RSTR
IN9	BKRL	JOG-	BKRL	BKRL	BKRL	BKRL	BKRL	BKRL	0	0
IN10	RMOD	RMOD	RMOD	RMOD	RMOD	RMOD	RMOD	RMOD	0	0
IN11	HOME	HOME	HOME	HOME	HOME	0	HOME	HOME	0	0
IN12	*STP	*STP	*STP	*STP	*STP	0	*STP	*STP	0	0
IN13	CSTR	CSTR/ PWRT	CSTR	CSTR	0	0	CSTR	0	0	0
IN14	RES	RES	RES	RES	RES	RES	RES	RES	0	0
IN15	SON	SON	SON	SON	SON	SON	SON	SON	0	0

(Note 1) This mode is not equipped in SCON-C/CA.

	SCON-CB		ERC2 (P	IO Type)		ERC3 (PIO Type)			
	Servo press		PIO p	attern		PIO pattern			
Port	-	0	1	2	3	0	1	2	
IN0	PC1	PC1	ST0	PC1	PC1	PC1	ST0	PC1	
IN1	PC2	PC2	ST1	PC2	PC2	PC2	ST1	PC2	
IN2	PC4	PC4	ST2	PC4	PC4	PC4	ST2	PC4	
IN3	PC8	HOME	0	PC8	PC8	HOME	0	PC8	
IN4	PC16	CSTR	RES	CSTR	CSTR	CSTR	RES	CSTR	
IN5	PC32	*STP	*STP	*STP	*STP	*STP	*STP	*STP	
IN6	PSTR	0	0	0	0	0	0	0	
IN7	RHOM	0	0	0	0	0	0	0	
IN8	ENMV	0	0	0	0	0	0	0	
IN9	FPST	0	0	0	0	0	0	0	
IN10	CLBR	0	0	0	0	0	0	0	
IN11	BKRL	0	0	0	0	0	0	0	
IN12	RMOD	0	0	0	0	0	0	0	
IN13	HOME	0	0	0	0	0	0	0	
IN14	RES	0	0	0	0	0	0	0	
IN15	SON	0	0	0	0	0	0	0	

6.4.11 I/O Port Output Signal Status Reading << DOPM>>

(1) Function

Port output values of the RC controller are stored directly regardless of the PIO pattern.

(2) Query format

Field	Number of characters	ASCII mode character string (fixed)	Remarks
Header	1	· · ·	
Slave address [H]	2	Arbitrary	Axis number + 1 $(01_{H} \text{ to } 10_{H})$
Function code [H]	2	'0', '3'	Reading registers
Start address [H]	4	'9', '0', '0', '4'	Output port monitor register
Number of registers [H]	4	'0', '0', '0', '1'	Reading address 9004 _H
Error check [H]	2	LRC calculation result	
Trailer	2	'CR', 'LF'	
Total number of bytes	17		

(3) Response format

7 Teoponoe meddage o	ontains to bits of data p	ci regioter.	
Field	Number of characters	ASCII mode character	Remarks
		string (fixed)	
Header	1	· · ·	
Slave address [H]	2	Arbitrary	Axis number + 1
Slave address [11]	2	Arbitiary	(01 _H to 10 _H)
Function code [H]	2	'0', '3'	Reading registers
Number of data bytes [H]	2	'0', '2'	Reading 1 register
Number of data bytes [i i]	2	0, 2	= 2 bytes
Data 1 [H]	4	DO output value	DI output value [Hex]
Error check [H]	2	LRC calculation result	
Trailer	2	'CR', 'LF'	
Total number of bytes	15		

(4) Sample query (Axis No. 0)

A sample query that reads input ports (address $9004_{\rm H}$) in a controller of axis No. 0 is shown below.

Query: 01039004000167[CR][LF]

Field	ASCII mode fixed character string	Converted ASCII code data [H]
Start	·.,·	3A
Slave address [H]	ʻ0', ʻ1'	3031
Function code [H]	'0', '3'	3033
Start address [H]	'9', '0', '0', '4'	39303034
Number of registers [H]	(0', '0', '0', '1'	30303031
Error check [H]	'6', '7' (in accordance with LRC calculation)'	3637
End	'CR', 'LF'	0D0A

The response to the query is as follows.

Response: 010302740086[CR][LF]

. 100 p 0 110 0 1 0 1 0 0 0 1	.0000[0: 4][=:]	
Field	ASCII mode	Converted ASCII
	fixed character string	code data [H]
Start	•	3A
Slave address [H]	'0', '1'	3031
Function code [H]	'0', '3'	3033
Number of data bytes [H]	'0', '2' (2 bytes = 1 register)	3032
Data 1 [H]	'7', '4', '0', '0'	37343030
Error check [H]	'8', '6' (in accordance with LRC calculation)	3836
End	'CR', 'LF'	0D0A

The output port data area is "7400"_H → Convert into binary number "0111010000000000"

(5) Port assignment [For details, refer to the operation manual that comes with each RC controller.] Write the port assignment of PIO patterns to each RC controller. 0 indicates that response data is always 0.

		PCC	N-C/CF/C	A/CFA/CB/	CFB			r than I-C/CF
			PIO p	attern			(Pulse Train Mode)	
Port	0	1	2	3	4	5	6	7
OUT0	PM1	PM1	PM1	PM1	PE0	LS0	PWR	PWR
OUT1	PM2	PM2	PM2	PM2	PE1	LS1	SV	SV
OUT2	PM4	PM4	PM4	PM4	PE2	LS2	INP	INP
OUT3	PM8	PM8	PM8	PM8	PE3	0	HEND	HEND
OUT4	PM16	PM16	PM16	PM16	PE4	0	TLR	TLR
OUT5	PM32	PM32	PM32	PM32	PE5	0	*ALM	*ALM
OUT6	MOVE	MOVE	PM64	PM64	PE6	0	*EMGS	*EMGS
OUT7	ZONE1	MODES	PM128	PM128	ZONE1	ZONE1	RMDS	RMDS
OUT8	PZONE/	PZONE/	PZONE/	PM256	PZONE/	PZONE/	ALM1	ALM1
0010	ZONE2	ZONE1	ZONE1	I WIZO	ZONE2	ZONE2	ALIVIT	ALIVIT
OUT9	RMDS	RMDS	RMDS	RMDS	RMDS	RMDS	ALM2	ALM2
OUT10	HEND	HEND	HEND	HEND	HEND	HEND	ALM4	ALM4
OUT11	PEND	PEND/ WEND	PEND	PEND	PEND	0	ALM8	ALM8
OUT12	SV	SV	SV	SV	SV	SV	*ALML	*ALML
OUT13	*EMGS	*EMGS	*EMGS	*EMGS	*EMGS	*EMGS	0	REND
OUT14	*ALM	*ALM	*ALM	*ALM	*ALM	*ALM	ZONE1	ZONE1
OUT15	LOAD/		LOAD/	LOAD/	LOAD/			
(Note 1)	TRQS/	*ALML	TRQS/	TRQS/	TRQS/	*ALML	ZONE2	ZONE2
	*ALML		*ALML	*ALML	*ALML			

(Note 1) Signals available for output may differ depending on models. Refer to an instruction manual for each controller for detail.

			PCON	-CYB			PCON-F	LB/POB	PCON-	·PL/PO
			PIO pa	attern			PIO p	attern	PIO p	attern
Port	0	1	2	3	4	5	0	1	0	1
OUT0	PM1	PE0	LS0	LS0/ PE0	LS0/ PE0		PWR	PWR	SV	SV
OUT1	PM2	PE1	LS1	LS1/ PE1	LS1/ PE1	Number	SV	SV	INP	INP/ TLR
OUT2	PM4	PE2	LS2	PSFL	PSFL	(7	INP	INP	HEND	HEND
OUT3	PM8	PE3	HEND	HEND	HEND		HEND	HEND	*ALM	*ALM
OUT4	HEND	PE4	SV	SV	SV	ect (N	TLR	TLR	0	0
OUT5	PZONE/ ZONE1	PE5	PZONE/ ZONE1	PZONE/ ZONE1	PZONE/ ZONE1	A Selected (Note	ZONE 1	ZONE 1	0	0
OUT6	PEND	PE6	*ALML	*ALML	*ALML	,	*ALML	REND	0	0
OUT7	*ALM	*ALM	*ALM	*ALM	*ALM		*ALM	*ALM	0	0
OUT8 to OUT15	0	0	0	0	0	0	0	0	0	0

(Note 2) Any number can be selected for those except for Complete Position Number Signal and PEND Signal.

[Refer to PCON-CYB/PLB/POB Operation Manual (ME0353).]

		ACON	Other ACON	than -C/CF				
			PIO p	attern			(Pulse Tra	ain Mode)
Port	0	1	2	3	4	5	6	7
OUT0	PM1	PM1	PM1	PM1	PE0	LS0	PWR	PWR
OUT1	PM2	PM2	PM2	PM2	PE1	LS1	SV	SV
OUT2	PM4	PM4	PM4	PM4	PE2	LS2	INP	INP
OUT3	PM8	PM8	PM8	PM8	PE3	0	HEND	HEND
OUT4	PM16	PM16	PM16	PM16	PE4	0	TLR	TLR
OUT5	PM32	PM32	PM32	PM32	PE5	0	*ALM	*ALM
OUT6	MOVE	MOVE	PM64	PM64	PE6	0	*EMGS	*EMGS
OUT7	ZONE1	MODES	PM128	PM128	ZONE1	ZONE1	RMDS	RMDS
OUT8	PZONE/	PZONE/	PZONE/	PM256	PZONE/	PZONE/	ALM1	ALM1
0010	ZONE2	ZONE1	ZONE1	I IVIZ JU	ZONE2	ZONE2	ALIVIT	ALIVII
OUT9	RMDS	RMDS	RMDS	RMDS	RMDS	RMDS	ALM2	ALM2
OUT10	HEND	HEND	HEND	HEND	HEND	HEND	ALM4	ALM4
OUT11	PEND	PEND/ WEND	PEND	PEND	PEND	0	ALM8	ALM8
OUT12	SV	SV	SV	SV	SV	SV	*ALML	*ALML
OUT13	*EMGS	*EMGS	*EMGS	*EMGS	*EMGS	*EMGS	0	REND
OUT14	*ALM	*ALM	*ALM	*ALM	*ALM	*ALM	ZONE1	ZONE1
OUT15	*BALM/	*BALM/	*BALM/	*BALM/	*BALM/	*BALM/	ZONE2	ZONE2
(Note 1)	*ALML	*ALML	*ALML	*ALML	*ALML	*ALML	ZONEZ	ZONEZ

(Note 1) Signals available for output may differ depending on models. Refer to an instruction manual for each controller for detail.

		ACON-CYB, DCON-CYB						DCON /POB	ACON-	PL/PO
			PIO pa	attern			PIO p	attern	PIO p	attern
Port	0	1	2	3	4	5	0	1	0	1
OUT0	PM1	PE0	LS0	LS0/ PE0	LS0/ PE0		PWR	PWR	SV	SV
OUT1	PM2	PE1	LS1	LS1/ PE1	LS1/ PE1	Number !)	SV	SV	INP	INP/ TLR
OUT2	PM4	PE2	LS2	PSFL	PSFL) N	INP	INP	HEND	HEND
OUT3	PM8	PE3	HEND	HEND	HEND		HEND	HEND	*ALM	*ALM
OUT4	HEND	PE4	SV	SV	SV	S Ct	TLR	TLR	0	0
OUT5	PZONE/ ZONE1	PE5	PZONE/ ZONE1	PZONE/ ZONE1	PZONE/ ZONE1	A Selected (Note	ZONE 1	ZONE 1	0	0
OUT6	PEND	PE6	*ALML	*ALML	*ALML	1	*ALML	REND	0	0
OUT7	*ALM	*ALM	*ALM	*ALM	*ALM		*ALM	*ALM	0	0
OUT8 to OUT15	0	0	0	0	0	0	0	0	0	0

(Note 2) Any number can be selected for those except for Complete Position Number Signal and PEND Signal.

[Refer to ACON-CYB/PLB/POB and DCON-CYB/PLB/POB Operation Manual (ME0354).]

	SCON-C/CA/CAL/CB					SCON-	CA/CB	SCON-0	C/CA/CB	
				PIO p	attern				(Pulse Tra	ain Mode)
Port	0	1	2	3	4	5	6	7	0	1 (Note 1)
OUT0	PM1	PM1	PM1	PM1	PE0	LS0	PM1	PE0	PWR	PWR
OUT1	PM2	PM2	PM2	PM2	PE1	LS1	PM2	PE1	SV	SV
OUT2	PM4	PM4	PM4	PM4	PE2	LS2	PM4	PE2	INP	INP
OUT3	PM8	PM8	PM8	PM8	PE3	0	PM8	PE3	HEND	HEND
OUT4	PM16	PM16	PM16	PM16	PE4	0	PM16	PE4	TLR	TLR
OUT5	PM32	PM32	PM32	PM32	PE5	0	TRQS	TRQS	*ALM	*ALM
OUT6	MOVE	MOVE	PM64	PM64	PE6	0	LOAD	LOAD	*EMGS	*EMGS
OUT7	ZONE1	MODES	PM128	PM128	ZONE1	ZONE1	CEND	CEND	RMDS	RMDS
OUT8	PZONE/	PZONE/	PZONE/	PM256	PZONE/	PZONE/	PZONE/	PZONE/	A I N / 4	A I N / 4
0016	ZONE2	ZONE1	ZONE1	PIVIZOO	ZONE2	ZONE2	ZONE1	ZONE1	ALM1	ALM1
OUT9	RMDS	RMDS	RMDS	RMDS	RMDS	RMDS	RMDS	RMDS	ALM2	ALM2
OUT10	HEND	HEND	HEND	HEND	HEND	HEND	HEND	HEND	ALM4	ALM4
OUT11	PEND	PEND/ WEND	PEND	PEND	PEND	0	PEND	PEND	ALM8	ALM8
OUT12	SV	SV	SV	SV	SV	SV	SV	SV	*OVLW/ *ALML (Note 2)	*OVLW/ *ALML
OUT13	*EMGS	*EMGS	*EMGS	*EMGS	*EMGS	*EMGS	*EMGS	*EMGS	0	REND
OUT14	*ALM	*ALM	*ALM	*ALM	*ALM	*ALM	*ALM	*ALM	ZONE1	ZONE1
OUT15	*BALM	*BALM	*BALM	*BALM	*BALM	*BALM	*BALM	*BALM	ZONE2	ZONE2

(Note 1) This mode is not equipped in SCON-C/CA. (Note 2) SCON-C is not equipped with *OVLW and *ALML outputs.

	SCON-CB		ERC2 (PIO Type)			ERO	C3 (PIO ⁻	Гуре)
	Servo press		PIO p	attern		F	PIO patte	rn
Port	•	0	1	2	3	0	1	2
OUT0	PCMP	PEND	PE0	PEND	PEND	PEND	PE0	PEND
OUT1	PRUN	HEND	PE1	HEND	HEND	HEND	PE1	HEND
OUT2	PORG	ZONE	PE2	ZONE	ZONE	ZONE1	PE2	PZONE/ ZONE1
OUT3	APRC	*ALM	*ALM	*ALM	*ALM	*ALM	*ALM	*ALM
OUT4	SERC	0	0	0	0	0	0	0
OUT5	PRSS	0	0	0	0	0	0	0
OUT6	PSTP	0	0	0	0	0	0	0
OUT7	MPHM	0	0	0	0	0	0	0
OUT8	JDOK	0	0	0	0	0	0	0
OUT9	JDNG	0	0	0	0	0	0	0
OUT10	CEND	0	0	0	0	0	0	0
OUT11	RMDS	0	0	0	0	0	0	0
OUT12	HEND	0	0	0	0	0	0	0
OUT13	SV	0	0	0	0	0	0	0
OUT14	*ALM	0	0	0	0	0	0	0
OUT15	*ALML (Note)	0	0	0	0	0	0	0

6.4.12 Controller Status Signal Reading << DSS1>>

(1) Function

This query reads the internal status of the controller. [Refer to 4.3.2 (12), "Data of device status register 1".]

(2) Query format

Field	Number of characters	ASCII mode character string (fixed)	Remarks
Header	1	4.1	
Slave address [H]	2	Arbitrary	Axis number + 1 $(01_{H} \text{ to } 10_{H})$
Function code [H]	2	'0', '3'	Reading registers
Start address [H]	4	'9', '0', '0', '5'	Device status register 1
Number of registers [H]	4	'0', '0', '0', '1'	Reading address 9005 _H
Error check [H]	2	LRC calculation result	
Trailer	2	'CR', 'LF'	
Total number of bytes	17		

(3) Response format

7 (Teopolise message o			
Field	Number of characters	ASCII mode character	Remarks
		string (fixed)	
Header	1	.,,	
Slave address [H]	2	Arbitrary	Axis number + 1 $(01_{H} \text{ to } 10_{H})$
Function code [H]	2	'0', '3'	Reading registers
Number of data bytes [H]	2	'0', '2'	Reading 1 register = 2 bytes
Data [H]	4	Status 1	Status 1 [Hex]
Error check [H]	2	LRC calculation result	
Trailer	2	'CR', 'LF'	
Total number of bytes	15		

Modbus

(4) Sample query

A sample query that reads the device status (address 9005_{H}) in a controller of axis No. 0 is shown below.

Query: 01 03 90 05 00 01 66 [CR] [LF]

Field	ASCII mode	Converted ASCII
	fixed character string	code data [H]
Start	• • •	3A
Slave address [H]	'0', '1'	3031
Function code [H]	'0', '3'	3033
Start address [H]	'9', '0', '0', '5'	39303035
Number of registers [H]	'0', '0', '0', '1'	30303031
Error check [H]	'6', '6' (in accordance with LRC calculation)	3636
End	'CR', 'LF'	0D0A

The response to the query is as follows.

Response: 01 03 02 30 88 42 [CR] [LF]

Field	ASCII mode fixed character string	Converted ASCII code data [H]
Start		3A
Slave address [H]	'0', '1'	3031
Function code [H]	'0', '3'	3033
Number of data bytes [H]	'0', '2' (2 bytes = 1 register)	3032
Data 1 [H]	(3', '0', '8', '8'	33303838
Error check [H]	'4', '2' (in accordance with LRC calculation)	3432
End	'CR', 'LF'	0D0A

6.4.13 Controller Status Signal Reading 2 << DSS2>>

(1) Function

This query reads the internal status 2 of the controller. [Refer to 4.3.2 (13), "Data of device status register 2."]

(2) Query format

Field	Number of characters	ASCII mode character string (fixed)	Remarks
Header	1	,	
Slave address [H]	2	Arbitrary	Axis number + 1 $(01_{H} \text{ to } 10_{H})$
Function code [H]	2	'0', '3'	Reading registers
Start address [H]	4	'9', '0', '0', '6'	Device status register 2
Number of registers [H]	4	'0', '0', '0', '1'	Reading address 9006 _H
Error check [H]	2	LRC calculation result	
Trailer	2	'CR', 'LF'	
Total number of bytes	17		

(3) Response format

Field	Number of characters	ASCII mode character string (fixed)	Remarks
Header	1	.,,	
Slave address [H]	2	Arbitrary	Axis number + 1 $(01_{H} \text{ to } 10_{H})$
Function code [H]	2	'0', '3'	Internal controller status
Number of data bytes [H]	2	'0', '2'	Reading 1 register = 2 bytes.
Data [H]	4	Status 2	Status 2 [Hex]
Error check [H]	2	LRC calculation result	
Trailer	2	'CR', 'LF'	
Total number of bytes	15		

Modbus

(4) Sample query

A sample query that reads the device status 2 (address 9006_H) in a controller of axis No. 0 is shown below.

Query: 01 03 90 06 00 01 65 [CR] [LF]

Field	ASCII mode	Converted ASCII
	fixed character string	code data [H]
Start	· ·	3A
Slave address [H]	(0', '1'	3031
Function code [H]	(0', '3'	3033
Start address [H]	(9', '0', '0', '6'	39303036
Number of registers [H]	(0', '0', '0', '1'	30303031
Error check [H]	'6', '5' (In accordance with LRC calculation)	3635
End	'CR', 'LF'	0D0A

The response to the query is as follows. Response: 01 03 02 80 00 7A [CR] [LF]

	- · · · [- · ·] [- · ·]	
Field	ASCII mode	Converted ASCII
	fixed character string	code data [H]
Start	• • •	3A
Slave address [H]	'0', '1'	3031
Function code [H]	'0', '3'	3033
Number of data bytes [H]	'0', '2' (2 bytes = 1 register)	3032
Data 1 [H]	'8', '0', '0', '0'	38303030
Error check [H]	'7', 'A' (In accordance with LRC calculation)	3741
End	'CR', 'LF'	0D0A

6.4.14 Controller Status Signal Reading 3 << DSSE>>

(1) Function

Internal statuses (expansion device) of the controller are indicated. [Refer to 4.3.2 (14), "Data of expansion device status registers."]

(2) Query format

(=) Quoi y ioimat			
Field	Number of characters	ASCII mode character string (fixed)	Remarks
Header	1		
Slave address [H]	2	Arbitrary	Axis number + 1 $(01_{H} \text{ to } 10_{H})$
Function code [H]	2	'0', '3'	Reading registers
Start address [H]	4	'9', '0', '0', '7'	Expansion device status register
Number of registers [H]	4	'0', '0', '0', '1'	Reading address 9007 _H
Error check [H]	2	LRC calculation result	
Trailer	2	'CR', 'LF'	
Total number of bytes	17		

(3) Response format

7 (Teoponoe message o			
Field	Number of characters	ASCII mode character	Remarks
		string (fixed)	
Header	1	.,,	
Slave address [H]	2	Arbitrary	Axis number + 1
Slave address [rij	2	Arbitiary	(01 _H to 10 _H)
Function code [H]	2	'0', '3'	Reading registers
Number of data bytes [H]	2	'0', '2'	Reading 1 register
Number of data bytes [11]	2	0, 2	= 2 bytes.
Data [H]	4	Expansion status	Expansion status [Hex]
Error check [H]	2	LRC calculation result	
Trailer	2	'CR', 'LF'	
Total number of bytes	15		

Modbus

(4) Sample query

A sample query that reads the expansion device status (address $9007_{\rm H}$) in a controller of axis No. 0 is shown below.

Query: 01 03 90 07 00 01 64 [CR] [LF]

Field	ASCII mode fixed character string	Converted ASCII code data [H]
Start		3A
Slave address [H]	ʻ0', ʻ1'	3031
Function code [H]	'0', '3'	3033
Start address [H]	(9', '0', '0', '7'	39303037
Number of registers [H]	(0', '0', '0', '1'	30303031
Error check [H]	'6', '4' (In accordance with LRC calculation)	3634
End	'CR', 'LF'	0D0A

The response to the query is as follows.

