

ROBO Cylinder[®] Configurations Cartesian Robot

www.intelligentactuator.com

Cartesian Robots have never been more affordable.

Economical price & compact ROBO Cylinder® configuration

The ROBO Cylinder[®] equipped as standard with a Battery-less Absolute Encoder has been added to the "IK Series". It helps reduce the design and assembly steps.

The ROBO Cylinder[®] RCP6 Series has been adopted to achieve even higher speeds compared with conventional models.

Diverse Configurations

The available configurations have been greatly expanded from the conventional models, allowing the ideal selection to suit your needs from 516 options.

New configurations include a table type (TA) with the Z-axis and a model with ZR unit (vertical/rotation).

Equipped with high resolution Battery-less Absolute Encoder as standard.

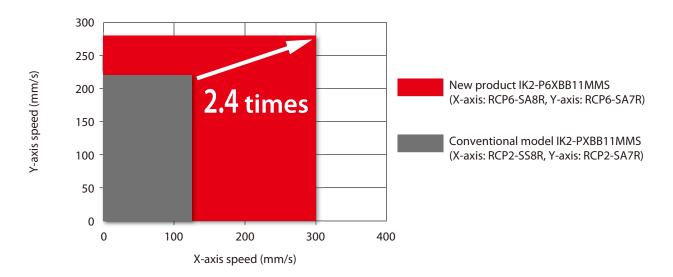
Equipped as standard with Battery-less Absolute Encoder for all configuration axes. No battery maintenance is required since there is no battery. Homing operation is not required at startup or after emergency stop or malfunction. This reduces your operation time, resulting in reduced production costs.

The advantages of using an absolute encoder.

- (1) With an absolute encoder, home return is not required.
- (2) No external home sensor is required since home return is not necessary.
- (3) Removal of workpieces is not necessary, even after an emergency stop.
- (4) The troublesome creation of home-return programs is not necessary even when stopping inside of a complex machine.

The advantages of battery-less.

- (1) No battery maintenance required.
- (2) No installation space for battery required.

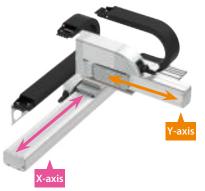

Battery-less Absolute Encoder

No Maintenance, No Homing, No Going Back to Incremental

No Battery,

Higher Speed

Compatible with PowerCON[®] which is equipped with a high-output driver. The maximum speed has been increased with the use of PowerCON[®]. This can reduce cycle time and help improve productivity.



2-axis configurations 3-axis configurations

Robot Type Descriptions

Each configuration pattern is available with an extensive range of sizes from light load to heavy load and short stroke to long stroke. Select the optimal model for your application.

XYB (Y-axis base mount) type

A basic configuration type in which the base of the Y-axis is fixed to the X-axis slider. It is operated by fixing equipment or a Z-axis on the Y-axis slider.

Point 1

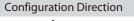
Select from 4 patterns of Y-axis configuration directions. (See the figure at right)

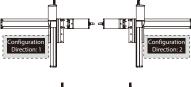
Point 2

A cable track can be selected for Y-axis wiring. Select the cable track size from a maximum of 4 different sizes. You can also select a cable track for wiring by the user.

YZB (Z-axis base mount) type

For this type, the base of the Z-axis (vertical axis) is fixed to the Y-axis slider with the Y-axis side-mounted. The Z-axis slider moves vertically, allowing mounting of jigs or chucks for transport, raising, or lowering of workpieces.

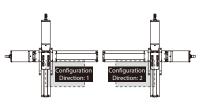

Point 1


Select from 2 patterns of Z-axis configuration directions. (See the figure at right)

Point 2

A cable track can be selected for Z-axis wiring. Select the cable track size from a maximum of 4 different sizes. You can also select a cable track for wiring by the user.

→ 2-axis configurations IK2-P6XB: 5~34



• 2-axis configurations IK2-P6YB: o35~70

Configuration Direction

XYB (Y-axis base mount) + Z-axis base mount type

For this type, the base surface of the Z-axis is fixed to the Y-axis slider of XYB type (Y-axis base is fixed to X-axis slider).

Point 1

The Z-axis body is fixed and the slider moves vertically.

Point 2

Cable tracks can be selected for Y-axis and Z-axis wiring. Select the cable track size from a maximum of 4 different sizes. You can also select a cable track for wiring by the user.