Response: 01 03 02 33 C7 00 [CR] [LF]

Field	ASCII mode	Converted ASCII
	fixed character string	code data [H]
Start		3A
Slave address [H]	(0', '1'	3031
Function code [H]	'0', '3'	3033
Number of data bytes [H]	'0', '2' (2 bytes = 1 register)	3032
Data 1 [H]	(3', '3', 'C', '7'	33334337
Error check [H]	'0', '0' (In accordance with LRC calculation)	3030
End	'CR', 'LF'	0D0A

6.4.15 Controller Status Signal Reading 4 <<STAT>>

(1) Function

This query reads the internal operation status of the controller. [Refer to "4.3.2 (15) Data of system status register."]

(2) Query format

(L) Query format			
Field	Number of characters	ASCII mode character string (fixed)	Remarks
Header	1	.,,	
Slave address [H]	2	Arbitrary	Axis number + 1 $(01_{H} \text{ to } 10_{H})$
Function code [H]	2	'0', '3'	Reading registers
Start address [H]	4	'9', '0', '0', '8'	System status register
Number of registers [H]	4	'0', '0', '0', '2'	Reading addresses 9008 _H to 9009 _H
Error check [H]	2	LRC calculation result	
Trailer	2	'CR', 'LF'	
Total number of bytes	17		

(3) Response format

71100poneo mocoago o	ontains to bits of data p	ci regioter.	
Field	Number of characters	ASCII mode character	Remarks
		string (fixed)	
Header	1	· ·	
Slave address [H]	2	Arbitrary	Axis number + 1
Slave address [11]	2	Arbitrary	(01 _H to 10 _H)
Function code [H]	2	'0', '3'	Internal controller status
Number of data bytes [H]	2	'0', '4'	Reading 2 registers
Number of data bytes [11]	2	0,4	= 4 bytes.
Data [H]	8	System status	System status [Hex]
Error check [H]	2	LRC calculation result	
Trailer	2	'CR', 'LF'	
Total number of bytes	19		

A sample query that reads the system status (address 9008_{H}) in a controller of axis No. 0 is shown below.

Query: 01 03 90 08 00 02 62 [CR] [LF]

Field	ASCII mode	Converted ASCII
	fixed character string	code data [H]
Start	· ·	3A
Slave address [H]	(0', '1'	3031
Function code [H]	(0', '3'	3033
Start address [H]	(9', '0', '0', '8'	39303038
Number of registers [H]	(0', '0', '0', '2'	30303032
Error check [H]	'6', '2' (In accordance with LRC calculation)	3632
End	'CR', 'LF'	0D0A

The response to the query is as follows.

Response: 01 03 04 00 0C 00 11 DB [CR] [LF]

Field	ASCII mode fixed character string	Converted ASCII code data [H]
Start	i.,	3A
Slave address [H]	ʻ0', ʻ1'	3031
Function code [H]	'0', '3'	3033
Number of data bytes [H]	'0', '4' (4 bytes = 2 registers)	3034
Data 1 [H]	'0', '0', '0', 'C'	30303043
Data 2 [H]	(0', '0', '1', '1'	30303131
Error check [H]	'D', 'B' (In accordance with LRC calculation)	4442
End	'CR', 'LF'	0D0A

6.4.16 Current Speed Query << VNOW>>

(1) Function

The monitored data of actual motor speed is indicated. The value becomes positive or negative depending on the operating direction of the motor. The unit is 0.01 mm/sec.

(2) Query format

(2) Quoi y ioi inat			
Field	Number of characters	ASCII mode character string (fixed)	Remarks
Header	1		
Slave address [H]	2	Arbitrary	Axis number + 1 $(01_{H} \text{ to } 10_{H})$
Function code [H]	2	'0', '3'	Reading registers
Start address [H]	4	'9', '0', '0', 'A'	Current speed monitor
Number of registers [H]	4	'0', '0', '0', '2'	Reading addresses 900A _H to 900B _H
Error check [H]	2	LRC calculation result	
Trailer	2	'CR', 'LF'	
Total number of bytes	17		

(3) Response format

Field	Number of characters	ASCII mode character string (fixed)	Remarks
Header	1	.,,	
Slave address [H]	2	Arbitrary	Axis number + 1 $(01_{H} \text{ to } 10_{H})$
Function code [H]	2	'0', '3'	Reading registers
Number of data bytes [H]	2	'0', '4'	Reading 2 registers = 4 bytes
Data [H]	8	Current speed	Current speed [Hex] Indicated in units of 0.01 mm/sec.
Error check [H]	2	LRC calculation result	
Trailer	2	'CR', 'LF'	
Total number of bytes	19		

A sample query that reads the speed (address $900A_{H}$) of a controller of axis No. 0 is shown below.

Query: 01 03 90 0A 00 02 60 [CR] [LF]

Field	ASCII mode	Converted ASCII
	fixed character string	code data [H]
Start	· ·	3A
Slave address [H]	(0', '1'	3031
Function code [H]	'0', '3'	3033
Start address [H]	'9', '0', '0', 'A'	39303041
Number of registers [H]	'0', '0', '0', '2'	30303032
Error check [H]	'6', '0' (In accordance with LRC calculation)	3630
End	'CR', 'LF'	0D0A

The response to the query is as follows.

Response: 01 03 04 00 00 26 FC D6 [CR] [LF]

Field	ASCII mode	Converted ASCII
	fixed character string	code data [H]
Start	· ·	3A
Slave address [H]	(0', '1'	3031
Function code [H]	(0', '3'	3033
Number of data bytes [H]	'0', '4' (4 bytes = 2 registers)	3034
Data 1 [H]	(0', '0', '0', '0'	30303030
Data 2 [H]	'2', '6', 'F', 'C'	32364643
Error check [H]	'D', '6' (In accordance with LRC calculation)	4436
End	'CR', 'LF'	0D0A

The current speed is "000026FC" \rightarrow Convert into decimal number \rightarrow 9980 (× 0.01 mm/sec) The current speed monitor is 99.8 mm/sec.

6.4.17 Current Ampere Reading << CNOW>>

(1) Function

The monitored data of motor current is indicated in mA. The torque current command value is stored.

(2) Query format

(2) Quoi y format	Ta	40011 1 1	
Field	Number of characters	ASCII mode character	Remarks
		string (fixed)	
Header	1	·.,	
Clave address [LI]	2	A whiteness	Axis number + 1
Slave address [H]	2	Arbitrary	(01 _H to 10 _H)
Function code [H]	2	'0', '3'	Reading registers
Start address [H]	4	'9', '0', '0', 'C'	Current ampere monitor
Number of registers [L]	4	'O' 'O' 'O' 'O'	Reading addresses
Number of registers [H]	4	'0', '0', '0', '2'	900C _H to 900D _H
Error check [H]	2	LRC calculation result	
Trailer	2	'CR', 'LF'	
Total number of bytes	17		

(3) Response format

	ortains to bits of data p		
Field	Number of characters	ASCII mode character	Remarks
		string (fixed)	
Header	1	(,) •	
Slave address [H]	2	Arbitrary	Axis number + 1
Slave address [11]	2	Arbitrary	(01 _H to 10 _H)
Function code [H]	2	'0', '3'	Reading registers
Number of data bytes [H]	2	'0', '4'	Reading 2 registers
Number of data bytes [H]	2	0,4	= 4 bytes
Data [H]	8	Motor current monitor	Motor current monitor [Hex]
Data [11]	O	Woldi Current monitor	Indicated in mA.
Error check [H]	2	LRC calculation result	
Trailer	2	'CR', 'LF'	
Total number of bytes	19		

A sample query that reads the current ampere value (address $900C_{\text{H}}$) of a controller of axis No. 0 is shown below.

Query: 01 03 90 0C 00 02 5E [CR] [LF]

Field	ASCII mode	Converted ASCII
	fixed character string	code data [H]
Start	•	3A
Slave address [H]	'0', '1'	3031
Function code [H]	'0', '3'	3033
Start address [H]	'9', '0', '0', 'C'	39303043
Number of registers [H]	'0', '0', '0', '2'	30303032
Error check [H]	'5', 'E' (In accordance with LRC calculation)	3545
End	'CR', 'LF'	0D0A

The response to the query is as follows.

Response: 01 03 04 00 00 01 C8 2F [CR] [LF]

Field	ASCII mode	Converted ASCII
	fixed character string	code data [H]
Start		3A
Slave address [H]	(0', '1'	3031
Function code [H]	(0', '3'	3033
Number of data bytes [H]	'0', '4' (4 bytes = 2 registers)	3034
Data 1 [H]	(0', '0', '0', '0'	30303030
Data 2 [H]	'0', '1', 'C', '8'	30314338
Error check [H]	'2', 'F' (In accordance with LRC calculation)	3246
End	'CR', 'LF'	0D0A

The current ampere value is "000001C8" \rightarrow Convert into decimal number \rightarrow 456 (mA) The current ampere monitor value is 456 mA.

6.4.18 Deviation Reading << DEVI>>

(1) Function

This query reads the deviation over a 1-ms period between the position command value and the feedback value (actual position). The unit is pulse. The number of pulses per one motor revolution in mechanical angle varies depending on the encoder used.

(2) Query format

Field	Number of characters	ASCII mode character string (fixed)	Remarks
Header	1	.,,	
Slave address [H]	2	Arbitrary	Axis number + 1 $(01_{H} \text{ to } 10_{H})$
Function code [H]	2	'0', '3'	Reading registers
Start address [H]	4	'9', '0', '0', 'E'	Deviation monitor
Number of registers [H]	4	'0', '0', '0', '2'	Reading addresses 900E _H to 900F _H
Error check [H]	2	LRC calculation result	
Trailer	2	'CR', 'LF'	
Total number of bytes	17		

(3) Response format

Field	Number of characters	ASCII mode character	Remarks
		string (fixed)	
Header	1	.,,	
Slave address [H]	2	Arbitrary	Axis number + 1
Slave address [11]	2	Arbitrary	(01 _H to 10 _H)
Function code [H]	2	'0', '3'	Reading registers
Number of data bytes [H]	2	'0', '4'	Reading 2 registers
Number of data bytes [11]	2	0,4	= 4 bytes
Data (H)	8	Deviation monitor	Deviation monitor [Hex]
Data [H]	O	Deviation monitor	Indicated in pulses.
Error check [H]	2	LRC calculation result	
Trailer	2	'CR', 'LF'	
Total number of bytes	19		

A sample query that reads the deviation (address $900E_{\rm H}$) of a controller of axis No. 0 is shown below.

Query: 01 03 90 0E 00 02 5C [CR] [LF]

Field	ASCII mode	Converted ASCII
	fixed character string	code data [H]
Start		3A
Slave address [H]	(0', '1'	3031
Function code [H]	'0', '3'	3033
Start address [H]	'9', '0', '0', 'E'	39303045
Number of registers [H]	'0', '0', '0', '2'	30303032
Error check [H]	'5', 'C' (In accordance with LRC calculation)	3543
End	'CR', 'LF'	0D0A

The response to the query is as follows.

Response: 01 03 04 00 00 00 83 75 [CR] [LF]

Field	ASCII mode	Converted ASCII
	fixed character string	code data [H]
Start	· ·	3A
Slave address [H]	(0', '1'	3031
Function code [H]	(0', '3'	3033
Number of data bytes [H]	'0', '4' (4 bytes = 2 registers)	3034
Data 1 [H]	(0', '0', '0', '0'	30303030
Data 2 [H]	(0', '0', '8', '3'	30303833
Error check [H]	'7', '5' (In accordance with LRC calculation)	3735
End	'CR', 'LF'	0D0A

The deviation monitor is "00000083" \rightarrow Convert into decimal number \rightarrow 131 pulse The deviation over a 1-ms period between the position command value and the feedback value (actual position) is 131 pulses.

6.4.19 Total Time after Power On Reading <<STIM>>

(1) Function

This query reads the total time since the controller power was turned on. The unit is ms. This value is not cleared by a software reset.

(2) Query format

Field	Number of characters	ASCII mode character string (fixed)	Remarks
Header	1	'.'	
Slave address [H]	2	Arbitrary	Axis number + 1 $(01_{H} \text{ to } 10_{H})$
Function code [H]	2	'0', '3'	Reading registers
Start address [H]	4	'9', '0', '1', '0'	System timer
Number of registers [H]	4	'0', '0', '0', '2'	Reading addresses 9010 _H to 9011 _H
Error check [H]	2	LRC calculation result	
Trailer	2	'CR', 'LF'	
Total number of bytes	17		

(3) Response format

Field		ASCII mode character string (fixed)	Remarks
Header	1	(., ¹	
Slave address [H]	2	Arbitrary	Axis number + 1 (01 _H to 10 _H)
Function code [H]	2	'0', '3'	Reading registers
Number of data bytes [H]	2	'0', '4'	Reading 2 registers = 4 bytes
Data [H]	8	System timer	System timer [Hex] Indicated in ms.
Error check [H]	2	LRC calculation result	
Trailer	2	'CR', 'LF'	
Total number of bytes	19		

A sample query that reads the startup time (address 9010_{H}) of a controller of axis No. 0 is shown below.

Query: 01 03 90 10 00 02 5A [CR] [LF]

Field	ASCII mode	Converted ASCII
	fixed character string	code data [H]
Start	•	3A
Slave address [H]	'0', '1'	3031
Function code [H]	'0', '3'	3033
Start address [H]	'9', '0', '1', '0'	39303130
Number of registers [H]	'0', '0', '0', '2'	30303032
Error check [H]	'5', 'A' (In accordance with LRC calculation)	3541
End	'CR', 'LF'	0D0A

The response to the query is as follows.

Response: 01 03 04 02 38 C0 94 6A [CR] [LF]

Field	ASCII mode	Converted ASCII
	fixed character string	code data [H]
Start		3A
Slave address [H]	(0', '1'	3031
Function code [H]	(0', '3'	3033
Number of data bytes [H]	'0', '4' (4 bytes = 2 registers)	3034
Data 1 [H]	(0', '2', '3', '8'	30323338
Data 2 [H]	(C', '0', '9', '4'	43303934
Error check [H]	'6', 'A' (In accordance with LRC calculation)	3641
End	'CR', 'LF'	0D0A

The system timer value is "0238C094" \rightarrow Convert into decimal number \rightarrow 37273748 ms. The total time since the controller power is turned on is 10.3538 hours.

6.4.20 Special Input Port Input Signal Status Query <<SIPM>>

(1) Function

This query reads the status of input ports other than the normal input port. [Refer to 4.3.2 (16), "Data of special port monitor registers" for the data input via the special input port.]

(2) Query format

(2) Query formut			
Field	Number of characters	ASCII mode character string (fixed)	Remarks
Header	1		
Slave address [H]	2	Arbitrary	Axis number + 1 (01 _H to 10 _H)
Function code [H]	2	'0', '3'	Reading registers
Start address [H]	4	'9', '0', '1', '2'	Special port monitor
Number of registers [H]	4	'0', '0', '0', '1'	Reading address 9012 _H
Error check [H]	2	LRC calculation result	
Trailer	2	'CR', 'LF'	
Total number of bytes	17		

(3) Response format

Field	Number of characters	ASCII mode character string (fixed)	Remarks
Header	1	4,1	
Slave address [H]	2	Arbitrary	Axis number + 1 $(01_{H} \text{ to } 10_{H})$
Function code [H]	2	'0', '3'	Reading registers
Number of data bytes [H]	2	'0', '2'	Reading 1 register = 2 bytes
Data [H]	4	Special port monitor	Refer to 4.3.2 (16), "List table."
Error check [H]	2	LRC calculation result	
Trailer	2	'CR', 'LF'	
Total number of bytes	15		

A sample query that reads the special input port (address $9012_{\rm H}$) of a controller of axis No. 0 is shown below.

Query: 01 03 90 12 00 01 59 [CR] [LF]

Field	ASCII mode	Converted ASCII
	fixed character string	code data [H]
Start		3A
Slave address [H]	(0', '1'	3031
Function code [H]	(0', '3'	3033
Start address [H]	(9', '0', '1', '2'	39303132
Number of registers [H]	(0', '0', '0', '1'	30303031
Error check [H]	'5', '9' (in accordance with LRC calculation)	3539
End	'CR', 'LF'	0D0A

The response to the query is as follows.

Response: 01 03 02 03 00 F7

Field	ASCII mode	Converted ASCII
	fixed character string	code data [H]
Start		3A
Slave address [H]	(0', '1'	3031
Function code [H]	'0', '3'	3033
Number of data bytes [H]	'0', '2' (2 bytes = 1 register)	3032
Data 1 [H]	'0', '3', '0', '0'	30333030
Error check [H]	'F', '7' (in accordance with LRC calculation)	4637
End	'CR', 'LF'	0D0A

6.4.21 Zone Output Signal Status Reading <<ZONS>>

(1) Function

This query reads the status of zone output. [Refer to 4.3.2 (17), "Data of zone status registers."]

(2) Query format

Field	Number of characters	ASCII mode character string (fixed)	Remarks
Header	1	.,,	
Slave address [H]	2	Arbitrary	Axis number + 1 (01 _H to 10 _H)
Function code [H]	2	'0', '3'	Reading registers
Start address [H]	4	'9', '0', '1', '3'	Zone status query
Number of registers [H]	4	'0', '0', '0', '1'	Reading address 9013 _H
Error check [H]	2	LRC calculation result	
Trailer	2	'CR', 'LF'	
Total number of bytes	17		

(3) Response format

A response message contains to bits of data per register.			
Field	Number of characters	ASCII mode character string (fixed)	Remarks
Header	1		
Slave address [H]	2	Arbitrary	Axis number + 1 (01 _H to 10 _H)
Function code [H]	2	'0', '3'	Reading registers
Number of data bytes [H]	2	'0', '2'	Reading 1 register = 2 bytes
Data [H]	4	Zone status	Refer to 4.3.2 (17), "List table."
Error check [H]	2	LRC calculation result	
Trailer	2	'CR', 'LF'	
Total number of bytes	15		

A sample query that reads the zone status (address 9013_{H}) of a controller of axis No. 0 is shown below.

Query: 01 03 90 13 00 01 58 [CR] [LF]

Field	ASCII mode	Converted ASCII
	fixed character string	code data [H]
Start		3A
Slave address [H]	(0', '1'	3031
Function code [H]	'0', '3'	3033
Start address [H]	(9', '0', '1', '3'	39303133
Number of registers [H]	(0', '0', '0', '1'	30303031
Error check [H]	'5', '8' (In accordance with LRC calculation)	3538
End	'CR', 'LF'	0D0A

The response to the query is as follows. Response: 01 03 02 00 00 FA [CR] [LF]

11c3ponse. 01 03 02 00 0		
Field	ASCII mode	Converted ASCII
	fixed character string	code data [H]
Start	•	3A
Slave address [H]	(0', '1'	3031
Function code [H]	(0', '3'	3033
Number of data bytes [H]	'0', '2' (2 bytes = 1 register)	3032
Data 1 [H]	(0', '0', '0', '0'	30303030
Error check [H]	'F', 'A' (In accordance with LRC calculation)	4641
End	'CR', 'LF'	0D0A

6.4.22 Position Complete Number Query << POSS>> Exected Program Number Register (Servo Press Type) << POSS>>

(1) Function

This query reads the position complete number or exected program number. [Refer to "4.3.2 (18) Data of position number status register."]

(2) Query format

(2) Quory format			
Field	Number of characters	ASCII mode character string (fixed)	Remarks
Header	1	·.,	
Slave address [H]	2	Arbitrary	Axis number + 1 $(01_{H} \text{ to } 10_{H})$
Function code [H]	2	'0', '3'	Reading registers
Start address [H]	4	'9', '0', '1', '4'	Position number/Exected program number status
Number of registers [H]	4	'0', '0', '0', '1'	Reading address 9014 _H
Error check [H]	2	LRC calculation result	
Trailer	2	'CR', 'LF'	
Total number of bytes	17		·

(3) Response format

Field	Number of characters	ASCII mode character string (fixed)	Remarks
Header	1	.,,	
Slave address [H]	2	Arbitrary	Axis number + 1 $(01_{H} \text{ to } 10_{H})$
Function code [H]	2	'0', '3'	Reading registers
Number of data bytes [H]	2	'0', '2'	Reading 1 register = 2 bytes
Data [H]	4	Position number/Exected program number status	Refer to 4.3.2 (18), "List table."
Error check [H]	2	LRC calculation result	
Trailer	2	'CR', 'LF'	
Total number of bytes	15		

A sample query that reads the position complete (address 9014_{H}) of a controller of axis No. 0 is shown below.

Query: 01 03 90 14 00 01 57 [CR] [LF]

Field	ASCII mode	Converted ASCII
	fixed character string	code data [H]
Start	· ·	3A
Slave address [H]	(0', '1'	3031
Function code [H]	(0', '3'	3033
Start address [H]	(9', '0', '1', '4'	39303134
Number of registers [H]	(0', '0', '0', '1'	30303031
Error check [H]	'5', '7' (in accordance with LRC calculation)	3537
End	'CR', 'LF'	0D0A

The response to the query is as follows. Response: 01 03 02 00 00 FA [CR] [LF]

Field	ASCII mode fixed character string	Converted ASCII code data [H]
Start		3A
Slave address [H]	(0', '1'	3031
Function code [H]	'0', '3'	3033
Number of data bytes [H]	'0', '2' (2 bytes = 1 register)	3032
Data 1 [H]	'0', '0', '0', '0'	30303030
Error check [H]	'F', 'A' (in accordance with LRC calculation)	4641
End	'CR', 'LF'	0D0A

6.4.23 Controller Status Signal 5 <<SSSE>>

(1) Function

This query reads the internal operation status of the controller. [Refer to 4.3.2 (19), "Data of expansion system status register."]

(2) Query format

(L) Query formut			
Field	Number of characters	ASCII mode character string (fixed)	Remarks
		stilly (lixed)	
Header	1	·.,	
Clave address [L]	2	A shitson :	Axis number + 1
Slave address [H]	2	Arbitrary	(01 _H to 10 _H)
Function code [H]	2	'0', '3'	Reading registers
Start address [L]	4	'9', '0', '1', '5'	Expansion system status
Start address [H]	4	9,0,1,5	register
Number of registers [H]	1	'0', '0', '0', '1'	Reading address 9015 _H
Error check [H]	2	LRC calculation result	-
Trailer	2	'CR', 'LF'	
Total number of bytes	14		

(3) Response format

Field	Number of characters	ASCII mode character string (fixed)	Remarks
Header	1	(
Slave address [H]	2	Arbitrary	Axis number + 1 $(01_{H} \text{ to } 10_{H})$
Function code [H]	2	'0', '3'	Internal status of controller
Number of data bytes [H]	2	'0', '2'	Reading 1 registers = 2 bytes
Data [H]	4	Expansion system status	Expansion system status [Hex]
Error check [H]	2	LRC calculation result	
Trailer	2	'CR', 'LF'	
Total number of bytes	15		

(4) Query sample

A sample query that reads the expansion system status register (address 9015_H) of a controller of axis No. 0 is shown below.

Query: 01039015000156 [CR] [LF]

Field	ASCII mode fixed character string	Converted ASCII code data [H]
Start		3A
Slave address [H]	'0', '1'	3031
Function code [H]	'0', '3'	3033
Start address [H]	'9', '0', '1', '5'	39303135
Number of registers [H]	(0', '0', '0', '1'	30303031
Error check [H]	'5', '6' (in accordance with LRC	3536
	calculation)	
End	'CR', 'LF'	0D0A

The response to the query is as follows.

Response: 0103020100F9 [CR] [LF]

Field	ASCII mode fixed character string	Converted ASCII code data [H]
Start		3A
Slave address [H]	(0', '1'	3031
Function code [H]	'0', '3'	3033
Number of data bytes [H]	'0', '2' (2 bytes = 1 register)	3032
Data 1 [H]	(0', '1', '0', '0'	30313030
Error check [H]	'F', '9' (in accordance with LRC calculation)	4639
End	'CR', 'LF'	0D0A

6.4.24 Current Load Reading <<FBFC>> --- SCON-CA/CB Only

(1) Function

The monitored data of load cell measurement (push force) is read. The unit is $0.01\ N.$

(2) Query format

(=) 4.0.013 10111141			
Field	Number of characters	ASC II mode character string (fixed)	Remarks
Header	1	.,	
Slave address [H]	2	Arbitrary	Axis number + 1 (01 _H to 10_H)
Function code [H]	2	'0', '3'	Register reading
Start address [H]	4	'9', '0', '1', 'E'	Force feedback monitor
Number of registers [H]	4	'0', '0', '0', '2'	Reading address 901E _H to 901F _H
Error check [H]	2	LRC calculation result	
Trailer	2	'CR', 'LF'	
Total number of bytes	17		

(3) Response format

Field	Number of characters	ASC II mode character string (fixed)	Remarks
Header	1	.,,	
Slave address [H]	2	Arbitrary	Axis number + 1 (01 _H to 10_H)
Function code [H]	2	'0', '3'	Register reading
Number of data bytes [H]	2	'0, '4'	Reading 2 register = 4 bytes
Data [H]	8	Position number status	Current push force [N] Unit: 0.01 N
Error check [H]	2	LRC calculation result	
Trailer	2	'CR', 'LF'	
Total number of bytes	19		

(4) Query sample

An example of use is shown, where the current measurement on the load cell connected to controller axis 0 is read.

Query: 01 03 90 0A 00 02 4C [CR] [LF]

Field	Fixed character strings in ASCII mode	Converted ASCII code data [H]
Start	•	3A
Slave address [H]	'0', '1'	3031
Function code [H]	'0', '3'	3033
Start address [H]	'9', '0', '1', 'E'	39393145
Number of registers [H]	'0', '0', '0', '2'	30303032
Error check [H]	'4', 'C' (in accordance with LRC calculation)	3443
End	'CR', 'LF'	0D0A

The response (Note 1) to the query is as follows.

Response: 01 03 04 00 00 03 E4 [CR] [LF]

Field	Fixed character strings in ASCII mode	Converted ASCII code data [H]
Start	•	3A
Slave address [H]	'0', '1'	3031
Function code [H]	'0', '3'	3033
Number of data bytes [H]	'0', '4' (2 bytes = 1 register)	3034
Data 1 [H]	'0', '0', '0', '0'	30303030
Data 2 [H]	'0', '3', 'E', '4'	30334534
Error check [H]	'1', '1' (in accordance with LRC calculation)	3131
End	'CR', 'LF'	0D0A

- Example 1) The current measurement on the load cell is "000003E4," which is convert into a decimal number, or 996 (× 0.01 N) → The current push force is 9.96 N.
- Example 2) If the current measurement reading on the load cell is "FFFFF35" (tensile state^(Note 2)), the formula FFFFFFF_H − FFFFFF35_H + 1 (1 must be added) applies. The result is converted into decimal number, or 203 (× 0.01 N) → The current tensile force^(Note 2) is 2.03 N.
- Note 1 This is only one example of response. The specific response varies depending on each situation.
- Note 2 If a force is applied in the tensile direction, the load cell will break.

6.4.25 Overload Lebel Monitor Reading << OLLV>> --- SCON-CA/CAL/CB Only

(1) Function

Current load level to the motor is read in ratio.

The unit is 1 %.

[Refer to 4.3.2 (20) Overload level monitors]

(2) Query format

Field	Number of characters	ASC II mode character string (fixed)	Remarks
Header	1	(,) •	
Slave address [H]	2	Arbitrary	Axis number + 1 (01 _H to 10_H)
Function code [H]	2	'0', '3'	Register reading
Start address [H]	4	'9', '0', '2', '0'	Overload lebel monitor
Number of registers [H]	4	'0', '0', '0', '2'	Reading address 9020 _H to 9021 _H
Error check [H]	2	LRC calculation result	
Trailer	2	'CR', 'LF'	
Total number of bytes	17		

(3) Response format

Field	Number of characters	ASC II mode character string (fixed)	Remarks
Header	1	· ·	
Slave address [H]	2	Arbitrary	Axis number + 1 (01 _H to 10_H)
Function code [H]	2	'0', '3'	Register reading
Number of data bytes [H]	2	ʻ0, ʻ4'	Reading 2 register = 4 bytes
Data [H]	8	Overload lebel	Unit: 1 %
Error check [H]	2	LRC calculation result	
Trailer	2	'CR', 'LF'	
Total number of bytes	19		

(4) Query sample

An example of use is shown, where the overload level on the actuator connected to controller axis 0 is read.

Query: 01 03 90 20 00 02 4A [CR] [LF]

Field	Fixed character strings in ASCII mode	Converted ASCII code data [H]
Start	•	3A
Slave address [H]	'0', '1'	3031
Function code [H]	'0', '3'	3033
Start address [H]	(9', '0', '2', '0'	39393230
Number of registers [H]	'0', '0', '0', '2'	30303032
Error check [H]	'4', 'A' (in accordance with LRC calculation)	3441
End	'CR', 'LF'	0D0A

The response $^{(Note\ 1)}$ to the query is as follows.

Response: 01 03 04 00 00 00 46 B2 [CR] [LF]

Field	Fixed character strings in ASCII mode	Converted ASCII code data [H]
Start		3A
Slave address [H]	'0', '1'	3031
Function code [H]	'0', '3'	3033
Number of data bytes [H]	'0', '4' (4 bytes = 2 register)	3034
Data 1 [H]	'0', '0', '0', '0'	30303030
Data 1 [H]	'0', '0', '4', '6'	30303436
Error check [H]	'B', '2' (in accordance with LRC calculation)	4232
End	'CR', 'LF'	0D0A

Example 1) The current overload level is "00000046," is convert into a decimal number → 70 → The current load level is 70 %.

Note 1 This is only one example of response. The specific response varies depending on each situation.

6.4.26 Press Program Alarm Code Reading <<ALMP>> --- Servo Press Type Only

(1) Function

Codes to show the press program condition or alarm status are read.

00_H is stored in the normal condition.

[Refer to instruction manual of servo press type controller for alarm code for details]

[Refer to 4.3.2 (21) Press program alarm codes]

(2) Query format

Field	Number of characters	ASC II mode character string (fixed)	Remarks
Header	1	· . · · · · · · · · · · · · · · · · · ·	
Slave address [H]	2	Arbitrary	Axis number + 1 (01 _H to 10_H)
Function code [H]	2	'0', '3'	Register reading
Start address [H]	4	'9', '0', '2', '2'	Current generated alarm code
Number of registers [H]	4	'0', '0', '0', '1'	Reading address 9022 _H
Error check [H]	2	LRC calculation result	
Trailer	2	'CR', 'LF'	
Total number of bytes	17		

(3) Response format

Field	Number of	ASC II mode character	Remarks
	characters	string (fixed)	
Header	1	· . · · · · · · · · · · · · · · · · · ·	
Slave address [H]	2	Arbitrary	Axis number + 1 (01 _H to 10_H)
Function code [H]	2	'0', '3'	Register reading
Number of data bytes [H]	2	'0, '2'	Reading 1 register = 2 bytes
Data [H]	4	Alarm code	Alarm code [Hex]
Error check [H]	2	LRC calculation result	
Trailer	2	'CR', 'LF'	
Total number of bytes	15		

(4) Query sample

An example of use is shown, where the alarm code (address $9022_{\rm H}$) on the press program connected to controller axis 0 is read.

Query: 01 03 90 22 00 01 49 [CR] [LF]

Field	Fixed character strings in ASCII mode	Converted ASCII code data [H]
Start	•	3A
Slave address [H]	'0', '1'	3031
Function code [H]	'0', '3'	3033
Start address [H]	'9', '0', '2', '2'	39303232
Number of registers [H]	'0', '0', '0', '1'	30303031
Error check [H]	'4', '9' (in accordance with LRC calculation)	3439
End	'CR', 'LF'	0D0A

The response $^{\mbox{\scriptsize (Note 1)}}$ to the query is as follows.

Response: 01 03 02 00 03 F7 [CR] [LF]

Field	Fixed character strings in ASCII mode	Converted ASCII code data [H]
Start	4.7	3A
Slave address [H]	'0', '1'	3031
Function code [H]	'0', '3'	3033
Number of data bytes [H]	'0', '2' (2 bytes = 1 register)	3032
Data 1 [H]	'0', '0', '0', '3'	30303033
Error check [H]	'F', '7' (in accordance with LRC calculation)	4637
End	'CR', 'LF'	0D0A

The alarm issued in this example is "0003" ... It is the program startup alarm at axis operation. [Refer to instruction manual of servo press type controller for alarm code for details]

Note 1 This is only one example of response. The specific response varies depending on each situation.

6.4.27 Alarm Generated Press Program Reading <<ALMP>> --- Servo Press Type Only

(1) Function

The press program number that an alarm is issued is read. 00_H is stored in the normal condition. [Refer to 4.3.2 (22) Alarm generated press program No.]

(2) Query format

(=) 4.0.0.3 .0			
Field	Number of characters	ASC II mode character string (fixed)	Remarks
Start	1		
Slave address [H]	2	Arbitrary	Axis number + 1 (01 _H to 10_H)
Function code [H]	2	'0', '3'	Register reading
Start address [H]	4	'9', '0', '2', '3'	Alarm generated program number
Number of registers [H]	4	'0', '0', '0', '1'	Reading address 9023 _H
Error check [H]	2	LRC calculation result	
Trailer	2	'CR', 'LF'	
Total number of bytes	17		

(3) Response format

A response message	CONTAINS TO DIE	or data per register.	
Field	Number of characters	ASC II mode character string (fixed)	Remarks
Start	1	· ·	
Slave address [H]	2	Arbitrary	Axis number + 1 (01 _H to 10_H)
Function code [H]	2	'0', '3'	Register reading
Number of data bytes [H]	2	'0, '2'	Reading 1 register = 2 bytes
Data [H]	4	Program number	Program number [Hex]
Error check [H]	2	LRC calculation result	
Trailer	2	'CR', 'LF'	
Total number of bytes	15		

(4) Query sample

An example of use is shown, where the press program alarm No. to controller axis 0 is read.

Query: 01 03 90 23 00 01 48 [CR] [LF]

Field	Fixed character strings in ASCII mode	Converted ASCII code data [H]
Start		3A
Slave address [H]	'0', '1'	3031
Function code [H]	'0', '3'	3033
Start address [H]	(9', '0', '2', '3'	39303233
Number of registers [H]	'0', '0', '0', '1'	30303031
Error check [H]	'4', '8' (in accordance with LRC calculation)	3438
End	'CR', 'LF'	0D0A

The response ^(Note 1) to the query is as follows. Response: 01 03 02 00 05 F5 [CR] [LF]

Field	Fixed character strings in ASCII mode	Converted ASCII code data [H]
Start	•	3A
Slave address [H]	'0', '1'	3031
Function code [H]	'0', '3'	3033
Number of data bytes [H]	'0', '2' (2 bytes = 1 register)	3032
Data 1 [H]	(0', '0', '0', '5'	30303035
Error check [H]	'F', '5' (in accordance with LRC calculation)	4635
End	'CR', 'LF'	0D0A

The press program number that an alarm has been issued in this example is No. 5.

Note 1 This is only one example of response. The specific response varies depending on each situation.

6.4.28 Press Program Status Register Reading << PPST>> --- Servo Press Type Only

(1) Function

Internal operation condition in the press program is read. [Refer to 4.3.2 (23) Press program status registers]

(2) Query format

(=) ((a) (1) (1) (1)			
Field	Number of characters	ASC II mode character string (fixed)	Remarks
Start	1	.,	
Slave address [H]	2	Arbitrary	Axis number + 1 (01 _H to 10_H)
Function code [H]	2	'0', '3'	Register reading
Start address [H]	4	'9', '0', '2', '4'	Press program status register
Number of registers [H]	4	'0', '0', '0', '1'	Reading address 9024 _H
Error check [H]	2	LRC calculation result	
Trailer	2	'CR', 'LF'	
Total number of bytes	17		

(3) Response format

Field	Number of characters	ASC II mode character string (fixed)	Remarks
Start	1		
Slave address [H]	2	Arbitrary	Axis number + 1 (01 _H to 10_H)
Function code [H]	2	'0', '3'	Register reading
Number of data bytes [H]	2	'0, '2'	Reading 1 register = 2 bytes
Data [H]	4	Press program status register	Press program status [Hex]
Error check [H]	2	LRC calculation result	
Trailer	2	'CR', 'LF'	
Total number of bytes	15		

(4) Query sample

An example of use is shown, where the press program status (address 9024_{H}) connected to controller axis 0 is read.

Query: 01 03 90 24 00 01 47 [CR] [LF]

Field	Fixed character strings in ASCII mode	Converted ASCII code data [H]
Start	•	3A
Slave address [H]	'0', '1'	3031
Function code [H]	'0', '3'	3033
Start address [H]	'9', '0', '2', '4'	39303234
Number of registers [H]	'0', '0', '0', '1'	30303031
Error check [H]	'4', '7' (in accordance with LRC calculation)	3437
End	'CR', 'LF'	0D0A

The response (Note 1) to the query is as follows.

Response: 01 03 02 01 02 05 [CR] [LF]

Field	Fixed character strings in ASCII mode	Converted ASCII code data [H]
Start		3A
Slave address [H]	'0', '1'	3031
Function code [H]	'0', '3'	3033
Number of data bytes [H]	'0', '2' (2 bytes = 1 register)	3032
Data 1 [H]	'0', '1', '0', '2'	30313032
Error check [H]	'0', '5' (in accordance with LRC calculation)	3035
End	'CR', 'LF'	0D0A

Note 1 This is only one example of response. The specific response varies depending on each situation.

6.4.29 Press Program Judgement Status Register Reading <<PPJD>> --- Servo Press Type Only

(1) Function

Judgement condition in the press program is read. [Refer to 4.3.2 (24) Press program judgement status registers]

(2) Query format

Field	Number of characters	ASC II mode character string (fixed)	Remarks
Start	1	.,	
Slave address [H]	2	Arbitrary	Axis number + 1 (01 _H to 10_H)
Function code [H]	2	'0', '3'	Register reading
Start address [H]	2	'9', '0', '2', '5'	Press program status register
Number of registers [H]	4	'0', '0', '0', '1'	Reading address 9025 _H
Error check [H]	2	LRC calculation result	
Trailer	2	'CR', 'LF'	
Total number of bytes	15		

(3) Response format

A response message contains 16 bits of data per register.

Field	Number of characters	ASC II mode character string (fixed)	Remarks
Start	1	-	
Slave address [H]	2	Arbitrary	Axis number + 1 (01 _H to 10_H)
Function code [H]	2	'0', '3'	Register reading
Number of data bytes [H]	2	'0, '2'	Reading 1 register = 2 bytes
Data [H]	4	Press program judgement status register	Press program judgement status [Hex]
Error check [H]	2	LRC calculation result	
Trailer	2	'CR', 'LF'	
Total number of bytes	15		

(4) Query sample

An example of use is shown, where the press program status (address 9025_H) connected to controller axis 0 is read.

Query: 01 03 90 25 00 01 46 [CR] [LF]

Field	Fixed character strings in ASCII mode	Converted ASCII code data [H]
Start		3A
Slave address [H]	ʻ0', ʻ1'	3031
Function code [H]	'0', '3'	3033
Start address [H]	(9', '0', '2', '5')	39303235
Number of registers [H]	'0', '0', '0', '1'	30303031
Error check [H]	'4', '6' (in accordance with LRC	3436
Endi check [H]	calculation)	
End	'CR', 'LF'	0D0A

The response $^{(Note\ 1)}$ to the query is as follows.

Response: 01 03 02 01 05 F4 [CR] [LF]

Field	Fixed character strings in ASCII mode	Converted ASCII code data [H]
Start	4.7	3A
Slave address [H]	(0', '1'	3031
Function code [H]	'0', '3'	3033
Number of data bytes [H]	'0', '2' (2 bytes = 1 register)	3032
Data 1 [H]	(0', '1', '0', '5'	30313035
Error check [H]	'F', '4' (in accordance with LRC calculation)	4634
End	'CR', 'LF'	0D0A

Note 1 This is only one example of response. The specific response varies depending on each situation.

Symbol

ENMV

PHOM

SSTP

FPST

PSTR

Operation Commands and Data Rewrite (Used function code 05) 6.5

6.5.1 **Writing to Coil**

Please refer to "6.2 ASCII Code Table."

Function

Axis operation permission

Program home return movement

Search stop

Program compulsoly finish

Program start

(1) Function

Change (write) the status of DO (Discrete Output) of a slave to either ON or OFF. In case of broadcast transmission, the coils at the specified address of all slaves are rewritten.

(2) Start address list

(2) Start address list				
Start address [H]	Symbol	Function	Start address [H]	
0401	SFTY	Safety speed command	049B	
0403	SON	Servo ON command	049C	
0407	ALRS	Alarm reset command	049D	
0408	BKRL	Brake forced-release command	049E	
040A	STP	Pause command	049F	
040B	HOME	Home return command		
040C	CSTR	Positioning start command		
0411	JISL	Jog/inch switching		
0414	MOD	Teaching mode command		
0415	TEAC	Position data load command		
0416	JOG+	Jog+ command		
0417	JOG-	Jog- command		
0418	ST7	Start position 7		
		(solenoid valve mode)		
0419	ST6	Start position 6		
		(solenoid valve mode)		
041A	ST5	Start position 5		
		(solenoid valve mode)		
041B	ST4	Start position 4		
		(solenoid valve mode)		
041C	ST3	Start position 3		
0.145	0.70	(solenoid valve mode)		
041D	ST2	Start position 2		
0445	0.74	(solenoid valve mode)		
041E	ST1	Start position 1		
0445	CTO	(solenoid valve mode)		
041F	ST0	Start position 0		
		(solenoid valve mode) Load cell calibration		
0426	CLBR			
0427	PMSL	command		
U42 <i>1</i>		PIO/Modbus switching specification		
042C	STOP	Deceleration stop		

6.5.2 Safety Speed Enable/Disable Switching (SFTY)

(1) Function

This query enables/disables the speed specified by user parameter No. 35, "Safety speed." Enabling the safety speed in the MANU mode will limit the speeds of all movement commands.

(2) Query format

(L) Gaciy format			
Field	Number of characters	ASCII mode character string (fixed)	Remarks
Header	1	.,	
Slave address [H]	2	Arbitrary	Axis number + 1 (01 _H to 10 _H) 00 _H when broadcast is specified
Function code [H]	2	'0', '5'	Write to a single coil DO.
Start address [H]	4	'0', '4' '0', '1'	Safety speed command
Changed data [H]	4	Arbitrary	Safety speed enabled: 'F', 'F', '0', '0' Safety speed disabled: '0', '0', '0', '0'
Error check [H]	2	LRC calculation result	
Trailer	2	'CR', 'LF'	
Total number of bytes	17		

(3) Response

A sample query that enables the safety speed of a controller of axis No. 0 is shown below. Query: 01 05 04 01 FF 00 F6

Query. Of 00 0+ 0111 0	0.0	
Field	ASCII mode 8-bit data	Converted ASCII
		code data [H]
Start		3A
Slave address [H]	'0', '1'	3031
Function code [H]	'0', '5'	3035
Start address [H]	'0', '4', '0', '1'	30343031
Changed data [H]	'F', 'F', '0', '0'	46463030
Error check [H]	'F', '6' (In accordance with LRC calculation)	4636
End	'CR', 'LF'	0D0A

6.5.3 Servo ON/OFF <<SON>>

(1) Function

Control ON/OFF of the servo.

When "Servo ON" is specified by the new data, the servo will turn ON after elapse of the manufacturer parameter "Servo ON delay time." However, the following conditions must be satisfied:

- The EMG status bit in device status register 1 is 0.
- The major failure status bit in device status register 1 is 0.
- The enable status bit in device status register 2 is 1.
- The auto servo OFF status in the system status register is 0.

(2) Query Format

Field	Number of characters	ASCII mode character string (fixed)	Remarks
Header	1	٠., ·	
Slave address [H]	2	Arbitrary	Axis number + 1 (01 _H to 10 _H) 00 _H when broadcast is specified
Function code [H]	2	'0', '5'	Write to a single coil DO
Start address [H]	4	'0', '4' '0', '3'	Servo ON/OFF command
Changed data [H]	4	Arbitrary	Servo ON: 'F', 'F', '0', '0' Servo OFF: '0', '0', '0', '0'
Error check [H]	2	LRC calculation result	
Trailer	2	'CR', 'LF'	
Total number of bytes	17		

Note If a teaching pendant or PC software is connected, the servo is turned OFF, and then the teaching pendant/PC software is removed, all before the control establishes communication with the host, the servo cannot be turned ON/OFF via commands received from with the host.

In this case, restore the controller power, or make sure the connected tool of the SIO port is removed while the servo is ON.

(3) Response

A sample query that turns the servo of a controller of axis No. 0 on is shown below. Query: 01 05 04 03 FF 00 F4

Query. Or oo o+ oo rr oo		
Field	ASCII mode 8-bit data	Converted ASCII
		code data [H]
Start		3A
Slave address [H]	'0', '1'	3031
Function code [H]	ʻ0', ʻ5'	3035
Start address [H]	(0', '4', '0', '3'	30343033
Changed data [H]	'F', 'F', '0', '0'	46463030
Error check [H]	'F', '4' (In accordance with LRC calculation)	4634
End	'CR', 'LF'	0D0A

6.5.4 Alarm Reset <<ALRS>>

(1) Function

When the alarm reset edge is turned on (the data is first set to $FF00_H$ and then changed to 0000_H), alarms will be reset.

If any alarm cause has not been removed, the same alarm will be generated again. If the alarm reset edge is turned on while the actuator is paused, **the remaining travel will be cancelled**. When alarms are reset, make sure to write changed data of 0000_H to restore the normal status.