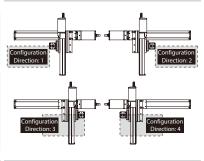
XYB (Y-axis base mount) + ZR (vertical/rotation) unit type

Z-axis

X-axis

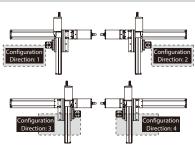
This is an XYB (Y-axis base mount) type Y-axis slider equipped with a ZR unit that enables both vertical and rotational operation.

Point 1


More compact with the integrated Z-axis and rotational axis.

Point 2

Cable tracks can be selected for Y-axis and Z-axis wiring. Select the cable track size from a maximum of 4 different sizes.


→ 3-axis configurations IK3-P6BB: p71~118

Configuration Direction

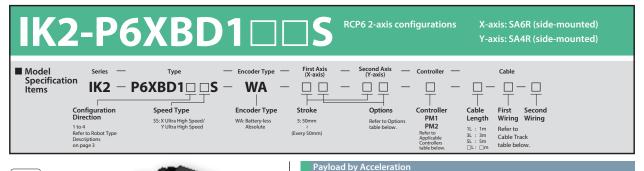
4-axis configurations IK4-P6BB: 119~133

Configuration direction

Cartesian Robot

ROBO C	ylinder 2-axis	s Confi	igurations		ROBO C	ylinder 3-a	axi
	IK2-P6XBD1□□S	5				IK3-P6BBC1□	□S
	IK2-P6XBD2□□S	7				IK3-P6BBC2□	□S
	IK2-P6XBD3□□S	9				IK3-P6BBC3□	□S
	IK2-P6XBC1□□S	11				IK3-P6BBB1	□S
	IK2-P6XBC2□□S	13				IK3-P6BBB2	□S
	IK2-P6XBC3□□S	15	-			IK3-P6BBB3	□S
	IK2-P6XBB1□□S	17				IK3-P6BBF1	⊐s
	IK2-P6XBB2□□S	19	A STATE			IK3-P6BBF2	⊐s
	IK2-P6XBB3□□S	21			IK3	IK3-P6BBF3	⊐s
	IK2-P6XBF1□□S	23		S		IK3-P6BBE1	⊐s
	IK2-P6XBF2□□S	25				IK3-P6BBE2	⊐s
	IK2-P6XBF3□□S	27				IK3-P6BBE3	⊐s
	IK2-P6XBE1□□S	29				IK3-P6BBH1□	□S
	IK2-P6XBE2□□S	31				IK3-P6BBH2□	□S
	IK2-P6XBE3□□S	33				IK3-P6BBH3□	□S
11/2	IK2-P6YBD1□□S	35				IK3-P6BBG1□	□S
IK2 Stepper Motor	IK2-P6YBD2□□S	37				IK3-P6BBG2□	□S
Stepper Motor	IK2-P6YBD3□□S	39				IK3-P6BBG3□	□S
	IK2-P6YBC1□□S	41		_			
	IK2-P6YBC2□□S	43			ROBO C	ylinder 4-a	axi
	IK2-P6YBC3□□S	45				IK4-P6BBB1	□S
	IK2-P6YBB1□□S	47				IK4-P6BBB2□	□S
	IK2-P6YBB2□□S	49	2		IK4	IK4-P6BBB3	□S
	IK2-P6YBB3	51		S	tepper motor	IK4-P6BBF1	⊐S
	IK2-P6YBI1□□S	53				IK4-P6BBF2	⊐S
	IK2-P6YBI2□□S	55	UT			IK4-P6BBF3	⊐s
	IK2-P6YBI3□□S	57		_			
	IK2-P6YBH1□□S	59			Op	tions	
	IK2-P6YBH2□□S	61		_			
	IK2-P6YBH3□□S	63				Con	tro
	IK2-P6YBG1□□S	65			MSEL		MS
	IK2-P6YBG2□□S	67			PCON		PC
	IK2-P6YBG3□□S	69			MCON		M