(2) Query format

Field	Number of characters	ASCII mode character string (fixed)	Remarks
Header	1	٠.,	
Slave address [H]	2	Arbitrary	Axis number + 1 (01 _H to 10 _H) 00 _H when broadcast is specified
Function code [H]	2	'0', '5'	Write to a single coil DO.
Start address [H]	4	'0', '4' '0', '7'	Alarm reset command
Changed data [H]	4	Arbitrary	Execute alarm reset: 'F', 'F', '0', '0' Normal: '0', '0', '0', '0'
Error check [H]	2	LRC calculation result	
Trailer	2	'CR', 'LF'	
Total number of bytes	17		

(3) Response

(4) Query sample

A sample query that resets the alarms of a controller of axis No. 0 is shown below.

First time 01 05 04 07 FF 00 F0 --- Execute alarm reset Second time 01 05 04 07 00 00 EF --- Restore normal status

Field	ASCII mode 8-bit data	Converted ASCII
		code data [H]
Start		3A
Slave address [H]	'0', '1'	3031
Function code [H]	'0', '5'	3035
Start address [H]	'0', '4', '0', '7'	30343037
Changed data [H]	First time: 'F', 'F', '0', '0'	46463030
	Second time: '0', '0', '0', '0'	30303030
	(Write 0000 _H after resetting alarms to restore	
	the normal status.)	
Error check [H]	First time: 'F', '0' (in accordance with LRC	4630
	calculation)	
	Second time: 'E', 'F' (in accordance with	4546
	LRC calculation)	
End	'CR', 'LF'	0D0A

6.5.5 Brake Forced Release << BKRL>>

(1) Function

Brake control is linked to servo ON/OFF. The brake can be forcefully released even when the servo is ON.

(2) Query format

(=) Quoi y ioiiniat			
Field	Number of characters	ASCII mode character string (fixed)	Remarks
Header	1	·.·	
Slave address [H]	2	Arbitrary	Axis number + 1 (01 _H to 10 _H) 00 _H when broadcast is specified
Function code [H]	2	'0', '5'	Write to a single coil DO
Start address [H]	4	'0', '4' '0', '8'	Break forced-release command
Changed data [H]	4	Arbitrary	Brake forced release: 'F', 'F', '0', '0' Normal: '0', '0', '0', '0'
Error check [H]	2	LRC calculation result	
Trailer	2	'CR', 'LF'	
Total number of bytes	17		

Note If a teaching pendant or PC software is connected, the servo is turned OFF, and then the teaching pendant/PC software is removed, all before the control establishes communication with the host, the servo cannot be turned ON/OFF via commands received from with the host. In this case, restore the controller power, or make sure the connected tool of the SIO port is removed while the servo is ON.

(3) Response

A sample query that forcefully releases the brake of a controller of axis No. 0 is shown below. Query: 01 05 04 08 FF 00 EF

Query. Of 00 0+ 00 ff 00		
Field	ASCII mode 8-bit data	Converted ASCII
		code data [H]
Start	••	3A
Slave address [H]	'0', '1'	3031
Function code [H]	'0', '5'	3035
Start address [H]	'0', '4', '0', '8'	30343038
Changed data [H]	'F', 'F', '0', '0'	46463030
Error check [H]	'E', 'F' (In accordance with LRC calculation)	4546
End	'CR', 'LF'	0D0A

6.5.6 Pause <<STP>>

(1) Function

If the pause command is transmitted during movement, the actuator decelerates and stops. If the status is set back to normal again, the actuator resumes moving for the remaining distance. As long as the pause command is being transmitted, all motor movement is inhibited. If the alarm reset command bit is set while the actuator is paused, the remaining travel will be cancelled.

If this bit is set during home return, the movement command will be held if the actuator has not yet reversed after contacting the mechanical end. If the actuator has already reversed after contacting the mechanical end, home return will be repeated from the beginning.

(2) Query format

Field	Number of characters	ASCII mode character string (fixed)	Remarks
Header	1	٠.,٠ •	
Slave address [H]	2	Arbitrary	Axis number + 1 (01 _H to 10_H)
Function code [H]	2	'0', '5'	Write to a single coil DO.
Start address [H]	4	'0', '4' '0', 'A'	Pause command
Changed data [H]	4	Arbitrary	Pause command: 'F', 'F', '0', '0' Normal: '0', '0', '0', '0'
Error check [H]	2	LRC calculation	
		result	
Trailer	2	'CR', 'LF'	
Total number of bytes	17		

(3) Response

A sample query that pauses a controller of axis No. 0 is shown below. Query: 01 05 04 0A FF 00 ED

Field	ASCII mode 8-bit data	Converted ASCII
		code data [H]
Start	•	3A
Slave address [H]	'0', '1'	3031
Function code [H]	'0', '5'	3035
Start address [H]	'0', '4', '0', 'A'	30343041
Changed data [H]	'F', 'F', '0', '0'	46463030
Error check [H]	'E', 'D' (in accordance with LRC calculation)	4544
End	'CR', 'LF'	0D0A

6.5.7 Home return <<HOME>>

(1) Function

Home return operation will start if a rising edge in the home return command signal is detected (the data is first set to 0000_H and then changed to $FF00_H$). Once the home return is completed, the HEND bit will become 1. This command can be input as many times as desired even after home return has been completed once.

(2) Query format

(=) \(\alpha \) (0.111.41			
Field	Number of characters	ASCII mode character string (fixed)	Remarks
Header	1	(tou)	
Slave address [H]	2	Arbitrary	Axis number + 1 (01 _H to 10 _H) 00 _H when broadcast is specified
Function code [H]	2	'0', '5'	Write to a single coil DO.
Start address [H]	4	'0', '4' '0', 'B'	Home return command
Changed data [H]	4	Arbitrary	Execute home return: 'F', 'F', '0', '0' Normal: '0', '0', '0', '0'
Error check [H]	2	LRC calculation result	
Trailer	2	'CR', 'LF'	
Total number of bytes	17		

Note If a teaching pendant or PC software is connected, the servo is turned OFF, and then the teaching pendant/PC software is removed, all before the control establishes communication with the host, the servo cannot be turned ON/OFF via commands received from omit the host. In this case, restore the controller power, or make sure the connected tool of the SIO port is removed while the servo is ON.

(3) Response

A sample query that executes home return operation of a controller of axis No. 0 is shown below. Query:

First time: 01 05 04 0B 00 00 EB --- Set normal status Second time: 01 05 04 0B FF 00 EC --- Execute home return

Field	ASCII mode 8-bit data	Converted ASCII code data [H]
Start	·. ·	3A
Slave address [H]	'0', '1'	3031
Function code [H]	'0', '5'	3035
Start address [H]	'0', '4', '0', 'B'	30343042
Changed data [H]	First time: '0', '0', '0', '0'	30303030
	Second time: 'F', 'F', '0', '0'	46463030
	(Send data twice to set the edge.)	
Error check [H]	First time: 'E', 'B' (In accordance with LRC calculation)	4542
	Second time: 'E', 'C' (In accordance with LRC calculation)	4543
End	'CR', 'LF'	0D0A

6.5.8 Positioning Start Command <<CSTR>>

(1) Function

If the rising edge of the positioning start command is detected (the data is first set to $FF00_H$ and then changed to 0000_H), the actuator will move to the position specified by the position number stored in the position number command register (POSR:0D03_H). If nothing is done after the position start command (FF00_H is read and no new data is written), a position complete will not be output even when the actuator enters the positioning band (write 0000_H and restore the normal status). If this command is executed when home return has never been performed after the power is turned on (when the HEND bit is 0), the actuator will perform home return and then start moving to the target position.

* The target position, speed and all other operation parameters must be set in the position table (nonvolatile memory) of the controller in advance.

(2) Query format

(=) 4.001 j 10111141			
Field	Number of	ASCII mode	Remarks
	characters	character string	
		(fixed)	
Header	1	·.,	
Slave address [H]	2	Arbitrary	Axis number + 1 (01 _H to 10_H)
			00 _H when broadcast is specified
Function code [H]	2	'0', '5'	Write to a single coil DO.
Start address [H]	4	'0', '4' '0', 'C'	Positioning start command
Changed data [H]	4	Arbitrary	Positioning start command: 'F', 'F', '0', '0'
			Normal: '0', '0', '0', '0'
Error check [H]	2	LRC calculation	
		result	
Trailer	2	'CR', 'LF'	
Total number of bytes	17		

(3) Response

A sample query that moves the actuator of a controller of axis No. 0 to the position specified by the position number stored in the position number command register (POSR:0D03_H) is shown below. Query:

First time: 01 05 04 0C FF 00 EB --- Movement command Second time: 01 05 04 0C 00 00 EA --- Normal status

Field	ASCII mode 8-bit data	Converted ASCII
		code data [H]
Start	· ·	3A
Slave address [H]	'0', '1'	3031
Function code [H]	'0', '5'	3035
Start address [H]	'0', '4', '0', 'C'	30343043
Changed data [H]	First time: 'F', 'F', '0', '0'	46463030
	Second time: '0', '0', '0', '0'	30303030
	(Restore the normal status.)	
Error check [H]	First time: 'E', 'B' (In accordance with LRC	4542
	calculation)	
	Second time: 'E', 'A' (In accordance with	4541
	LRC calculation)	
End	'CR', 'LF'	0D0A

6.5.9 Jog/Inch Switching <<JISL>>

(1) Function

This bit switches between jogging and inching.

If this bit switches while the actuator is jogging, the actuator will decelerate to a stop.

If this bit switches while the actuator is inching, the inching movement will continue.

(2) Query format

Field	Number of	ASCII mode	Remarks
	characters	character string	
		(fixed)	
Header	1	·.··	
Slave address [H]	2	Arbitrary	Axis number + 1 (01 _H to 10_H)
		•	00 _H when broadcast is specified
Function code [H]	2	'0', '5'	Write to a single coil DO.
Start address [H]	4	'0', '4' '1', '1'	Jog/Inch Switching
Changed data [H]	4	Arbitrary	Inching operation status: 'F', 'F', '0', '0'
			Jogging operation status: '0', '0', '0', '0'
Error check [H]	2	LRC calculation	
		result	
Trailer	2	'CR', 'LF'	
Total number of bytes	17		

(3) Response

A sample query that switches the operation of a controller of axis No. 0 to inching is shown below. Query: 01 05 04 11 FF 00 E6

Query. Or 00 04 1111 00		
Field	ASCII mode 8-bit data	Converted ASCII
		code data [H]
Start	•	3A
Slave address [H]	(0', '1'	3031
Function code [H]	(0', '5'	3035
Start address [H]	(0', '4', '1', '1'	30343131
Changed data [H]	'F', 'F', '0', '0'	46463030
Error check [H]	'E', '6' (In accordance with LRC calculation)	4536
End	'CR', 'LF'	0D0A

6.5.10 Teaching Mode Command << MOD>>

(1) Function

This bit switches between the normal operation mode and teaching mode.

(2) Query format

Field	Number of characters	ASCII mode character string (fixed)	Remarks
Header	1	· . ·	
Slave address [H]	2	Arbitrary	Axis number + 1 (01 _H to 10 _H) 00 _H when broadcast is specified
Function code [H]	2	'0', '5'	Write to a single coil DO.
Start address [H]	4	'0', '4' '1', '4'	Switch between the normal mode and the teaching mode.
Changed data [H]	4	Arbitrary	Teaching mode: 'F', 'F', '0', '0' Normal operation mode: '0', '0', '0', '0'
Error check [H]	2	LRC calculation result	
Trailer	2	'CR', 'LF'	
Total number of bytes	17		

(3) Response

A sample query that switches the operation mode of a controller of axis No. 0 to teaching mode is shown below.

Query: 01 05 04 14 FF 00 E3

Field	ASCII mode 8-bit data	Converted ASCII code data [H]
Start	.,	3A
Slave address [H]	'0', '1'	3031
Function code [H]	'0', '5'	3035
Start address [H]	'0', '4', '1', '4'	30343134
Changed data [H]	'F', 'F', '0', '0'	46463030
Error check [H]	'E', '3' (In accordance with LRC calculation)	4533
End	'CR', 'LF'	0D0A

6.5.11 Position Data Load Command <<TEAC>>

(1) Function

The current position is acquired by writing this command (write $FF00_H$) when the teaching mode command (6.5.10) is $FF00_H$ (teaching command).

The current position data will be written in the position number specified by the position number command register when the aforementioned condition was detected.

If other position data fields are empty, the default parameter values will be written at the same time in the empty fields other than the target position (positioning band INP, speed VCMD, acceleration/deceleration speed ACMD, and control flag CTLF).

After sending this command (write FF00_H), keep the status as is for 20 ms or longer.

(2) Query format

(Z) Query lorinat			
Field	Number of characters	ASCII mode character string (fixed)	Remarks
Header	1	·.,· ·	
Slave address [H]	2	Arbitrary	Axis number + 1 (01 _H to 10_H)
			00 _H when broadcast is specified
Function code [H]	2	'0', '5'	Write to a single coil DO.
Start address [H]	4	'0', '4' '1', '5'	Position data load command
Changed data [H]	4	Arbitrary	Position data load command: 'F', 'F', '0', '0' Normal: '0', '0', '0', '0'
Error check [H]	2	LRC calculation	
		result	
Trailer	2	'CR', 'LF'	
Total number of bytes	17		

(3) Response

A sample query that acquires the current position when a controller of axis No. 0 is in the teaching mode is shown below.

Query: 01 05 04 15 FF 00 E2

Field	ASCII mode 8-bit data	Converted ASCII code data [H]
Start		3A
Slave address [H]	'0', '1'	3031
Function code [H]	'0', '5'	3035
Start address [H]	(0', '4', '1', '5'	30343135
Changed data [H]	'F', 'F', '0', '0'	46463030
Error check [H]	'E', '2' (In accordance with LRC calculation)	4532
End	'CR', 'LF'	0D0A

6.5.12 Jog+ Command << JOG+>>

(1) Function

- The actuator performs either jog or inching operation.
- If the jog+ command (changed data FF00_H) is sent when the jog/inch switching command (6.5.9) is set to 0000_H (set to jog), the actuator will jog in the direction opposite home. The speed and acceleration/deceleration speed conform to the PIO jog speed set by user parameter No. 26 and rated acceleration/deceleration speed, respectively.
- If the jog+ command (changed data $0000_{\rm H}$) is sent or the jog- command (6.5.13, changed data ${\sf FF00_H}$) is sent while the actuator is moving, the actuator will decelerate to a stop.
- If the jog+ command rising edge is set while the jog/inch switching command (6.5.9) is FF00_H (set to inching), the actuator will inch in the direction opposite home. The speed, travel and acceleration/deceleration speed conform to user parameter No. 26 (PIO jogging speed), user parameter No. 48 (PIO inching distance), and rated acceleration/deceleration speed, respectively.

(2) Query format

(=) Quoi y ioimat			
Field	Number of characters	ASCII mode character string (fixed)	Remarks
Header	1	٠.,	
Slave address [H]	2	Arbitrary	Axis number + 1 (01 _H to 10 _H) 00 _H when broadcast is specified
Function code [H]	2	'0', '5'	Write to a single coil DO.
Start address [H]	4	'0', '4' '1', '6'	Jog+ command
Changed data [H]	4	Arbitrary	Jog+ command: 'F', 'F', '0', '0' Normal: '0', '0', '0', '0'
Error check [H]	2	LRC calculation result	
Trailer	2	'CR', 'LF'	
Total number of bytes	17		

(3) Response

[1] A sample query that makes a controller of axis No. 0 jog is shown below. Query: 01 05 04 16 FF 00 E1

Query. or ou or rorr ou		
Field	ASCII mode 8-bit data	Converted ASCII
		code data [H]
Start		3A
Slave address [H]	'0', '1'	3031
Function code [H]	'0', '5'	3035
Start address [H]	(0', '4', '1', '6'	30343136
Changed data [H]	'F', 'F', '0', '0'	46463030
Error check [H]	'E', '1' (In accordance with LRC calculation)	4531
End	'CR', 'LF'	0D0A

If the change was successful, the response message will be the same as the query.

[2] A sample query that makes a controller of axis No. 0 inch is shown below.

Query:

First time: 01 05 04 16 FF 00 E1 --- Inching movement Second time: 01 05 04 16 00 00 E0 --- Restore normal status

Field	ASCII mode 8-bit data	Converted ASCII code data [H]
Start	•	3A
Slave address [H]	'0', '1'	3031
Function code [H]	'0', '5'	3035
Start address [H]	'0', '4', '1', '6'	30343046
Changed data [H]	First time: 'F', 'F', '0', '0'	46463030
	Second time: '0', '0', '0', '0'	30303030
	(Restore the normal status.)	
Error check [H]	First time: 'E', '1' (In accordance with LRC	4531
	calculation)	
	Second time: 'E', '0' (In accordance with	4530
	LRC calculation)	
End	'CR', 'LF'	0D0A

6.5.13 Jog- Command << JOG->>

(1) Function

- The actuator performs either jog or inching operation.
- If the jog- command (changed data FF00_H) is sent when the jog/inch switching command (6.5.9) is set to 0000_H (set to jog), the actuator will jog in the direction of home. The speed and acceleration/deceleration speed conform to the PIO jog speed set by user parameter No. 26 and rated acceleration/deceleration speed, respectively.
- If the jog- command (changed data 0000_H) is sent or the jog+ command (6.5.12, changed data $FF00_H$) is sent while the actuator is moving, the actuator will decelerate to a stop.
- If the jog- command rising edge is set while the jog/inch switching command (6.5.9) is FF00_H (set to inching), the actuator will inch in the direction of home. The speed, travel and acceleration/deceleration speed conform to user parameter No. 26 (PIO jogging speed), user parameter No. 48 (PIO inching distance), and rated acceleration/deceleration speed, respectively.

(2) Query format

(2) Quoi y Torritat			
Field	Number of characters	ASCII mode character string (fixed)	Remarks
		` '	
Header	1	٠.,	
Slave address [H]	2	Arbitrary	Axis number + 1 (01 _H to 10_H)
1		,	00 _H when broadcast is specified
Function code [H]	2	'0', '5'	Write to a single coil DO.
Start address [H]	4	'0', '4' '1', '7'	Jog- command
Changed data [H]	4	Arbitrary	Jog- command: 'F', 'F', '0', '0' Normal: '0', '0', '0', '0'
Error check [H]	2	LRC calculation result	
Trailer	2	'CR', 'LF'	
Total number of bytes	17		

(3) Response

[1] A sample query that makes a controller of axis No. 0 jog is shown below. Query: 01 05 04 17 EF 00 E0

Field	ASCII mode 8-bit data	Converted ASCII
Field	ASCII IIIode o-bit data	
		code data [H]
Start	·,·	3A
Slave address [H]	'0', '1'	3031
Function code [H]	'0', '5'	3035
Start address [H]	(0', '4', '1', '7'	30343137
Changed data [H]	'F', 'F', '0', '0'	46463030
Error check [H]	'E', '0' (in accordance with LRC calculation)	4530
End	'CR', 'LF'	0D0A

If the change was successful, the response message will be the same as the query.

[2] A sample query that makes a controller of axis No. 0 inch is shown below. Query:

First time: 01 05 04 17 FF 00 E0 --- Inching movement Second time: 01 05 04 17 00 00 DF --- Restore normal status

Field	ASCII mode 8-bit data	Converted ASCII code data [H]
Start	•	3A
Slave address [H]	(0', '1'	3031
Function code [H]	'0', '5'	3035
Start address [H]	(0', '4', '1', '7'	30343047
Changed data [H]	First time: 'F', 'F', '0', '0'	46463030
	Second time: '0', '0', '0', '0'	30303030
	(Restore the normal status.)	
Error check [H]	First time: 'E', '0' (in accordance with LRC	4530
	calculation)	
	Second time: 'D', 'F' (in accordance with	4446
	LRC calculation)	
End	'CR', 'LF'	0D0A

6.5.14 Start Positions 0 to 7 <<ST0 to ST7>> (Limited to solenoid valve mode)

(1) Function

The actuator moves to the specified position number position.

The movement command for start positions 0 to 7 is effective only when solenoid valve mode is selected.

The movement command is sent by enabling either one of ST0 to ST7 in "6.5.14 (5) Start address" (write new value $FF00_H$ when 0000_H is set).

If a position other than the valid start positions is selected, "085: Moving position number error" will be generated.

Either level operation or edge operation can be selected using user parameter No. 27, "Movement command type."

(2) Query format

(2) Quoi y ioiinat			
Field	Number of characters	ASCII mode character string (fixed)	Remarks
Header	1	·.·	
Slave address [H]	2	Arbitrary	Axis number + 1 (01 _H to 10_H)
			00 _H when broadcast is specified
Function code [H]	2	'0', '5'	Write to a single coil DO
Start address [H]	4	Arbitrary	Refer to 6.5.14 (5), "Start address."
Changed data [H]	4	Arbitrary	*1 Operation command: 'F', 'F', '0', '0'
			Operation command: '0', '0', '0', '0'
Error check [H]	2	LRC calculation	
		result	
Trailer	2	'CR', 'LF'	
Total number of bytes	17		

^{*1} If user parameter No. 27 "Movement command type" is set to "level operation," the actuator decelerates to a stop by overwriting FF00_H with 0000_H.

(3) Response

(4) Query sample

A sample query that moves a controller of axis No. 0 to start position 2 is shown below. Sample start position setting

0	0.00	150.00	0.30	0.30
1	25.00	150.00	0.30	0.30
2	50.00	150.00	0.30	0.30
3	0.00	150.00	0.20	0.20

Fig.6.2

Query

First time 01 05 04 1D 00 00 D9 --- Write 0000_H to set the edge Second time 01 05 04 1D FF 00 DA --- Movement command

Field	ASCII mode 8-bit data	Converted ASCII code data [H]
Start	1,7	3A
Slave address [H]	· ·0', '1'	3031
Function code [H]	'0', '5'	3035
Start address [H]	'0', '4', '1', 'D'	30343044
Changed data [H]	First time: '0', '0', '0', '0'	30303030
	Second time: 'F', 'F', '0', '0'	46463030
Error check [H]	First time: 'D', '9' (In accordance with LRC calculation)	4439
	Second time: 'D', 'A' (In accordance with LRC calculation)	4441
End	'CR', 'LF'	0D0A

If the change is successful, the response message will be the same as the query.

(5) Start address

Address	Symbol	Name	Function
0418	ST7	Start position 7	Move to position 7
0419	ST6	Start position 6	Move to position 6
041A	ST5	Start position 5	Move to position 5
041B	ST4	Start position 4	Move to position 4
041C	ST3	Start position 3	Move to position 3
041D	ST2	Start position 2	Move to position 2
041E	ST1	Start position 1	Move to position 1
041F	ST0	Start position 0	Move to position 0

6.5.15 Load Cell Calibration Command <<CLBR>> --- A dedicated load cell must be connected.

(1) Function --- SCON-CA only

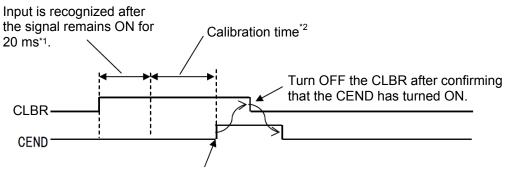
The dedicated load cell is calibrated.

The factory setting of your load cell is that the ON status corresponds to a no-load state. If you want to define the reference state as a condition where a work part (load) is installed, calibrate the load cell.

Also calibrate the load cell in other situations as necessary (readjustment, inspection, etc.).

(2) Query format

(2) Quoi y ioimat			
Field	Number of characters	ASCII mode character string (fixed)	Remarks
Header	1	·., ·	
Slave address [H]	2	Arbitrary	Axis number + 1 (01 _H to 10 _H) 00 _H when broadcast is specified
Function code [H]	2	'O', '5'	Write to a single coil DO
Start address [H]	2	'0', '4' '2', '6'	Load cell calibration command
Changed data [H]	2	Arbitrary	Calibration command: FF00 _H Normal operation: 0000 _H
Error check [H]	2	LRC calculation result	
Trailer	2	'CR', 'LF'	
Total number of bytes	17		


(3) Calibration procedure

- [1] Stop the actuator operation. (The load cell cannot be calibrated while the actuator is performing any axis operation or push-motion operation or being paused, in which case 0E1 (load cell calibration error) alarm generates.)
- [2] Turn this signal ON and keep it ON for at least 20 ms.
- [3] When the calibration is complete, the calibration complete signal (CEND of device status register 1 explained in 4.3.2 (12)) turns ON. After confirming that the CEND has turned ON, turn OFF the CLBR.
 - If the calibration was unsuccessful, a 0E1 (load cell calibration error) alarm generates.

Â

Caution: Normal operation commands are not accepted while the CLBR is ON.

When the calibration was successful, the CEND turns ON. While the CLBR is OFF, the CEND remains OFF.

- *1 If the CLBR is turned OFF during this period, calibration will not be performed because the signal is not yet recognized as having been input.
- *2 If the CLBR is turned OFF during this period, an alarm will generate.

(4) Response

A response message to be sent following a successful change should be the same as the query. If any invalid data has been sent, an exception response (refer to 7) will be returned or no response will be returned at all.

(5) Example of use

Calibrate the dedicated load cell connected to controller axis 0.

Query 01 05 04 26 FF 00 D1

Quoiy or oo or zorr oo	וטו	
Field	ASCII mode 8-bit data	Converted ASCII code data [H]
Start		3A
Slave address [H]	'0', '1'	3031
Function code [H]	'0', '5'	3035
Start address [H]	(0', '4', '2', '6'	30343236
Changed data [H]	'F, , 'F'; '0', '0'	46463030
Error check [H]	'D', '1' (In accordance with LRC calculation)	4431
End	'CR', 'LF'	0D0A

6.5.16 PIO/Modbus Switching Setting << PMSL>>

(1) Function

PIO external command signals can be enabled or disabled.

(2) Query format

(=) Gao.j .oac			
Field	Number of	ASCII mode	Remarks
	characters	character string	
		(fixed)	
Header	1	·.·	
Slave address [H]	2	Arbitrary	Axis number + 1 (01 _H to 10_H)
			00 _H when broadcast is specified
Function code [H]	2	'0', '5'	Write to a single coil DO.
Start address [H]	4	'0', '4', '2', '7'	PIO/Modbus switching setting
Changed data [H]	4	Arbitrary	*1 Enable Modbus commands: 'F', 'F', '0', '0'
			Disable Modbus commands: '0', '0', '0', '0'
Error check [H]	2	LRC calculation	
		result	
Trailer	2	'CR', 'LF'	
Total number of bytes	17		

- *1 Enable Modbus commands (ON) (disable PIO command): FF00_H
 Operation via PIO signals is not possible.
 - Disable Modbus commands (OFF) (enable PIO command): 0000_H
 Operation via external PIO signals is possible.

Supplement If the Modbus command is enabled, the PIO status at change is maintained.

If the Modbus command is switched to disabled, the operation status changes according to the current PIO status. Note that even if the status of signals that operate via edge detection has been changed, edge detection is ignored.

(3) Precaution

- In the models equipped with operation model setting switch, it should be set to "PIO Command Valid" when it is set to AUTO mode, and "PIO Command Invalid" when set to MANU mode.
- On a non-PIO model, the default setting is "Disable PIO commands."
- If IAI's tool (teaching pendant or PC software) is connected, "Teaching modes 1, 2" and "Monitor modes 1, 2" are available as tool modes. The correspondence between these modes and PIO enable/disable specifications are as follows:
 - "Monitor modes 1, 2" \rightarrow "Enable PIO commands"
 - "Teaching modes 1, 2" → "Disable PIO commands"

(4) Response

If the change is successful, the response message will be the same as the query. If invalid data is sent, an exception response (refer to section 7) will be returned, or no response will be returned.

(5) Query sample

A sample query that enables the Modbus command of the operation of a controller of axis No. 0 is shown below.

Query: 01 05 04 27 FF 00 D0

Field	ASCII mode 8-bit data	Converted ASCII code data [H]
Start		3A
Slave address [H]	'0', '1'	3031
Function code [H]	'0', '5'	3035
Start address [H]	'0', '4', '2', '7'	30343237
Changed data [H]	'F', 'F', '0', '0'	46463030
Error check [H]	'D', '0' (in accordance with LRC calculation)	4430
End	'CR', 'LF'	0D0A

6.5.17 Deceleration Stop <<STOP>>

(1) Function

The actuator will start decelerating to a stop upon detection of the deceleration stop command (write $FF00_H$) rising edge.

(2) Query format

(2) Query iorillat			
Field	Number of	ASCII mode	Remarks
	characters	character string	
		(fixed)	
Header	1	·.,	
Slave address [H]	2	Arbitrary	Axis number + 1 (01 _H to 10_H)
			00 _H when broadcast is specified
Function code [H]	2	'0', '5'	Write to a single coil DO
Start address [H]	4	'0', '4', '2', 'C'	Deceleration stop setting
Changed data [H]	4	Arbitrary	Deceleration stop command (ON):
			'F', 'F', '0', '0'
			* The controller automatically resets
			the value to 0000 _H .
Error check [H]	2	LRC calculation	
		result	
Trailer	2	'CR', 'LF'	
Total number of bytes	17		

(3) Response

A sample query that sends the deceleration stop command to a controller of axis No. 0 is shown below.

Query: 01 05 04 2C FF 00 CB

Field	ASCII mode 8-bit data	Converted ASCII code data [H]
Start		3A
Slave address [H]	'0', '1'	3031
Function code [H]	'0', '5'	3035
Start address [H]	'0', '4', '2', 'C'	30343243
Changed data [H]	'F', 'F', '0', '0'	46463030
Error check [H]	'C', 'B' (In accordance with LRC calculation)	4342
End	'CR', 'LF'	0D0A

6.5.18 Axis operation permission << ENMV>> --- Servo Press Type Only

(1) Function

The setting can be switched on permission activated/inactivated.

(2) Query format

Field	Number of characters	ASCII mode character string (fixed)	Remarks
Header	1	(,) ·	
Slave address [H]	2	Arbitrary	Axis number + 1 (01 _H to 10_H) 00_H when broadcast is specified
Function code [H]	2	'0', '5'	Write to a single coil DO
Start address [H]	4	'0', '4', '9', 'B'	Axis operation permission setting
Changed data [H]	4	Arbitrary	Permission activated : FF00 _H
Error check [H]	2	LRC calculation result	Permission inactivated: 0000 _H .
Trailer	2	'CR', 'LF'	
Total number of bytes	17		

(3) Response

(4) Sample query

Movement of the actuator connected to Axis No. 0 gets activated. Query: 01 05 04 9B FF 00 5C

Field	ASCII mode 8-bit data	Converted ASCII code data [H]
Start		3A
Slave address [H]	(0', '1'	3031
Function code [H]	(0', '5'	3035
Start address [H]	'0', '4', '9', 'B'	30343942
Changed data [H]	(F', 'F', '0', '0'	46463030
Error check [H]	'5', 'C' (In accordance with LRC calculation)	3543
End	'CR', 'LF'	0D0A

If the change is successful, the response message will be the same as the query.

6.5.19 Program Home Position Movement << PHOM>> --- Servo Press Type Only

(1) Function

Raise the program home-return edge (write FF00_H under the condition of change data being 0000_H), and the movement will be made to the program home position set in each press program.

(2) Query format

(=) 4.0.1			
Field	Number of	ASCII mode	Remarks
	characters	character string	
		(fixed)	
		` /	
Header	1	.,,	
Slave address [H]	2	Arbitrary	Axis number + 1 (01 _H to 10_H)
			00 _H when broadcast is specified
Function code [H]	2	'0', '5'	Write to a single coil DO
Start address [H]	4	'0', '4', '9', 'C'	Home-return movement setting
Changed data [H]	4	Arbitrary	Home-return movement
		_	execution: FF00 _H
			Normally: 0000 _H
Eman also als [11]	0	LDC salaviation	Ttormany : 0000H
Error check [H]	2	LRC calculation	
		result	
Trailer	2	'CR', 'LF'	
Total number of bytes	17		

(3) Response

If the change is successful, the response message will be the same as the query. If invalid data is sent, an exception response (refer to section 7) will be returned, or no response will be returned.

(4) Sample query

Movement of the actuator connected to Axis No. 0 gets activated.

First time : 01 05 04 9C 00 00 5A···Write the 0000H twice to raise the edge

Second time: 01 05 04 9C FF 00 5B···Movement command

Field	ASCII mode 8-bit data	Converted ASCII code data [H]
Start		3A
Slave address [H]	(0', '1'	3031
Function code [H]	(0', '5'	3035
Start address [H]	'0', '4', '9', 'C'	30343943
Changed data [H]	First time : '0', '0', '0', '0'	30303030
	Second time: 'F', 'F', '0', '0'	46463030
Error check [H]	First time: '5', 'A' (In accordance with LRC calculation)	3542
	Second time: '5', 'B' (In accordance with LRC calculation)	3541
End	'CR', 'LF'	0D0A

If the change is successful, the response message will be the same as the query.

6.5.20 Search Stop <<SSTP>> --- Servo Press Type Only

(1) Function

Setting can be switched whether to finish the press program or not after search operation is completed.

(2) Query format

(2) Quoi y Torrinat			
Field	Number of characters	ASCII mode character string (fixed)	Remarks
Header	1	·.·	
Slave address [H]	2	Arbitrary	Axis number + 1 (01 _H to 10 _H) 00 _H when broadcast is specified
Function code [H]	2	'0', '5'	Write to a single coil DO
Start address [H]	4	'0', '4', '9', 'D'	Search operation stop setting
Changed data [H]	4	Arbitrary	
Error check [H]	2	LRC calculation result	
Trailer	2	'CR', 'LF'	
Total number of bytes	17		

(3) Response

If the change is successful, the response message will be the same as the query. If invalid data is sent, an exception response (refer to section 7) will be returned, or no response will be returned.

(4) Sample query

After search of the actuator connected to Axis No. 0, press program will be stopped. Query: 01 05 04 9D FF 00 5A

Query. Of 00 0+ 0D 11 0	0 0/ (
Field	ASCII mode 8-bit data	Converted ASCII
		code data [H]
Start	· ·	3A
Slave address [H]	(0', '1'	3031
Function code [H]	(0', '5'	3035
Start address [H]	(0', '4', '9', 'D'	30343944
Changed data [H]	(F', 'F', '0', '0'	46463030
Error check [H]	'5', 'A' (In accordance with LRC calculation)	3541
End	'CR', 'LF'	0D0A

If the change is successful, the response message will be the same as the query.

6.5.21 Program compulsoly finish <<FPST>> --- Servo Press Type Only

(1) Function

Raise the press program compulsory complete edge (write $FF00_H$ under the condition of change data being 0000_H), and the press program will be compulsorily finished. While the change data retains $FF00_H$, the start command of the press program cannot be received.

(2) Query format

Field	Number of characters	ASCII mode character string (fixed)	Remarks
Header	1	(,) ·	
Slave address [H]	2	Arbitrary	Axis number + 1 (01 _H to 10 _H)
			00 _H when broadcast is specified
Function code [H]	2	'0', '5'	Write to a single coil DO
Start address [H]	4	'0', '4', '9', 'E'	Program compulsoly finish setting
Changed data [H]	4	Arbitrary	Program compulsoly finish: FF00 _H
Error check [H]	2	LRC calculation result	Normally: 0000 _H
Trailer	2	'CR', 'LF'	
Total number of bytes	17		

(3) Response

If the change is successful, the response message will be the same as the query. If invalid data is sent, an exception response (refer to section 7) will be returned, or no response will be returned.

(4) Sample query

Press program of the actuator connected to Axis No. 0 will be compulsorily finished. First time : 01 05 04 9E 00 00 58···Write the 0000H twice to raise the edge

Second time: 01 05 04 9E FF 00 59···Compulsoly finish

Field	ASCII mode 8-bit data	Converted ASCII code data [H]
Start		3A
Slave address [H]	(0', '1'	3031
Function code [H]	(0', '5'	3035
Start address [H]	(0', '4', '9', 'E'	30343945
Changed data [H]	First time : '0', '0', '0', '0'	30303030
	Second time: 'F', 'F', '0', '0'	46463030
Error check [H]	First time : '5', '8'	3538
	(in accordance with CRC calculation)	
	Second time: '5', '9'	3539
	(in accordance with CRC calculation)	
End	CR', 'LF'	0D0A

If the change is successful, the response message will be the same as the query.

6.5.22 Program Start <<PSTR>> --- Servo Press Type Only

(1) Function

Raise the program start edge (write $FF00_H$ under the condition of change data being 0000_H), and the press program in the program number set in POSR Register will be executed.

(2) Query format

(=) Quoi y Torritat			
Field	Number of characters	ASCII mode character string (fixed)	Remarks
Header	1	٠.,	
Slave address [H]	2	Arbitrary	Axis number + 1 (01 _H to 10 _H) 00 _H when broadcast is specified
Function code [H]	2	'O', '5'	Write to a single coil DO
Start address [H]	4	'0', '4', '9', 'F'	Program start setting
Changed data [H]	4	Arbitrary	Program start: FF00 _H
Error check [H]	2	LRC calculation result	Nomally: 0000 _H .
Trailer	2	'CR', 'LF'	
Total number of bytes	17		

(3) Response

If the change is successful, the response message will be the same as the query. If invalid data is sent, an exception response (refer to section 7) will be returned, or no response will be returned.

(4) Sample query

Press program of the actuator connected to Axis No. 0 will be exected.

First time : 01 05 04 9F 00 00 57···Write the 0000H twice to raise the edge

Second time: 01 05 04 9F FF 00 58···Program exected

Field	ASCII mode 8-bit data	Converted ASCII code data [H]
Start		3A
Slave address [H]	ʻ0', ʻ1'	3031
Function code [H]	(0', '5'	3035
Start address [H]	'0', '4', '9', 'F'	30343946
Changed data [H]	First time: '0', '0', '0', '0'	30303030
	Second time: 'F', 'F', '0', '0'	46463030
Error check [H]	First time: '5', '7'	3537
	(in accordance with CRC calculation)	
	Second time: '5', '8'	3538
	(in accordance with CRC calculation)	
End	'CR', 'LF'	0D0A

If the change is successful, the response message will be the same as the query.

6.6 Control Information Direct Writing (Used function code 06)

6.6.1 Writing to Registers

(1) Function

*) Please refer to "6.2 ASCII Code Table."

These queries change (write) data in registers of a slave.

In case of broadcast, data of registers of the same address of all slaves is changed.

[Refer to the details of device controller register 1 in 4.3.2 (5).]

[Refer to the details of device controller register 2 in 4.3.2 (6).]

[Refer to the details of the position number command register and position movement specification register and program number command register (Servo Press) type in 4.3.2 (7).]

(2) Start address list

Address	Symbol	Name	Byte
0D00	DRG1	Device control register 1	2
0D01	DRG2	Device control register 2	2
0D03	POSR	Position number command register/ Program number command register	2
9800	POSR	Position movement command register	2

The registers above are control command registers. The bits of these registers are assigned to input ports by PIO patterns when "PIO/Modbus Switch Status (PMSS) [refer to 4.3.2 (14)] is set to "disable Modbus commands (enable PIO commands). These registers can be rewritten when the Modbus commands are enabled (PIO commands are disabled).

(3) Query format

Specify the address and data of the register whose data is to be changed in the query message. Data to be changed shall be specified as 16-bit data in the changed data area of the query.

Field	Number of characters (Number of bytes)	ASCII mode fixed character string	Remarks
Header	1	·.·	
Slave address [H]	2	Arbitrary	Axis number + 1 (01 _H to 10 _H) 00 _H when broadcast is specified
Function code [H]	2	'0', '6'	Writing to registers
Start address [H]	4	Arbitrary	Refer to 6.6.1 (2), "Start address list."
Changed data [H]	4		4.3.2 (5) to 4.3.2. (7), Refer to "List of changed data."
Error check [H]	2	LRC calculation result	
Trailer	2	'CR', 'LF'	
Total number of bytes	17		

(4) Response

If the change is successful, the response message will be the same as the query. If invalid data is sent, an exception response (refer to section 7) will be returned, or no response will be returned.

(5) Query sample

Examples of different operations are shown in [1] to [3] below.

[1] A sample query that turns the servo of a controller of axis No. 0 on and then executes home return operation is performed.

Query

First time 01 06 0D 00 10 00 DC --- Servo ON Second time 01 06 0D 00 10 10 CC --- Home return

Field	ASCII mode 8-bit data	Converted ASCII
		code data [H]
Start		3A
Slave address [H]	'0', '1'	3031
Function code [H]	'0', '6'	3036
Start address [H]	'0', 'D', '0', '0'	30443030
Changed data [H]	First time: '1', '0', '0', '0'	31303030
	Second time: '1', '0', '1, '0'	31303130
Error check [H]	First time: 'D', 'C' (in accordance with CRC	4443
	calculation)	
	Second time: 'C', 'C' (in accordance with	4343
	CRC calculation)	
End	'CR', 'LF'	0D0A

- Note 1 Home return is not performed even if 1010_H is sent to change the data while the servo is OFF (refer to the timing chart at startup of each RC controller).
- Note 2 To keep the previous status, send the previous status even if there is no change. As in the example above, keep the servo ON bit as 1 at home return as well.

If the change is successful, the response message will be the same as the query.

[2] Move to position No. 1 using the position movement specification register (address 9800_H). Before this operation, perform the operation in example [1] above to complete a home return. Query (Silent intervals are inserted before and after the query.) 01 06 98 00 00 01 60

Field	ASCII mode 8-bit data	Converted ASCII code data [H]
Start	· ·	3A
Slave address [H]	'0'; '1'	3031
Function code [H]	'0, ' '6'	3036
Start address [H]	(9', '8', '0', '0'	39383030
Changed data [H]	(0', '0', '0', '1'	30303031
Error check [H]	'6', '0' (in accordance with CRC calculation)	3630
End	'CR', 'LF'	0D0A

Note As soon as a position number is written to this register, the actuator starts moving. The CSTR (start signal) is not required.

A response message to be sent following a successful change should be the same as the query.

[3] Move to position No. 1 using the position number command register (address 0D03_H). Before this operation, perform the operation in example [1] above to complete a home return. Query (Silent intervals are inserted before and after the query.)

First time 01 06 0D 03 00 01 E8 --- Specify position No. 1

Second time 01 06 0D 00 10 00 DC--- Turn OFF the CSTR (start signal)

Third time 01 06 0D 00 10 08 D4--- Turn ON the CSTR (start signal)

Tima time of oo ob t	70 TO 00 BT Turn OIV the COTTY (Start Signal	/
Field	ASCII mode 8-bit data	Converted ASCII
		code data [H]
Start		3A
Slave address [H]	(0', '1'	3031
Function code [H]	'0', '6'	3036
Start address [H]	First time: '0', 'D', '0', '3'	30443033
	Second time: '0', 'D', '0', '0'	30443030
	Third time: '0', 'D', '0', '0'	30443030
Changed data [H]	First time: '0', '0', '0', '1'	30303031
	Second time: '1', '0', '0', '0'	31303030
	Third time: '1', '0', '0', '8'	31303038
Error check [H]	First time: 'E', '8'(in accordance with CRC	4538
	calculation)	
	Second time: 'D', 'C'(in accordance with	4443
	CRC calculation)	
	Third time: 'D', '4'(in accordance with CRC	4434
	calculation)	
End	'CR', 'LF'	0D0A

Note To keep the previous status, send the previous status even if there is no change. As in the example above, keep the servo ON bit as 1 at home return as well.

If the change is successful, the response message will be the same as the query.

6.7 Positioning Data Direct Writing (Used function code 10)

6.7.1 Numerical Value Movement Command

*) Please refer to "6.2 ASCII Code Table."

(1) Function

Specify the target position in PTP positioning operation using absolute coordinates. It is possible to command the actuator to move via numerical values by writing directly to the group of registers at addresses from 9900_H to 9908_H (can be set in one message).

Values of all registers, other than the control flag specification register (address: 9908_H), will become effective once the values are sent after the power is supplied. If there is no need to change the target position, positioning band, speed, acceleration/deceleration, push-current limiting value and control specification, therefore, each subsequent numerical movement command can be issued simply by writing a desired register that can effect an actual movement command based on changing of the applicable register alone (refer to "Start address list").

(2) Start address list

This group of registers is used to move the actuator by specifying the target position coordinates, positioning band, speed, push-current limiting value, control flag specification and so on as numerical values.

Data of start addresses in the list (6 registers in total) can be changed with one transmission.