r 3-axis Configurations


71

IK3-P6BBC2□□S	74
IK3-P6BBC3□□S	77
IK3-P6BBB1□□S	80
IK3-P6BBB2□□S	83
IK3-P6BBB3□□S	86
IK3-P6BBF1□□S	89
IK3-P6BBF2□□S	92
IK3-P6BBF3□□S	95
IK3-P6BBE1□□S	98 🧖
IK3-P6BBE2□□S	101 💚
IK3-P6BBE3□□S	104
IK3-P6BBH1□□S	107
IK3-P6BBH2□□S	109
IK3-P6BBH3□□S	111
IK3-P6BBG1□□S	113
IK3-P6BBG2□□S	115
IK3-P6BBG3□□S	117
	IK3-P6BBC3 IK3-P6BBB1 IK3-P6BBB2 IK3-P6BBB3 IK3-P6BBB3 IK3-P6BBF1 IK3-P6BBF1 IK3-P6BBF1 IK3-P6BBF2 IK3-P6BBF3 IK3-P6BBF3 IK3-P6BBF3 IK3-P6BBE1 IK3-P6BBE1 IK3-P6BBE3 IK3-P6BBE3 IK3-P6BBH1 IK3-P6BBH1 IK3-P6BBH1 IK3-P6BBH3 IK3-P6BBH3

[•] 4-axis Configurations

IK4-P6BBB1□□S	119	
IK4-P6BBB2□□S	121	
IK4-P6BBB3□□S	123	
IK4-P6BBF1□□S	125	1 1 M
IK4-P6BBF2□□S	128	4
IK4-P6BBF3□□S	131	
	IK4-P6BBB2 S IK4-P6BBB3 S IK4-P6BBF1 S IK4-P6BBF2 S	IK4-P6BBB2 121 IK4-P6BBB3 123 IK4-P6BBF1 125 IK4-P6BBF2 128

Controller					
MSEL	MSEL	139			
PCON	PCON-CB/CFB	149			
MCON	MCON-C/LC	153			

RoHS

SS type: X ultra high speed/Y ultra high speed (Unit:						
Y-axis stroke (mm) Acceleration/ deceleration (G)	50~150 (Every 50mm)	200~300 (Every 50mm)				
0.1	:	3				
0.3	:	3				
0.5		2				
0.7	1	-				

* When both X and Y axes have the same acceleration/deceleration.

When there is significant vibration, decrease the speed and acceleration/deceleration as required.

The photograph above shows the configuration direction "1" where both the first wiring and second wiring have cable tracks. Please refer to P.3 for other configuration directions.

Stroke

Y	-axis stroke (mm)	50	100	150	200	250	300
	50	0	0	0	0	0	0
	100	0	0	0	0	0	0
	150	0	0	0	0	0	0
	200	0	0	0	0	0	0
	250	0	0	0	0	0	0
Ê	300	0	0	0	0	0	0
stroke (mm)	350	0	0	0	0	0	0
oke	400	0	0	0	0	0	0
str	450	0	0	0	0	0	0
X-axis	500	0	0	0	0	0	0
×	550	0	0	0	0	0	0
	600	0	0	0	0	0	0
	650	0	0	0	0	0	0
	700	0	0	0	0	0	0
	750	0	0	0	0	0	0
	800	0	0	0	0	0	0

Applicable Controllers

Controllers are sold separately. Please refer to each controller page.

Туре	Axis configuration	Applicable controllers	Reference page	
		PCON-CB/CGB	P-149	
		PCON-CYB/PLB/POB	Please contact IAI	
PM1	X-axis : SA6R	X-axis : SA6R MCON-C/CG	P-153	
	Y-axis : SA4R	MCON-LC/LCG	P-155	
		MSEL	P-139	
PM2		RCON-PC	P-159	

* Operation is possible with the high output setting specification. When connecting to the MCON controller, "HIGH OUTPUT SETTING SPECIFICATION" must be selected. Please contact IAI regarding use with the high-output setting disabled.

Cable Length	
cable Length	

Туре	Cable code	Length
Standard type	1L	1m
	3L	3m
	5L	5m
		Specified length (15m max.)

Note 1. All-axis standard cable is used.

Note 2. The length of the second axis cable is from the exit of the cable track.

A separate robot cable is included for wiring inside the cable track. Note 3. The standard lengths are 1m, 3m and 5m, but other lengths can be specified in 1m increments up to 15m.