Address [H]	Symbol	Name	Sign	Able to effect an actual movement command by changing the applicable register alone	Register size	Byte size	Unit
9900	PCMD	Target position specification register	0	0	2	4	0.01 mm
9902	INP	Positioning band specification register		×	2	4	0.01 mm
9904	VCMD	Speed specification register		0	2	4	0.01 mm/sec
9906	ACMD	Acceleration/deceleration specification register		0	1	2	0.01 G
9907	PPOW	Push-current limiting value specification register		0	1	2	%
9908	CTLF	Control flag specification register		× Initialization after each movement	1	2	-

(3) Query format 1 register = 2 bytes = 16-bit data

i register – z bytes – re	o bit data		
Field	Number of characters	ASCII mode	Remarks
	(number of bytes)	fixed character	
		string	
Header	1	· ·	
Slave address [H]	2	Arbitrary	Axis number + 1 $(01_H \text{ to } 10_H)$
			00 _H if broadcast is specified
Function code [H]	2	'1', '0'	Numerical value specification
Start address [H]	4	Arbitrary	Refer to 6.7.1. (2), "Start
		•	address list"
Number of registers [H]	4	Arbitrary	Refer to 6.7.1 (2), "Start
		•	address list"
Number of bytes [H]	2	In accordance with	Enter the value twice as large
		the number of	as the number of registers
		registers above	specified above
Changed data 1 [H]	4		Refer to 6.7.1 (2), "Start
			address list"
Changed data 2 [H]	4		Refer to 6.7.1 (2), "Start
			address Ìist"
Changed data 3 [H]	4		Refer to 6.7.1 (2), "Start
			address Ìist"
i :	:		
Error check [H]	2	LRC calculation	
		result	
Trailer	2	'CR', 'LF'	
Total number of bytes	Up to 256		

(4) Response formatWhen normally changed, the response message responds with a copy of the query message excluding the number of bytes and changed data.

excidently the number of bytes and onlinged data.									
Field	Number of characters	ASCII mode	Remarks						
	(number of bytes)	fixed character							
	,	string							
Header	1	·.,							
Slave address [H]	2	Arbitrary	Axis number + 1 $(01_H \text{ to } 10_H)$						
		-	00 _H if broadcast is specified						
Function code [H]	2	'1', '0'	Numerical value specification						
Start address [H]	4	Arbitrary	Refer to 6.7.1 (2), "Start						
		-	address list"						
Number of registers [H]	4	Arbitrary	Refer to 6.7.1 (2), "Start						
		•	address list"						
Error check [H]	2	LRC calculation							
		result							
Trailer	2	'CR', 'LF'							
Total number of bytes	17								

(5) Detailed explanation of registers

■ Target position specification register (PCMD)
This register specifies the target position in PTP positioning operation using absolute coordinates. The value of this register is set in units of 0.01 mm in a range of –999999 to 999999 (FFF0BDC1_H^(Note 1) to 00F423F_H). When the absolute coordinate is indicated, operation starts with 0.2mm in front ^(Note 2) of the soft limit setting value as the target position if the setting of the parameter exceeds the soft limit. The actuator will start moving when the lower word of this register (symbol: PCMD, address: 9900H) is rewritten. In other words, <u>a numerical movement command can be issued simply by writing a target position in this register.</u>

Note 1 To set a negative value, use a two's complement.

Note 2 For a revolution axis set to Index Mode, the soft limit setting value is the target position.

Positioning band register (INP)

This register is used in two different ways depending on the type of operation. The first way is the normal positioning operation, where it specifies the allowable difference between the target position and current position to be used in the detection of position complete. The second way is the push-motion operation, where it specifies the push-motion band. The value of this register is set in units of 0.01 mm in a range of 1 to 999999 ($1_{\rm H}$ to $000{\rm F423F_H}$). Whether the normal operation or push-motion operation is specified by the applicable bit in the control flag specification register as explained later.

Changing this register alone will not start actuator movement.

Caution: It is necessary that the positioning band is at or more than the value figured out with the formulas below.

- For Servomotor: Actuator Lead Length + Encoder Pulse
- For Pulse Motor: Actuator Lead Length ÷ Encoder Pulse × 3 Apply the servomotor formula for RCP6 Actuator
- Speed specification register (VCMD)

This register specifies the moving speed. The value of this register is set in units of 0.01 mm/sec in a range of 1 to 999999 (1_H to 000F423F_H). If the specified value exceeds the maximum speed set by a parameter, an alarm will generate the moment a movement start command is issued. **The actuator will start moving when this lower word of this register is rewritten.** In other words, the speed can be changed while the actuator is moving, simply by rewriting this register.

Modbus

■ Acceleration/deceleration specification register (ACMD)

This register specifies the acceleration or deceleration. The value of this register is set in units of 0.01~G in a range of 1 to $300~(1_H~to~012C_H)$. If the specified value exceeds the maximum acceleration or deceleration set by a parameter, an alarm will generate the moment a movement start command is issued.

<u>The actuator will start moving when this register is rewritten.</u> In other words, the acceleration/deceleration can be changed while the actuator is moving, simply by rewriting this register.

■ Push-current limiting value (PPOW)

Set the current limit during push-motion operation in PPOW. Set an appropriate value by referring to the table below.

Actuator model name	Pushable range [%]	Settable range (input value) [H]
Actuator other than	20 to 70 ^(Note)	33 to B2
RCS2-RA13R		
RCS2-RA13R	20 to 200	33 to 1FE

Note The setting ranges may vary depending on the actuator.

[For details, refer to the IAI catalog or operation manual of each actuator.]

<u>The actuator will start moving when this register is rewritten.</u> In other words, the current limiting value can be changed during push-motion operation simply by rewriting this register. Sample push-motion current setting

• When setting the current to 20% 255 (100%) \times 0.2 (20%)= 51 \rightarrow 33_H (convert into hexadecimal number)

 Control Flag Specification Register (CTLF) Set the method of operation.

If push-motion operation or incremental operation (pitch feed) is selected, set this register every time a movement command is issued. (This is because the register will be overwritten with the default value every time the actuator moves.)

CTLF bit structure

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	_
MSB	-	-	NTC1	NTC0	-	-	-	-	MOD1	MODO	GSL1	GSL0	INC	DIR	PUSH	-	LSB

Bit 1 (PUSH) = 0: Normal operation (default)

1: Push-motion operation

Bit 2 (DIR) = 0: The direction of push-motion operation after completion of approach is defined as the forward direction (default).

1: The direction of push-motion operation after completion of approach is defined as the reverse direction.

This bit is used to calculate the direction of final stop position from PCMD. If this bit is set incorrectly, therefore, the target position will deviate from the specified position by a distance corresponding to " $2 \times INP$," as shown in Fig. 6.3 below.

If bit 1 is set to 0, the setting of this bit is invalid.

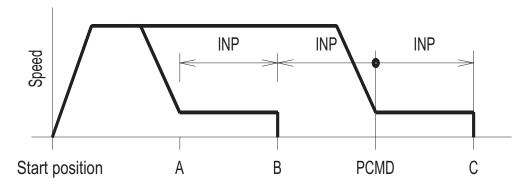


Fig. 6.3 Operating Direction in Push-motion Operation

Bit 3 (INC) = 0: Normal operation (default)

1: Incremental operation (pitch feed)

Setting this bit to 1 will enable the actuator to operate relative to the current position. In this operation, the actuator behaves differently between normal operation and push-motion operation (CTLF bit 1). While the travel is calculated with respect to the target position (PCMD) in normal operation, it is calculated relative to the current position in push-motion operation (when bit 1 = 1).

Here, since relative coordinate calculation involves adding up pulses in mm, followed by conversion, unlike a calculation method involving addition after pulse conversion,

<u>"repeated relative movements will not cause position deviation as a result of cumulative errors corresponding to fraction pulses that are not divisible with certain lead settings".</u>

Bit 4 (GSL0), 5 (GSL1) = Refer to the table below. (ACON-CA/CB/CYB and SCON-CA/CAL/CB/Servo Press Type only)

Do not attempt to change the number from 0 for those other than the models above.

Doing so may cause an error in operation.

_			
	GSL1	GSL0	Function
	0	0	Select parameter set 0 (default).
	0	1	Select parameter set 1
	1	0	Select parameter set 2
	1	1	Select parameter set 3

You can register a maximum of four servo gain parameter sets consisting of six parameters and move the actuator to each position by selecting a different parameter set every time. [For details, refer to the operation manual for your controller.]

Bit 6 (MOD0), 7 (MOD1) = Refer to the table below.

(ACON-C/CY/SE/CA/CB/CYB, DCON-CA/CB/CYB, PCON-CA/CFA/CB/CFB/CYB, SCON-C/CA/CAL/CB and

ERC3 only, and SCON Servo Press Type is not applicable)

MOD1	MOD0	Function
0	0	Trapezoid pattern (default)
0	1	S-motion
1	0	Primary delay filter
1	1	Cannot be used.

These signals are used to select the acceleration/deceleration pattern characteristics. Set one of the patterns before issuing an actuator movement command. [For details, refer to the operation manual for your controller.]

Bit 12 (NTC0), 13 (NTC1) = Refer to the table below.

(ACON-CA/CB/CYB and SCON-CA/CAL/CB only, and SCON Servo Press Type is not applicable)

NTC1	NTC0	Function	
0	0	Do not use vibration control	
		(default).	
0	1	Select parameter set 1	
1	0	Select parameter set 2	
1	1	Select parameter set 3	

When vibration control is used, you can register a maximum of three parameter sets and move the actuator to each position by selecting a different parameter set every time. [For details, refer to the operation manual for your controller.]

(6) Example of use

Examples of different operations are shown in [1] to [7] below.

[1] Move by changing the target position. (All data other than the target position are the default values of their respective parameters.)

Conditions: The operation conditions conform to the default speed, default

acceleration/deceleration and default positioning band set by the controller's user parameters. Only the target position is changed to move the actuator.

Supplement: Controller's user parameters

• Default speed (parameter No. 8) → Maximum speed of the applicable actuator as specified in the catalog

• Default acceleration/deceleration (parameter No. 9) → Rated acceleration of the applicable actuator as specified in the catalog

• Default positioning band (parameter No. 10) → Default value = 0.1 mm

Write the target position specification register (9900_H) (Example 1)

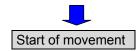
Start of movement

(Example 1) Target position: 50 mm

•	Target position [mm]	Positioning band [mm]	Speed [mm/s]	Acceleration/ deceleration [G]	Push [%]	Control flag		
	50		Need not be set.					

- ■Query: 01 10 9900 0002 04 0000 1388 B5[CR][LF]
- ■Response: 01 10 9900 0002 54[CR][LF]
 - --- The query message is copied, except for the number of bytes and new data, and returned as a response.

■ Breakdown of Query Message


■ Dreakdown of Query Message								
Field	ASCII mode	Converted ASCII	Remarks					
	fixed character string	code data [H]						
Header	· . ·	3A						
Slave address	'0', '1'	3031	Axis number + 1					
Function code	'1', '0'	3130						
Start address	'9', '9', '0', '0'	39393030	The start address is the target position specification register 9900 _H .					
Number of registers	'0', '0', '0', '2'	30303032	Specify 9900 _H through 9901 _H as the addresses to be written.					
Number of bytes	'0', '4'	3034	2 (registers) × 2 = 4 (bytes) \rightarrow 4 _H					
	'0', '0', '0', '0'	30303030						
Changed data 2 [H]	'1', '3', '8', '8'	31333838	50 [mm] × 100 = 5000 → 1388 _H					
Error check	'B', '5'	4235	LRC checksum calculation result → B5 _H					
Trailer	'CR', 'LF'	0D0A						
Total number of bytes	27							

[2] Move by changing the target position. (as well as data other than the target position).

Conditions: Want to move the actuator by changing the target position, speed and acceleration/deceleration every time.

Write the target position specification register (9900 $_{\rm H}$) through acceleration/deceleration specification register (9906 $_{\rm H}$) (Example 2)

(Example 2) Target position: 50 mm

Target position [mm]	Positioning band [mm]	Speed [mm/s]	Acceleration/ deceleration [G]	Push [%]	Control flag
50	0.1	100	0.3	Need	not be set.

- Query: 01 10 9900 0007 0E 0000 1388 0000 000A 0000 2710 001E 47[CR][LF]
- Response : 01 10 9900 0007 4F[CR][LF]
 - --- The query message is copied, except for the number of bytes and new data, and returned as a response.

■ Breakdown of Query Message

Bleakdown of Query Message						
Field	ASCII mode	Converted ASCII	Remarks			
	fixed character string	code data [H]				
Header	.,,	3A				
Slave address	'0', '1'	3031	Axis number + 1			
Function code	'1', '0'	3130				
Start address	'9', '9', '0', '0'	39393030	The start address is the target position specification register 9900 _H .			
Number of registers	'0', '0', '0', '7'	30303039	Specify 9900 _H through 9906 _H as the addresses to be written.			
Number of bytes	'0', 'E'	3132	7 (registers) × 2 = 14 (bytes) \rightarrow E _H			
New data 1, 2	'0', '0', '0', '0'	30303030	All upper bits of the 32-bit data are 0.			
(target position) Input unit (0.01 mm)	'1', '3', '8', '8'	31333838	50 [mm] × 100 = 5000 → 1388 _H			
New data 3, 4	'0', '0', '0', '0'	30303030	All upper bits of the 32-bit data are 0.			
(Positioning band) Input unit (0.01 mm)	'0', '0', '0', 'A'	30303041	0.1 [mm] × 100 = 10 → 000A _H			
Now data F. 6 (Speed)	'0', '0', '0', '0'	30303030	All upper bits of the 32-bit data are 0.			
New data 5, 6 (Speed) Input unit (0.01 mm/sec)	'2', '7', '1', '0'	32373130	100 [mm/s] ×100 = 10000 → 2710 _H			
New data 7 (Acceleration/deceleration) Input unit (0.01 G)	'0', '0', '1', 'E'	30303145	0.3 [G] × 100 =30 → 001E _H			
Error check	'4', '7'	3437	LRC checksum calculation result \rightarrow 47 _H			
Trailer	'CR', 'LF'	0D0A				
Total number of bytes	47					

[3] Change the speed while the actuator is moving.

Conditions: Change the target position, speed and acceleration/deceleration each time the actuator is moved, with the actuator speed changed at a given time during movement.

Write the target position specification register (9900_H) through acceleration/deceleration specification register (9906_H) $^{\text{(Example 2)}}$

Start of movement

Write the speed specification registers (9904_H and 9905_H)^(Example 3)

The actuator continues with the normal operation at the new speed

(Example 3) Change the speed from 100 mm/s to 50 mm/s while the actuator is moving.

 <u> </u>						
Target position [mm]	Positioning band [mm]	Speed [mm/s]	Acceleration/ deceleration [G]	Push [%]	Control flag	
50	0.1	100 → 50	0.3	Need no	ot be set.	

(1) Start the movement at a speed of 100 mm/s. [Refer to Example [2], "Move by changing the speed" above.]

■ Query: 01 10 9900 0007 0E 0000 1388 0000 000A 0000 2710 001E 47[CR][LF]

■ Response : 01 10 9900 0007 4F[CR][LF]

(2) Change the speed to 50 mm/s.

■ Query: 01 10 9904 0002 04 0000 1388 B1[CR][LF]

■ Response : 01 10 9904 0002 50[CR][LF]

--- The query message is copied, except for the number of bytes and new data, and returned as a response.

■ Breakdown of Query Message (Change the speed to 50 mm/s. [Refer to the above example for the query message used to start the movement at 100 mm/s.])

quely meesage accasts claim and mercanical actives minimely						
Field	ASCII mode	Converted ASCII	Remarks			
	fixed character string	code data [H]				
Header	· · ·	3A				
Slave address	'0', '1'	3031	Axis number + 1			
Function code	'1', 'O'	3130				
Start address	'9', '9', '0', '4'	39393034	The start address is the target position specification register 9904 _H .			
Number of registers	'0', '0', '0', '2'	30303032	Specify 9904 _H through 9905 _H as the addresses to be written.			
Number of bytes	'0', '4'	3034	2 (registers) × 2 = 4 (bytes) \rightarrow 4 _H			
Changed data 5, 6 [H]	'0', '0', '0', '0'	30303030	All upper bits of the 32-bit data are 0.			
Input unit (0.01 mm/s)	'1', '3', '8', '8'	31333838	50 [mm] × 100 = 5000 → 1388 _H			
Error check	'B', '1'	4231	LRC check calculation result → B1 _H			
Trailer	'CR', 'LF'	0D0A				
Total number of bytes	27					

[4] Move in the incremental (pitch feed) mode.

Conditions:

The operation conditions conform to the default speed, default acceleration/deceleration and default positioning band set by the controller's user parameters. Only the pitch width is changed to move the actuator.

Write the target position specification register (9900_H) through control flag specification register (9908_H: Incremental setting) $^{(Example\ 4)}$

Start of movement

Supplement: Addresses 9900_H and 9908_H alone cannot be changed in a single data transmission. Since all addresses are sequential, send two messages if 9900_H and 9908_H alone are changed.

If you want to send only one message, write all addresses from 9900_H to 9908_H.

(Example 4) Move in the incremental mode by setting the pitch to 10 mm.

Pitch [mm]	Positioning band [mm]	Speed [mm/s]	Acceleration/ deceleration [G]	Push [%]	Control flag
10	0.1	100	0.3	0	Incremental (bit3 = 1)

- Query: 01 10 9900 0009 12 0000 03E8 0000 000A 0000 2710 001E 0000 0008 E9[CR][LF]
- Response: 01 10 9900 0009 4D[CR][LF]
 - -- The query message is copied, except for the number of bytes and new data, and returned as a response.

■ Breakdown of Query Message

■ Dicardown of Query Mc	ooago		
Field	ASCII mode fixed character	Converted ASCII code	Remarks
	string	data [H]	
Header	.,,	3A	
Slave address	'0', '1'	3031	Axis No. 0 + 1
Function code	'1', '0'	3130	
Start address	'9', '9', '0', '0'	39393030	The start address is the target position specification register 9900 _H .
Number of registers	'0', '0', '0', '9'	30303039	Specify 9900 _H through 9908 _H as the addresses to be written.
Number of bytes	'1', '2'	3132	9 (registers) × 2 = 18 (bytes) \rightarrow 12 _H
Changed data 1, 2 (target position)	'0', '0', '0', '0'	30303030	All upper bits of the 32-bit data are 0.
Input unit (0.01 mm)	'0', '3', 'E', '8'	30334538	10 [mm] × 100 = 1000 → 03E8 _H
Changed data 3, 4 (positioning band)	'0', '0', '0', '0'	30303030	All upper bits of the 32-bit data are 0.
Input unit (0.01 mm)	'0', '0', '0', 'A'	30303041	0.1 [mm] × 100 = 10 → 000A _H
Changed data 5, 6	'0', '0', '0', '0'	30303030	All upper bits of the 32-bit data are 0.
(speed) Input unit (0.01 mm/sec)	'2', '7', '1', '0'	32373130	100 [mm/s] × 100 = 10000 → 2710 _H
Changed data 7 (acceleration/deceleration) Input unit (0.01 G)	'0', '0', '1', 'E'	30303145	0.3 [G] × 100 = 30 → 001E _H
Changed data 8 (push) Input unit (%)	'0', '0', '0', '0'	30303030	0 [%] → 0 _H
Changed data 9 (control flag)	'0', '0', '0', '8'	30303038	(Incremental setting) 1000b → 0008 _H
Error check	'E', '9'	4539	LRC check calculation result → E9 _H
Trailer	'CR', 'LF'	0D0A	
Total number of bytes	55		

Modbus

[5] Change the speed during incremental movement (pitch feed).

Conditions: Change the target position, speed and acceleration/deceleration each time the actuator is moved, with the positioning band changed at a given time during movement.

Write the target position specification register (9900_H) through control flag specification register (9908_H: Incremental setting) $^{(Example\ 4)}$

Start of incremental movement

Write the speed specification register (9904 $_{\rm H}$) through control flag specification register (9908 $_{\rm H}$: Incremental setting) (Example 5).

The actuator continues with the incremental movement at the new speed.

Supplement:

After the control flag specification register (9908_H) is set, the register will return to the default value (0_H: Normal movement) once the actuator starts moving. Accordingly, you must set the control flag specification register (9908_H) and send it again if another incremental or push-motion operation is to be performed.

(Example 5) Change the speed from 100 mm/s to 50 mm/s while the actuator is moving.

Pitch [mm]	Positioning band [mm]	Speed [mm/s]	Acceleration/ deceleration [G]	Push [%]	Control flag
10	0.1	100 → 50	0.3	0	Incremental (bit3 = 1)

(1) Start moving at a speed of 100 mm/s. [Refer to Example [4], "Moving in the incremental (pitch feed) mode" above.]

■ Query: 01 10 9900 0009 12 0000 03E8 0000 000A 0000 2710 001E 0000 0008 E9[CR][LF]

■ Response : 01 10 9900 0009 4D[CR][LF]

(2) Change the speed to 50 mm/s.

Query: 01 10 9904 0005 0A 0000 1388 001E 0000 0008 82[CR][LF]

■ Response: 01 10 9904 0005 4D[CR][LF]

--- The query message is copied, except for the number of bytes and new data, and returned as a response.

■ Breakdown of Query Message (Change the speed to 50 mm/s. [Refer to the above example for the

query message used to start the movement at 100 mm/s.])

Field	ASCII mode fixed character	Converted ASCII code	Remarks
1 ICIG	string	data [H]	Remarks
Header	·.,	3A	
Slave address	· ·0', '1'	3031	Axis No. 0 + 1
Function code	'1', '0'	3130	7AI3 NO. 0 1 1
Start address	'9', '9', '0', '4'	39393034	The start address is the target position specification register 9904 _H .
Number of registers	'0', '0', '0', '5'	30303032	Specify 9904 _H through 9908 _H as the addresses to be written.
Number of bytes	'0', 'A'	3034	5 (registers) × 2 = 10(bytes) → A _H
Changed data 1, 2	'0', '0', '0', '0'	30303030	All upper bits of the 32-bit data are 0.
(target position) Input unit (0.01 mm)	'1', '3', '8', '8'	31333838	50 [mm/s] × 100 = 5000 → 1388 _H
Changed data 7 (acceleration/deceleration) Input unit (0.01 G)	'0', '0', '1', 'E'	30303145	0.3 [G] × 100 = 30 → 001E _H
Changed data 8 (push) Input unit (%)	'0', '0', '0', '0'	30303030	$0 \ [\%] \rightarrow 0_{H}$
Changed data 9 (control flag)	'0', '0', '0', '8'	30303038	(Incremental setting) 1000b → 0008 _H
Error check	'8', '2'	3832	LRC check calculation result → 82 _H
Trailer	'CR', 'LF'	0D0A	
Total number of bytes	39		

Modbus

[6] Perform a push-motion operation. (changing pushing force during push-operation)

Conditions: Perform push-motion operation by changing the push force at a desired time while the actuator is pushing the work part.

Write the target position specification register (9900_H) through control flag specification register (9908_H: Push-motion setting) $^{(Example\ 6)}$

Start push-motion operation

Write the push-current limit specification register (9907_H) through control flag specification register (9908_H: Push-motion setting) $^{(Example 7)}$

The actuator continues with the push-motion operation with the new push force

(Example 6) Perform a push-motion operation for 20 mm from the 50-mm position at a current-limiting value of 70%.

	000	J			
Target position [mm]	Positioning band [mm]	Speed [mm/s]	Acceleration/ deceleration [G]	Push [%]	Control flag
50	20	100	0.3	70	Push-motion operation (bit1 = 1, bit2 = 0, 1)

- Query: 01 10 9900 0009 12 0000 1388 0000 07D0 0000 2710 001E 00B2 0006 BC[CR][LF]
- Response: 01 10 9900 0009 4D[CR][LF]
 - --- The query message is copied, except for the number of bytes and new data, and returned as a response.

■ Breakdown of Query Message

Dicardown of Query Mc	ooago		
Field	ASCII mode fixed character	Converted ASCII code	Remarks
	string	data [H]	
Header	٠.,	3A	
Slave address	'0', '1'	3031	Axis No. 0 + 1
Function code	'1', '0'	3130	
Start address	'9', '9', '0', '0'	39393030	The start address is the target position specification register 9900 _H .
Number of registers	'0', '0', '0', '9'	30303039	Specify 9900 _H through 9908 _H as the addresses to be written.
Number of bytes	'1', '2'	3132	9 (registers) × 2 = 18 (bytes) \rightarrow 12 _H
New data 1, 2	'0', '0', '0', '0'	30303030	All upper bits of the 32-bit data are 0.
(target position) Input unit (0.01 mm)	'1', '3', '8', '8'	31333838	50 [mm] × 100 = 5000 → 1388
New data 3, 4	'0', '0', '0', '0'	30303030	All upper bits of the 32-bit data are 0.
(positioning band) Input unit (0.01 mm)	'0', '7', 'D', '0'	30374430	20 [mm] × 100 = 2000 → 07D0 _H
New data 5, 6 (speed)	'0', '0', '0', '0'	30303030	All upper bits of the 32-bit data are 0.
Input unit (0.01 mm/sec)	'2', '7', '1', '0'	32373130	100 [mm/s] × 100 = 10000 → 2710 _H
New data 7 (acceleration/deceleration) Input unit (0.01 G)	'0', '0', '1', 'E'	30303145	0.3 [G] × 100 = 30 → 001E _H
New data 8 (push) Input unit (%)	'0', '0', 'B', '2'	30304232	70 [%] → B2 _H
New data 9 (control flag)	'0', '0', '0', '6'	30303036	(Push setting) 1000b → 0006 _H
Error check	'B', 'C'	4243	LRC check calculation result → BC _H
Trailer	'CR', 'LF'	0D0A	
Total number of bytes	55		

(Example 7) Change the push current limit from 70% to 50% during a push-motion operation.

\ -	/ 0 1				
Target position [mm]	Positioning band [mm]	Speed [mm/s]	Acceleration/ deceleration [G]	Push [%]	Control flag
50	20	100	0.3	70 → 50	Push-motion operation (bit1 = 1, bit2 = 1)

■Query: 01 10 9907 0002 04 007F 0006 C4[CR][LF]

■Response: 01 10 9907 0002 4D[CR][LF]

--- The query message is copied, except for the number of bytes and new data, and returned as a response.

■ Breakdown of Query Message

Dieakdowii of Query Message					
Field	ASCII mode fixed character	Converted ASCII code	Remarks		
	string	data [H]			
Header	.,,	3A			
Slave address	'0', '1'	3031	Axis No. 0 + 1		
Function code	'1', '0'	3130			
Start address	'9', '9', '0', '7'	39393037	The start address is the target position specification register 9907 _H .		
Number of registers	'0', '0', '0', '2'	30303032	Specify 9907 _H through 9908 _H as the addresses to be written.		
Number of bytes	'0', '4'	3034	2 (registers) × 2 = 4 (bytes) \rightarrow 4 _H		
Changed data 8 (push) Input unit (%)	'0', '0', '7', 'F'	30303746	50 [%] → 7F _H		
Changed data 9 (control flag)	'0', '0', '0', '6'	30303036	(Push setting) 1000b → 0006 _H		
Error check	'C', '4'	4334	LRC check calculation result → C4 _H		
Trailer	'CR', 'LF'	0D0A			
Total number of bytes	27				

Modbus

[7] Note (changing positioning band during movement)

The positioning band cannot be changed while the actuator is moving.

Conditions: Change the target position, speed and acceleration/deceleration each time the actuator is moved, with the positioning band changed at a given time during movement.

(Cannot be changed. If data is written, the data is reflected in the next positioning.)

Write the target position specification register (9900_H) through acceleration/deceleration specification register (9906_H)

Start normal operation

Write the positioning band specification registers (9902_H and 9903_H)

The actuator continues with the normal operation at the original positioning band setting

Supplement: Writing the positioning band specification registers alone cannot effect an actual movement command.

Therefore, the data changed by writing the positioning band specification registers (9902_H and 9903_H) will become effective when the next movement command is executed.

6.7.2 Writing Position Table Data

(1) Function

Position table data can be changed using this query.

Every time an access is made to the start address list (address +0000_H to +000E_H), it is read out of the non-volatile memory in the unit of 1 position data, and gets stored to the non-volatile memory (EEPROM, FeRAM) after the writing is executed. Check the limit for number of writing from the basic specifications described in an instruction manual for each controller.

* The EEPROM has a rewrite life of approx. 100, 000 times due to device limitations. If the position table data is written frequently, the EEPROM will reach its rewrite life quickly and a failure may occur. Accordingly, be careful not to let unexpected loops, etc., occur due to the logics on the host side. There is no limit to number of writing for FeRAM.

(2) Start address list

In a query input, each address is calculated using the formula below: $1000_{\rm H}$ + $(16 \times {\rm Position\ number})_{\rm H}$ + Address (Offset) $_{\rm H}$

(Example) Change the speed command register for position No. 200

 $1000_{H} + (16 \times 200 = 3200)_{H} + 4_{H}$

 $= 1000_{H} + C80_{H} + 4_{H}$

 $= 1C84_{H}$

"1C84" becomes the input value for the start address field of this query.

Note The maximum position number varies depending on the controller model and the PIO pattern currently specified.

■ Position data change registers

Address	Symbol	mbol Name	Sign	Register	Byte	Input
Address Symbo		Name	Sign	size	size	unit
+0000	PCMD	Target position	0	2	4	0.01 mm
+0002	INP	Positioning band		2	4	0.01 mm
+0004	VCMD	Speed command		2	4	0.01 mm/sec
+0006	ZNMP	Individual zone boundary +	0	2	4	0.01 mm
+0008	ZNLP	Individual zone boundary -	0	2	4	0.01 mm
+000A	ACMD	Acceleration command		1	2	0.01 G
+000B	DCMD	Deceleration command		1	2	0.01 G
+000C	PPOW	Push-current limiting value		1	2	%
+000D	LPOW	Load current threshold		1	2	%
+000E	CTLF	Control flag specification		1	2	

 ^{*} Addresses starting with "+" indicate offsets.

Note RCP6S, RCM-P6PC, RCM-P6AC and RCM-P6DC cannot write in to this address. They return an exceptional response.

(3) Query format

1 register = 2 bytes = 16-bit data

Tregioter 2 bytes	10 bit data		
Field	ASCII mode fixed character string	Number of characters (Number of bytes)	Remarks
Header	٠.,	1	
Slave address [H]	Arbitrary	2	Axis number + 1 (01 _H to 10_H)
			00 _H when broadcast is specified
Function code [H]	'1', '0'	2	
Start address [H]	Arbitrary	4	Refer to 6.7.2 (2), "Start address list."
Number of registers [H]	Arbitrary	4	Refer to 6.7.2 (2), "Start address list."
Number of bytes [H]	In accordance	2	A value corresponding to twice the
	with the above		number of registers specified above is
	registers		input.
Changed data 1 [H]		4	Refer to 6.7.2 (2), "Start address list."
Changed data 2 [H]		4	Refer to 6.7.2 (2), "Start address list."
Changed data 3 [H]		4	Refer to 6.7.2 (2), "Start address list."
:			
Error check [H]	LRC calculation	2	
	result		
Trailer	'CR', 'LF'	2	
Total number of bytes		Up to 256	

(4) Response format

If the change is successful, a response message that is effectively a copy of the query message, except for the byte count and new data, will be returned.

Field	ASCII mode fixed character string	Number of characters (Number of bytes)	Remarks
Header	.,,	1	
Slave address [H]	Arbitrary	2	Axis number + 1 (01 _H to 10 _H) 00 _H when broadcast is specified
Function code [H]	'1', '0'	2	
Start address [H]	Arbitrary	4	Refer to 6.7.2 (2), "Start address list."
Number of registers [H]	Arbitrary	4	Refer to 6.7.2 (2), "Start address list."
Error check [H]	LRC calculation result	2	
Trailer	'CR', 'LF'	2	
Total number of bytes		17	

(5) Detailed explanation of registers

■ Target Position (PCMD)

This register specifies the target position using absolute coordinates or by an relative distance. The value of this register is set in units of 0.01 mm in a range of -999999 to 999999 (FFF0BDC1_H^(Note 1) to 000F423F_H). When the absolute coordinate is indicated, operation starts with 0.2mm in front ^(Note 2) of the soft limit setting value as the target position if the setting of the parameter exceeds the soft limit. The actuator will start moving when the lower word of this register (symbol: PCMD, address: 9900_H) is rewritten. In other words, <u>a numerical movement command can be issued simply by writing a target position in this register.</u>

Note 1 To set a negative value, use a two's complement.

Note 2 For a revolution axis set to Index Mode, the soft limit setting value is the target position.

■ Positioning band Specification Register (INP)

This register is used in two different ways depending on the type of operation. The first way is the normal positioning operation, where it specifies the allowable difference between the target position and current position to be used in the detection of position complete. The second way is the push-motion operation, where it specifies the push-motion band. The value of this register is set in units of 0.01 mm in a range of 1 to 999999 ($1_{\rm H}$ to 000F423F_H).

Whether the normal operation or push-motion operation is specified by the applicable bit in the control flag specification register as explained later.

Caution: It is necessary that the positioning band is at or more than the value figured out with the formulas below.

- For Servomotor: Actuator Lead Length + Encoder Pulse
- For Pulse Motor: Actuator Lead Length ÷ Encoder Pulse × 3 Apply the servomotor formula for RCP6 Actuator

Speed Specification Register (VCMD)

This register specifies the moving speed in positioning. The value of this register is set in units of 0.01 mm/sec in a range of 1 to 999999 (1_H to 000F423F_H). If the specified value exceeds the maximum speed set by a parameter, an alarm will generate the moment a movement start command is issued.

■ Individual Zone Boundaries ± (ZNMP, ZNLP)

These registers output zone signals that are effective only during positioning, separately from the zone boundaries set by parameters.

Set in ZNMP the positive zone signal output boundary expressed using absolute coordinates, and set the negative zone signal output boundary in ZNLP. The corresponding bit in the zone register remains ON while the current position is within these positive and negative boundaries. The value of this register is set in units of 0.01 mm, and in a range of -999999 to 999999 (FFF0BDC1_H^(Note) to 000F423F_H) for both registers. However, ZNMP must be greater than ZNLP. Set the same value in both ZNMP and ZNLP to disable the individual zone output.

Note To set a negative value, use a two's complement.

Acceleration specification register (ACMD)

This register specifies the acceleration during positioning. The value of this register is set in units of 0.01~G in a range of 1 to $300~(1_H~to~012C_H)$. If the specified value exceeds the maximum acceleration set by a parameter, an alarm will generate the moment a movement start command is issued.

■ Deceleration specification register (DCMD)

This register specifies the deceleration during positioning. The value of this register is set in units of 0.01~G in a range of 1 to $300~(1_H~to~012C_H)$. If the specified value exceeds the maximum deceleration set by a parameter, an alarm will generate the moment a movement start command is issued.

Push-current limiting value (PPOW) Set the current limit during push-motion operation in PPOW. Set an appropriate value by referring to the table below.

Actuator model name	Pushable range [%]	Settable range (input value) [H]
Actuator other than	20 to 70 ^(Note)	33 to B2
RCS2-RA13R		
RCS2-RA13R	20 to 200	33 to 1FE

Note The setting ranges may vary depending on the actuator.

[For details, refer to the IAI catalog or operation manual of each actuator.]

Sample push-motion current setting

- When setting the current to 20% 255 (100%) × 0.2 (20%)= 51 \rightarrow 33_H (convert into hexadecimal number)
- Load Output Current Threshold (LPOW)

 To perform load output judgment, set the current threshold in LPOW. Set an appropriate value according to the actuator used, just like the push current limit (PPOW). If load output judgment is not performed, set 0.
- Control Flag Specification Register (CTLF) [Refer to the control flag specification register in 6.7.1 (5).]

(6) Sample query

A sample query that rewrites all data of position No. 12 of axis No. 0 is shown below. Axis No. 0 $\,$

Target position [mm]	Positioning band [mm]	Speed [mm/sec]	Individual zone boundary+ [mm]	Individual zone boundary- [mm]	Acceleration [G]	Deceleration [G]	Push [%]	Threshold	Movement control
100	0.1	200	60	40	0.01	0.3	0	0	Normal movement

■ Query 01 10 10C0 000F 1E 0000 2710 0000 000A 0000 4E20 0000 1770 0000 0FA0 0001 001E 0000 0000 0000 EE[CR][LF]

■ Received response 01 10 10C0 000F 10[CR][LF]

■ Breakdown of Query Message

Dreakdown of Query Message							
Field	ASCII mode	Converted	Demode				
Field	fixed character	ASCII code	Remarks				
	string	data [H]					
Header	.,,	3A					
Slave address	'0', '1'	3031	Axis No. 0 + 1				
Function code	'1', '0'	3130					
Start address	'1', '0', 'C', '0'	31304330	The start address is the target position specification register 10C0 _H for position No. 12. *1				
Number of registers	'0', '0', '0', 'F'	30303046	Total 15 registers of register symbols PCMD to CTLF are specified to be written.				
Number of bytes	'1', 'E'	3145	15 (registers) × 2 = 30 (bytes) → 1E _H				
New data 1, 2 (target position)	'0', '0', '0', '0'	30303030	All upper bits of the 32-bit data are 0.				
Input unit (0.01 mm)	'2', '7', '1', '0'	32373130	100 (mm) × 100 = 10000 → 2710 _H				
New data 3, 4 (positioning band)	'0', '0', '0', '0'	30303030	All upper bits of the 32-bit data are 0.				
Input unit (0.01 mm)	'0', '0', '0', 'A'	30303041	$0.1 \text{ (mm)} \times 100 = 10 \rightarrow 000 A_H$				
New data 5, 6 (speed)	'0', '0', '0', '0'	30303030	All upper bits of the 32-bit data are 0.				
Input unit (0.01 mm/sec)	'4', 'E', '2', '0'	34453230	200 (mm/sec) × 100 = 20000 → 4E20 _H				
New data 7, 8	'0', '0', '0', '0'	30303030	All upper bits of the 32-bit data are 0.				
(individual zone boundary +)	'1', '7', '7', '0'	31373730	60 (mm) × 100 = 6000 → 1770 _H				
Input unit (0.01 mm)	'0', 'F', 'A', '0'	30464130	40 (mm) × 100 = 4000 → 0FA0 _H				

Continue to the next page

Field	ASCII mode fixed character string	Converted ASCII code data [H]	Remarks
Changed data 9, 10 (individual zone	'0', '0', '0', '0'	30303030	All upper bits of the 32-bit data are 0.
boundary -) Input unit (0.01 mm)	'0', 'F', 'A', '0'	30464130	40 (mm) × 100 = 4000 → 0FA0 _H
Changed data 11 (acceleration) Input unit (0.01 G)	'0', '0', '0', '1'	30303031	0.01 (G) × 100 = 1 → 0001 _H
Changed data 12 (deceleration) Input unit (0.01 G)	'0', '0', '1', 'E'	30303145	0.3 (G) × 100 = 30 → 001E _H
Changed data 13 (push) Input unit [%]	'0', '0', '0', '0'	30303030	0 (%) → 0 _H
Changed data 14 (threshold) Input unit [%]	'0', '0', '0', '0'	30303030	0 (%) → 0 _H
Changed data 15 (control flag)	'0', '0', '0', '0'	30303030	All bits are 0 in the normal operation mode. $0000b \rightarrow 0000_H$
Error check	'E', 'E'	4545	LRC check calculation result → EE _H
Trailer	'CR', 'LF'	0D0A	
Total number of bytes	79		

*1) Calculation of start address

In the example, all data of position No. 12 is changed. Accordingly, the target position address of position No. 12 is set in the start address field of this query.

$$1000_{H} + (16 \times 12 = 192)_{H} + 0_{H}$$

 $^{= 1000}_{H} + C0_{H} + 0_{H}$

 $^{= 10}C0_{H}$

[&]quot;10C0" becomes the input value for the start address field of this query.

Shown below are the screens of IAI's PC software for RC controller, indicating how position data changes before and after a guery message is sent.

(Note) It is not possible to connect both PC software and Modbus at the same time. The example below shows the case when switching the connection between PC software and Modbus.

■ Before a query is sent

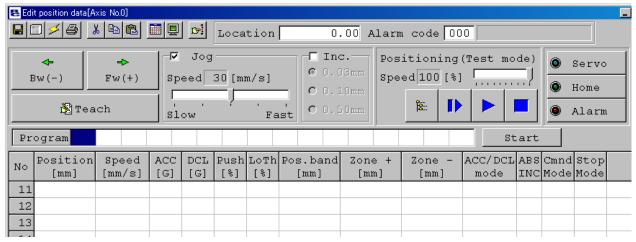
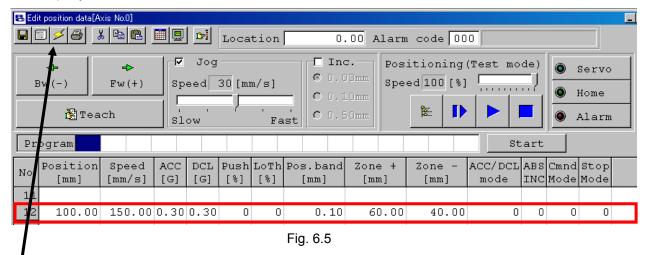



Fig. 6.4

■ After a query is sent

* The overwritten data is not displayed until the button is reopened.

7 Troubleshooting

7.1 Responses at Errors (Exception Responses)

In each query (command), except for a broadcast query message, the master issues a query by expecting a "successful" response(response), and the applicable slave must return a response to the query. If the query is processed successfully, the slave returns a "successful" response. If an error occurs, however, the slave returns an exception response.

The slave responds to a query in one of the following four ways:

- (1) The slave receives the query successfully, processes it successfully, and then returns a "successful" response.
- (2) The slave returns no response because the query could not be received due to a communication error, etc. The master generates a timeout error.
- (3) The slave also returns no response if the query is received but is found invalid because a LRC/CRC error is detected. In this case, the master also generates a timeout error.
- (4) If the query is received properly without generating errors but it cannot be processed for some reason (such as when the applicable register does not exist), the slave returns an exception response that contains an exception code indicating the content of exception.

Example of exception response generation

(Sample query message using Read Input Status)

Field	Sample value [Hex]	ASCII mode character string	RTU mode 8 bits [Hex]
Header	Į. va. ij	(.)	None
Slave address	03 _H	'0, ' '3'	03 _H
Function code	02 _H	ʻ0, ' ʻ2'	02 _H
Start address [H]	04 _H	ʻ0, ' ʻ4'	04 _H
Start address (L)	A1 _H	'A, ' '1'	A1 _H
Number of DIs [H]	00 _H	'0, ' '0'	00 _H
Number of DIs (L)	14 _H	'1, ' ' 4 '	14 _H
Error check		LRC (2 characters)	CRC (16 bits)
Trailer		CR/LF	None
	Total bytes	17	8

If input status 04A1_H does not exist, the following exception response will be returned.

Sample exception response from a slave

Field	Sample value [Hex]	ASCII mode character string	RTU mode 8 bits [Hex]
Header			None
Slave address	03 _H	'0, ' '3'	03 _H
Function code	82 _H	'8, ' '2'	82 _H
Exception code	02 _H	'0, ' '2'	02 _H
Error check		LRC (2 characters)	CRC (16 bits)
Trailer		CR/LF	None
	Total bytes	11	5

The exception response consists of the slave address field, function code field, and data field. In the slave address field, the applicable slave address is set as in the slave address field of a "successful" response. In the function code field, the function code in the query is set, and then the MSB (most significant bit of the function code) of this field is set to 1. This allows the master to recognize that the message is not a "successful" response, but an exception response. An exception code indicating the content of exception is set in the data field.

7. Troubleshooting

Example) Query function code " $02_{\rm H}$ " ($\boxed{0}0000010{\rm b}$) \rightarrow Exception response function code " $82_{\rm H}$ " ($\boxed{1}0000010{\rm b}$)

■ Exception codes

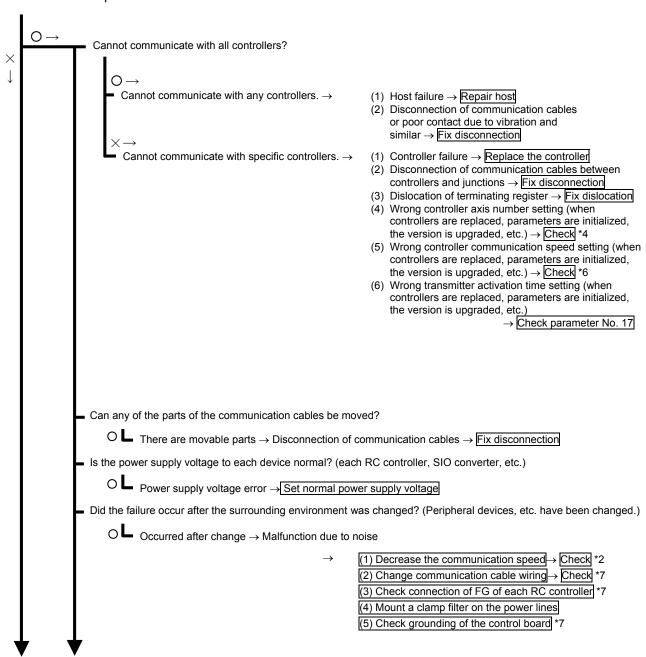
The table below lists the exception codes that may generate in RC Series controllers, as well as the contents of respective codes.

Code [Hex]	Exception code	Function	Remarks
01 _H	Illegal Function	Indicates that the function is invalid.	The query cannot be executed because a major error has occurred on the slave side due to function errors.
02 _H	Illegal Data Address	Indicates that the data address is invalid.	Use of the data address value is not permitted.
03 _H	Illegal Data Value	Indicates that the data is invalid.	Use of the data value is not permitted.
04 _H	Slave Device Failure	Indicates that the query cannot be executed because an irremediable error occurred in the slave.	