Specifications ltem X-axis Y-axis Axis configuration RCP6-SA6R RCP6-SA4R Stroke (Every 50mm) 50~800mm 50~300mm Max. speed * 640mm/s 560mm/s Motor size 42 Stepper motor 35 Stepper motor Ball screw lead 20mm 16mm Ball screw @10mm Ball screw Ø8mm Drive system rolled C10 rolled C10 Positioning repeatability ±0.01mm Base material Aluminum Ambient operating 0~40°C, 85% RH or less (non-condensing) temperature, humidity

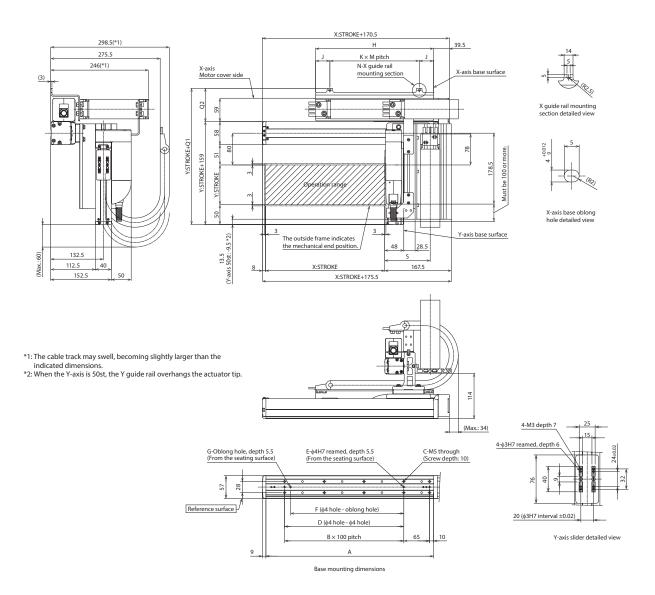
* The maximum speed may not be reached if the travel distance is short or acceleration is low. Maximum speed may change depending on the stroke. For details, refer to the Maximum Speed by Stroke table on P.137.

Cable Track

Туре	Model	Reference page	First wiring (X-axis lateral)	Second wiring (Y-axis lateral)
Without cable track (cable only)	N		0	0
Cable track S size (inner width: 38mm)	СТ		0	0
Cable track M size (inner width: 50mm)	СТМ	See P.136	0	0
Cable track L size (inner width: 63mm)	CTL	See P.150	0	0
Cable track XL size (inner width: 80mm) *	CTXL		0	Cannot be selected *

* Only the first wiring can be selected

Options * Please check the Options reference pages to confirm each option


Туре	Option code	Reference page	X-axis	Y-axis
Brake	В	See P.134	0	0
Non-motor end specification	NM	See P.135	0	0
Slider section roller specification	SR	See P.135	0	0

CAD drawings can be downloaded from our website. WWW.intelligentactuator.com

Note 1. The configuration position in the figure is home.

Note 2. The diagram shows the configuration direction "1" where both the first wiring and second wiring have cable tracks. Note 3. For details on the cable track and cable track moving end bracket, refer to P.136.

(*) Notes

The X-axis cable track guide rail is to be fixed to the surface on which the X-axis is installed by the customer.

Also, the moving end of the Y-axis cable track is to be fixed to a plate or the like mounted on the Y-axis slider by the customer. (See P.136)

Dimensions by Stroke

X: Stroke	50	100	150	200	250	300	350	400	450	500	550	600	650	700	750	800
A	172	222	272	322	372	422	472	522	572	622	672	722	772	822	872	922
В	0	1	1	2	2	3	3	4	4	5	5	6	6	7	7	8
С	4	6	6	8	8	10	10	12	12	14	14	16	16	18	18	20
D	0	100	100	200	200	300	300	400	400	500	500	600	600	700	700	800
E	2	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
F	0	85	85	185	185	285	285	385	385	485	485	585	585	685	685	785
G	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Н	172	197	222	247	272	297	322	347	372	397	422	447	472	497	522	547
J	23.5	36	23.5	36	23.5	36	61	23.5	36	48.5	26	23.5	36	48.5	61	48.5
К	1	1	1	1	1	1	1	3	3	2	2	2	2	2	2	3
M	125	125	175	175	225	225	200	100	100	150	185	200	200	200	200	150
N	2	2	2	2	2	2	2	4	4	3	3	3	3	3	3	4
Cable track size	CT	CTM	CTL	CTXL												
Q1	243	256	269	286												