7.2 Notes

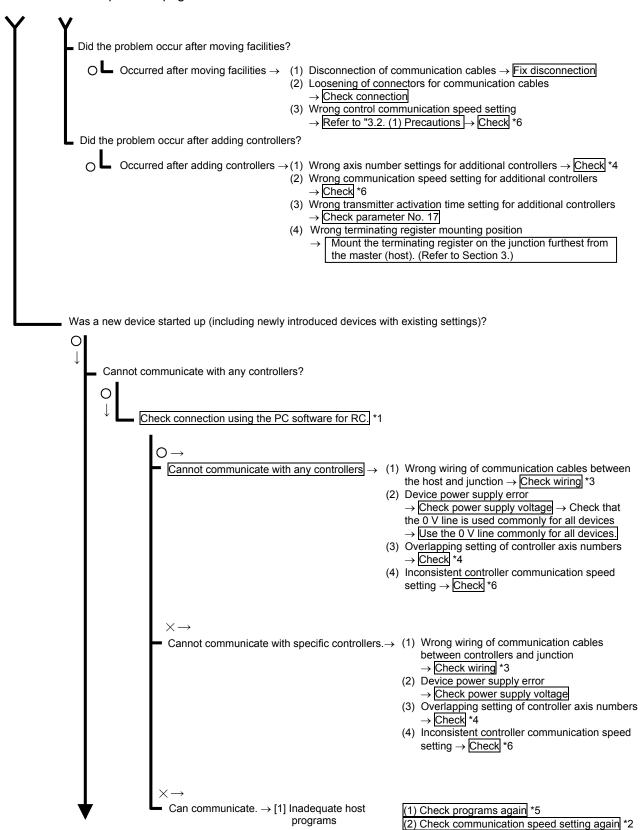
- When referencing registers using Modbus functions, registers belonging to multiple categories cannot be read simultaneously using a single message. To reference registers belonging to multiple categories, read them using multiple messages by classifying the corresponding addresses by category.
- The explanations in this specification apply commonly to RC controller Series models supporting "Protocol M." For the specifications and other items specific to each model, refer to the RC controller's operation manual that comes with the applicable controller.

7.3 When Communication Fails


Select an applicable item and perform the processing enclosed with \Box .

The specific processing details are explained after the flowchart; check the details indicated by the * symbol.

O = Yes, X = No


Symptom: Cannot communicate normally! Was communication possible until now?

Continue to the next page

Continued from the previous page

Continue to the next page

Continued from the previous page

Cannot communicate with specific controllers.

- O **L** [1] Wrong wiring of communication cables between controllers and junction → Check wiring *3
 - [2] Device power supply error → Check power supply voltage → Check that the 0 V line is used commonly for all devices → Use the 0 V line commonly for all devices.

Cannot communicate from time to time?

- O f L [1] Malfunction due to noise ightarrow
- (1) Decrease the communication speed Check *2
- (2) Change communication cable wiring Check *7
- (3) Check connection of FG of each RC controller *7
- (4) Mount a clamp filter on the power lines
- (5) Check grounding of the control board *7
- [2] Inadequate host programs →
- Check programs again (occurrence of communication buffer overflow, etc.?)

Modbus

- *1 Connect a PC to the host following the procedure explained in sections 3.1, 3.2 and 3.3.
- [1] Start the PC software.
- [2] Select [Application Setting] from the [Setting] menu.

Check that the port is set to the port number of the PC used and that the last axis number is set to a value larger than the number of connected axes in the Communication Setting window. (If any settings are wrong, correct the settings and then restart the PC for RC.)

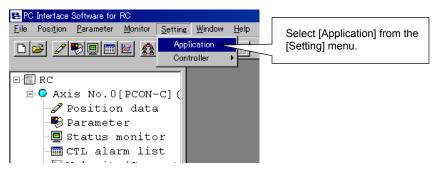


Fig.9.1

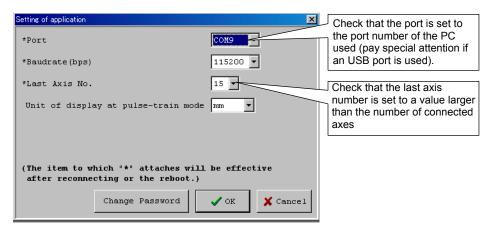
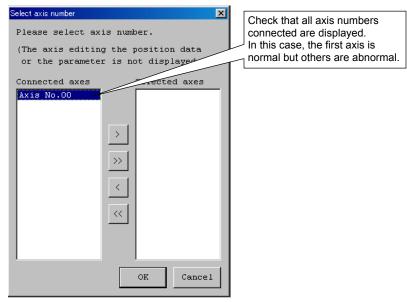


Fig. 9.2



[3] Select [Edit/Teach] from the [Position] menu.

The Position Data Edit Axis Selection window appears, displaying the connected axes. Axes for which connected axis numbers are displayed can communicate normally.

Fig.9.3

- Fig. 9.4
- *2 Refer to section 3.6 to decrease the communication speed.
- *3 Refer to sections 3.1, 3.2 and 3.3 to check wiring again.
- *4 Refer to section 3.5 to check the axis number settings again (check that there are no overlapping numbers).
- *5 Check again that the procedure in section 3.4 is followed correctly.
 - [1] If queries other than those that use a function code 03 are used, check that the PIO/Modbus switching in sections 5.4.16 (RTU) and 6.5.16 (ASCII) is set to the Modbus side.
 - [2] Unless the RC controller is restarted using the PC software for RC, the communication speed setting selected when connecting the PC software for RC is maintained. In this case, restart the RC controller.

- *6 Refer to section 3.6 to check the communication speed setting again. Set the same communication speed for all RC controllers as well as the host. Check (2) in *5.
- *7 Wire communication cables such that they do not run in parallel with power cables and cables that send pulse signals.

 Check that the communication cable is properly shielded (recommendation: 1-point ground).

Check that the setting environment and noise countermeasures live up to the specifications given in the instruction manual of each RC controller.

If the problems are not solved after checking above step, please contact us. In this case, please let us know about the phenomena occurring and the result of checking the items in the flowchart as well.

8 Reference Materials

8.1 CRC Check Calculation

Sample C functions used for CRC calculation are shown below.

They are equivalent to the CRC calculation functions stated in the published Modbus Protocol Specification (PI-MBUS-300 Rev. J).

```
unsigned short CalcCRC16swap(
    unsigned char* puchMsg,
                                                            /* message to calculate */
    unsigned short usDataLen)
                                                           /* quantity of bytes in message */
{
                    uchCRCHi = 0xFF;
    unsigned char
                                                           /* high byte of CRC initialized */
    unsigned char
                    uchCRCLo = 0xFF;
                                                            /* low byte of CRC initialized */
    unsigned int
                    ulndex;
                                                          /* will index into CRC lookup table */
    while(usDataLen--)
                                                           /* pass through message buffer */
                                                            /* calculate the CRC */
        uIndex = uchCRCHi ^ *puchMsg++;
        uchCRCHi = uchCRCLo ^ auchCRCHi[ulndex];
        uchCRCLo = auchCRCLo[uIndex];
    }
    return (uchCRCHi << 8 | uchCRCLo);
}
const unsigned char auchCRCHi[] =
{/* Table of CRC values for high-order byte */
    0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40,
    0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41,
    0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41,
    0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40,
    0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41,
    0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40,
    0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40,
    0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41,
```

};

0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0xC1, 0x81, 0x40,

const unsigned char auchCRCLo[] =

{/* Table of CRC values for low-order byte */

0x00, 0xC0, 0xC1, 0x01, 0xC3, 0x03, 0x02, 0xC2, 0xC6, 0x06, 0x07, 0xC7, 0x05, 0xC5, 0xC4, 0x04, OXCC, OXOC, OXOD, OXCD, OXOF, OXCF, OXCE, OXOE, OXOA, OXCA, OXCB, OXOB, OXC9, OXO9, OXO8, OXC8, 0xD8, 0x18, 0x19, 0xD9, 0x1B, 0xDB, 0xDA, 0x1A, 0x1E, 0xDE, 0xDF, 0x1F, 0xDD, 0x1D, 0x1C, 0xDC, 0x14, 0xD4, 0xD5, 0x15, 0xD7, 0x17, 0x16, 0xD6, 0xD2, 0x12, 0x13, 0xD3, 0x11, 0xD1, 0xD0, 0x10, 0xF0, 0x30, 0x31, 0xF1, 0x33, 0xF3, 0xF2, 0x32, 0x36, 0xF6, 0xF7, 0x37, 0xF5, 0x35, 0x34, 0xF4, 0x3C, 0xFC, 0xFD, 0x3D, 0xFF, 0x3F, 0x3E, 0xFE, 0xFA, 0x3A, 0x3B, 0xFB, 0x39, 0xF9, 0xF8, 0x38, 0x28, 0xE8, 0xE9, 0x29, 0xEB, 0x2B, 0x2A, 0xEA, 0xEE, 0x2E, 0x2F, 0xEF, 0x2D, 0xED, 0xEC, 0x2C, 0xE4, 0x24, 0x25, 0xE5, 0x27, 0xE7, 0xE6, 0x26, 0x22, 0xE2, 0xE3, 0x23, 0xE1, 0x21, 0x20, 0xE0, 0xA0, 0x60, 0x61, 0xA1, 0x63, 0xA3, 0xA2, 0x62, 0x66, 0xA6, 0xA7, 0x67, 0xA5, 0x65, 0x64, 0xA4, 0x6C, 0xAC, 0xAD, 0x6D, 0xAF, 0x6F, 0x6E, 0xAE, 0xAA, 0x6A, 0x6B, 0xAB, 0x69, 0xA9, 0xA8, 0x68, 0x78, 0xB8, 0xB9, 0x79, 0xBB, 0x7B, 0x7A, 0xBA, 0xBE, 0x7E, 0x7F, 0xBF, 0x7D, 0xBD, 0xBC, 0x7C, 0xB4, 0x74, 0x75, 0xB5, 0x77, 0xB7, 0xB6, 0x76, 0x72, 0xB2, 0xB3, 0x73, 0xB1, 0x71, 0x70, 0xB0, 0x50, 0x90, 0x91, 0x51, 0x93, 0x53, 0x52, 0x92, 0x96, 0x56, 0x57, 0x97, 0x55, 0x95, 0x94, 0x54, 0x9C, 0x5C, 0x5D, 0x9D, 0x5F, 0x9F, 0x9E, 0x5E, 0x5A, 0x9A, 0x9B, 0x5B, 0x99, 0x59, 0x58, 0x98, 0x88, 0x48, 0x49, 0x89, 0x4B, 0x8B, 0x8A, 0x4A, 0x4E, 0x8E, 0x8F, 0x4F, 0x8D, 0x4D, 0x4C, 0x8C, 0x44, 0x84, 0x85, 0x45, 0x87, 0x47, 0x46, 0x86, 0x82, 0x42, 0x43, 0x83, 0x41, 0x81, 0x80, 0x40,

};

8.2 Configuration of Systems that Use both SIO and PIO

It is possible to monitor the current position and other values via the SIO (communication) by running the RC controller with PIO. All queries that use function code 03 for either RTU and ASCII can be monitored. Set the PIO/Modbus Switchover in 5.4.16 or 6.5.16 to PIO, and for the RC controllers equipped with the operation mode setting switch, set it to AUTO when in use.

The following RC controller models can use both PIO and SIO. (Safety Category Type described)

- PCON-C/CG/CF/CA/CFA/CB/CGB/CFB/CGFB, PCON-CY, PCON-PL/PO,
- ACON-C/CG/CA/CB/CGB, ACON-CY, ACON-PL/PO,
- SCON-C/CA/CAL/CGAL/CB/CGB, DCON-CA/CB/CGB,
- PCON-CYB/PLB/POB, ACON-CYB/PLB/POB, DCON-CYB/PLB/POB,
- ERC2(PIO), ERC3

Example 2 of system configuration that uses both SIO and PIO

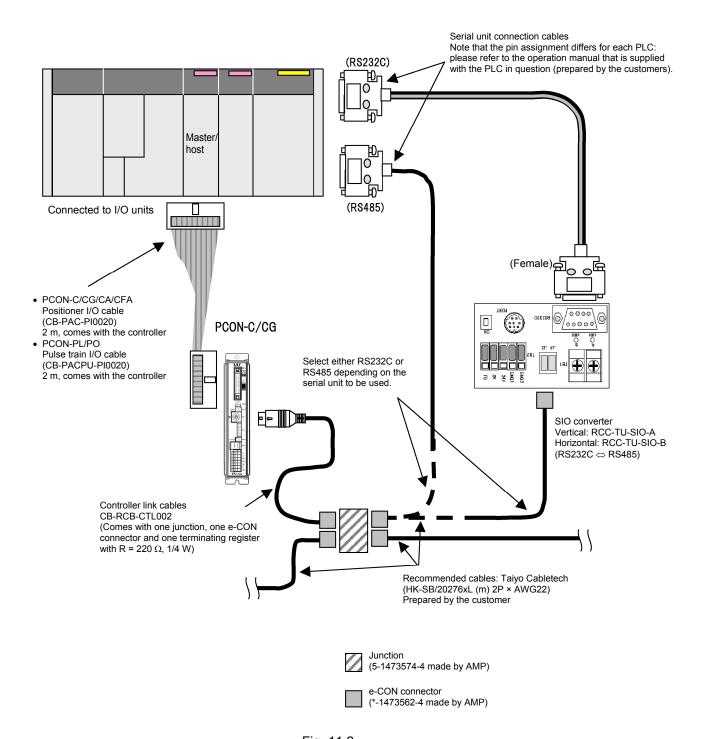


Fig. 11.2

8.3 Regarding Option Units

8.3.1 SIO converter (vertical specification: RCB-TU-SIO-A, horizontal specification: RCB-TU-SIO-B)

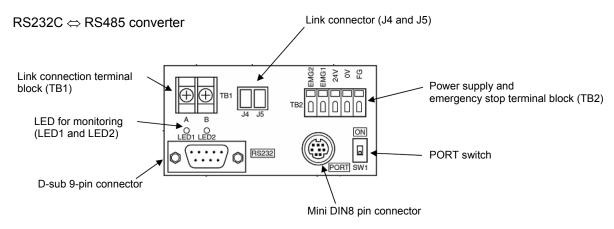
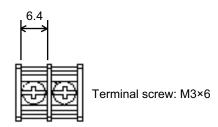
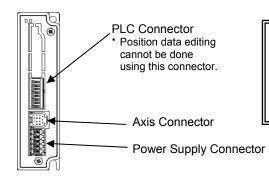



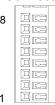
Fig. 11.3

- Power supply and emergency stop terminal block (TB2)
 - EMG1 and EMG2: Discrete outputs of the emergency stop switch of the teaching pendant EMG1 and EMG2 are connected to the emergency stop switch of the teaching pendant when the PORT switch is set to ON; EMG1 and EMG2 are short circuited when the switch is set to OFF.
 - 24 V: Supply +24 V power (current consumption 0.1 A or less)
 - 0 V: Supply 0 V power (use common 0 V for all 24 V DC-supplied controllers).
 - FG: A terminal to which FG is connected
 - * Compatible wires: Single wire: φ 0.8 to 1.2 mm
 Twisted wire: AWG18 to 20 (strip length 10 mm)
- Link connection terminal block (TB1)

A connector for link connection with an RC controller


- A: Connect to pin 1 (SGA) of the communication connector of the RC controller
- B: Connect to pin 2 (SGB) of the communication connector of the RC controller
- D-sub 9 pin connector
 A connector for connection with the master (host) side
- Mini DIN8 pin connector
 A connector for connection with teaching pendant or PC software
- PORT switch
 - ON: A teaching tool is used.
 - · OFF: A teaching tool is not used.
- LED for monitoring (LED1 and LED2)
 - LED1: Turns on/flashes when the RC controller is transmitting
 - LED2: Turns on/flashes when the master (host) side is transmitting
- Link connector (J4 and J5)
 Connectors for link connection with an RC controller
 An optional link cable (CB-RCB-CTL002) can be connected as is.

8.3.2 PLC Connection Unit for RCP6S (RCB-P6PLC-□) * Not applicable for ASCII Mode


It is a unit to connect when it is required to operate RCP6S Actuator with the serial communication.

For RCP6S, RCM-P6PC, RCM-P6AC and RCM-P6DC, connect a teaching tool such as PC software to the teaching board in order to edit the position data. At any area other than the teaching board, can access to the position data. 0 should be read in even if readout query gets conducted.

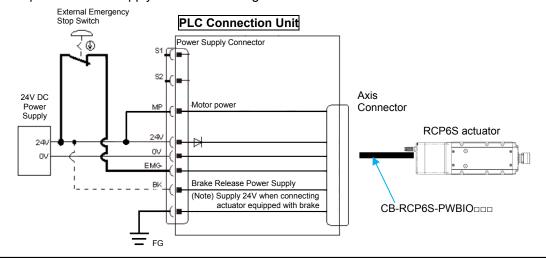
A connector for link connection with an RC controller

- SD+: Connect to pin 1 (SGA) of the communication connector of the RC controller
- SD-: Connect to pin 2 (SGB) of the communication connector of the RC controller
- 0V: Connect to the 0V on the power.

Pin No.	Signal Name	Description
1	SD+	Serial Communication Line +
2	SD-	Serial Communication Line -
3	GND	0V
4 to 8	NC	Do not connect to them.

Axis Connector

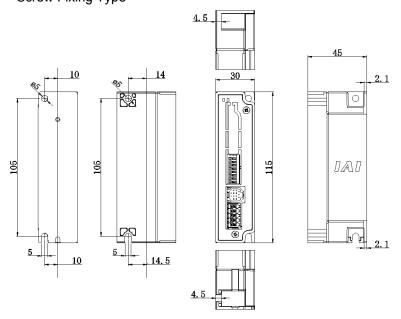
It is a connection inlet to connect RCP6S actuator. Connection is to be made with a dedicated cable. [Refer to instruction manual of each actuator]



Pin No.	Sign	al Name	Description			
1	FG		Frame Ground			
2	NC		Do not connect to them.			
3	EMC	SS	Emergency Stop Status			
4	S2		Do not connect to them.			
5	S1		Do not connect to them.	Do not connect to them.		
6	NC		Do not connect to them.			
7	GND		0V			
8	СР		Control Power Supply 24V DC			
			0.3A input			
9	MP	Voltage	Motor Power Supply 24V DC input	ut		
		Motor	28P, 35P, 42P, 56P	56SP,		
		Types		60P		
		Current	High-output valid : Max. 3.2A	Max.		
		Amperage	High-output invalid: Max. 1.7A	5.7A		
10	BK	•	For brake release, 24V DC, 0.7A max.			
			input			

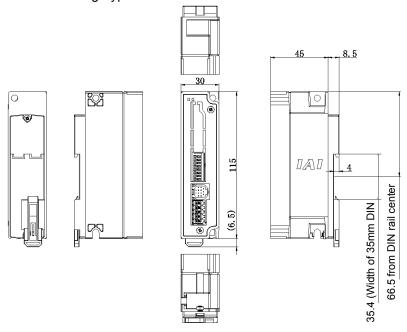
Twisted wire: AWG16 to 20 (strip length 10 mm)

Example for Power Supply Connector Wiring

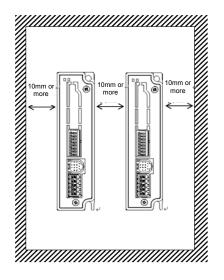


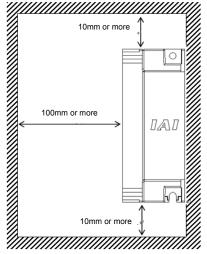
Caution: When supplying the power by turning ON/OFF the 24V DC, keep the 0V being connected and have the +24V supplied/disconnected (cut one side only).

The rating for the emergency stop signal (EMG-) is 24V DC and 10mA or less. Leave for 1 sec or more after shutting the power off before rebooting.


Do not attempt to supply only the monitor power without supplying the control power.

Appearance Dimensions Screw Fixing Type


DIN Rail Fixing Type



Heat Radiation and Installation

Designing the layout and build the structure considering the size of the control box, layout of the controllers and cooling for installation and heat radiation of RCB-P6PLC, so the ambient temperature around the controllers is 40degC or lower.

To fix the units in the control box, use the attachment holes on top and bottom of the unit for the screw fixed type, and use the DIN rails for the DIN rail fixed type.

Change History

Revision Date	Description of Revision
May 2010	Released Rev. 4. • Added "Safety Guide." • Added SCON-CA to the supported models. (Added the load cell calibration command, complete and measurement read commands and registers.) • Readjusted the specification of query 06. • Readjusted the specification of query 10.
October 2011	Released Rev. 5. • SCON-CA added to applicable models (Load cell calibration command, complete, calculated value reading command and register added)
December 2012	Released Rev. 6. • ERC3, PCON-CA/CFA added to applicable models (Maintenance information reading command and register added)
June 2013	Released Rev. 7. • Position data reading command added, caution added to the top regarding replacement in relation to message level error outputs
October 2015	Released Rev. 8. • Servo-press related items added (Query 03, 05) (Change page: P. 30 to 32, 51 to 59, 81, 84, 118, 124 to 134, 167 to 177, 229, 232, 266, 272 to 282, 315 to 325)
February 2016	Released Rev. 9. • RCP6_PLC connection unit related contents added (Changed and added pages: Before contents, pg. 13, pg. 17 to pg. 20, pg. 372 to pg. 375)
January 2017	Released Rev. 9B/9C. • Correction made and explanation added
July 2018	Released Rev. 10. • Following models added to applicable models PCON-CYB/PLB/POB, ACON-CYB/PLB/POB, DCON-CYB /PLB/POB, RCM-P6PC, RCM-P6AC and RCM-P6DC • Description added for restrictions for RCP6S Series • Correction made
August 2018	Released Rev. 10B. • Description corrected for models applicable for TFAN • Correction made

Manual No.: ME0162-10B (August 2018)

IAI Corporation

Head Office: 577-1 Obane Shimizu-KU Shizuoka City Shizuoka 424-0103, Japan TEL +81-54-364-5105 FAX +81-54-364-2589 website: www.iai-robot.co.jp/

Technical Support available in USA, Europe and China

IAI America, Inc.

Head Office: 2690 W. 237th Street, Torrance, CA 90505
TEL (310) 891-6015 FAX (310) 891-0815
Chicago Office: 110 East State Parkway, Schaumburg, IL 60173
TEL (847) 908-1400 FAX (847) 908-1399
Atlanta Office: 1220 Kennestone Circle, Suite 108, Marietta, GA 30066
TEL (678) 354-9470 FAX (678) 354-9471
website: www.intelligentactuator.com

IAI Industrieroboter GmbH

Ober der Röth 4, D-65824 Schwalbach am Taunus, Germany TEL 06196-88950 FAX 06196-889524

IAI (Shanghai) Co., Ltd.

SHANGHAI JIAHUA BUSINESS CENTER A8-303, 808, Hongqiao Rd. Shanghai 200030, China TEL 021-6448-4753 FAX 021-6448-3992 website: www.iai-robot.com

IAI Robot (Thailand) Co., Ltd.

825 PhairojKijja Tower 12th Floor, Bangna-Trad RD., Bangna, Bangna, Bangkok 10260, Thailand TEL +66-2-361-4458 FAX +66-2-361-4456

The information contained in this document is subject to change without notice for purposes of product improvement.

Copyright © 2018. Aug. IAI Corporation. All rights reserved.