 Q1
 243
 256
 269
 286

 Q2
 84
 97
 110
 127

 S
 114.5
 121
 127.5

Model Specification Items Series Type Encoder Type First Axis (X-axis) Second Axis (Y-axis) Controller Cable Options Items IK2 P6XBD2 Image: Configuration Direction Specification (Y-axis) Image: Configuration (Ferror Babolit Pype Descriptions on page 3 Specification (Y-axis) Image: Controller Options Cable Options Image: Controller PM1 PM2 (Every 50mm) Controller PM1 PM2 (Every 50mm) Controller PM1 PM2 (Every 50mm) Controller PM1 PM2 (Every 50mm) Controller PM1 PM2 (Every 50mm) Controller PM1 PM2 (Every 50mm) First Second PM1 PM2 (Every 50mm) First Second PM1 PM2 (Every 50mm) First Second PM1 PM2 (Every 50mm) Controller PM1 PM2 (Every 50mm) First Second PM1 PM2 (Every 50mm) First Second Controller PM1 PM2 (Every 50mm) First Second Controller PM1 PM2 (Every 50mm) First Second Controller (Every 50mm)	IK2	2-P6	XBD	2□[S	RCP6 2-axis con	figurations		is: SA6C (stra is: SA4R (side	
	ltems	n IK2 – F Configuration Direction 1 to 4 Refer to Robot Type Descriptions	Speed Type	Encoder Type	(X-axis) Stroke 5: 50mm 2	(Y-axis)	Controller PM1 PM2 Refer to Applicable Controllers	Cable Length 1L : 1m 3L : 3m 5L : 5m	First Second Wiring Wiring Refer to Cable Track	Options

RoHS

SS type: X ultra high s	peed/Y ultra high speed	(Unit: kg
Y-axis stroke (mm) Acceleration/ deceleration (G)	50~150 (Every 50mm)	200~300 (Every 50mm)
0.1	:	3
0.3	:	3
0.5	2	2
0.7	1	-

* When both X and Y axes have the same acceleration/deceleration.

When there is significant vibration, decrease the speed and acceleration/deceleration as required.

The photograph above shows the configuration direction "1" where both the first wiring and second wiring have cable tracks. Please refer to P.3 for other configuration directions.

Stroke

۲·	-axis stroke (mm)	50	100	150	200	250	300
	50	0	0	0	0	0	0
	100	0	0	0	0	0	0
	150	0	0	0	0	0	0
	200	0	0	0	0	0	0
	250	0	0	0	0	0	0
Ê	300	0	0	0	0	0	0
stroke (mm)	350	0	0	0	0	0	0
oke	400	0	0	0	0	0	0
str	450	0	0	0	0	0	0
X-axis	500	0	0	0	0	0	0
×	550	0	0	0	0	0	0
	600	0	0	0	0	0	0
	650	0	0	0	0	0	0
	700	0	0	0	0	0	0
	750	0	0	0	0	0	0
	800	0	0	0	0	0	0

Applicable Controllers

Controllers are sold separately. Please refer to each controller page.

		1 5	
Type	Axis configuration	Applicable controllers	Reference page
		PCON-CB/CGB	P-149
		PCON-CYB/PLB/POB	Please contact IAI
PM1	X-axis : SA6C	MCON-C/CG	P-153
	Y-axis : SA4R	MCON-LC/LCG	P-135

Please contact IAI regarding use with the high-output setting disabled.

PM2 MSEL P-139 RCON-PC P-159 * Operation is possible with the high output setting specification. When connecting to the MCON controller, "HIGH OUTPUT SETTING SPECIFICATION" must be selected.

Cable Length

Туре	Cable code	Length
	1L	1m
Chan dand huma	3L	3m
Standard type	5L	5m
		Specified length (15m max.)

Note 1. All-axis standard cable is used.

Note 2. The length of the second axis cable is from the exit of the cable track. A separate robot cable is included for wiring inside the cable track.

Note 3. The standard lengths are 1m, 3m and 5m, but other lengths can be specified in 1m increments up to 15m.

Specifications

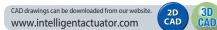
ltem	X-axis	Y-axis				
Axis configuration	RCP6-SA6C	RCP6-SA4R				
Stroke (Every 50mm)	50~800mm	50~300mm				
Max. speed *	640mm/s	560mm/s				
Motor size	42 Stepper motor	35 Stepper motor				
Ball screw lead	20mm	16mm				
Drive system	Ball screw Φ10mm rolled C10	Ball screw Φ8mm rolled C10				
Positioning repeatability	±0.01mm	^				
Base material	Aluminum					
Ambient operating temperature, humidity	0~40°C, 85% RH or less (non-condensing)					

* The maximum speed may not be reached if the travel distance is short or acceleration is low. Maximum speed may change depending on the stroke. For details, refer to the Maximum Speed by Stroke table on P.137.

Cable Track

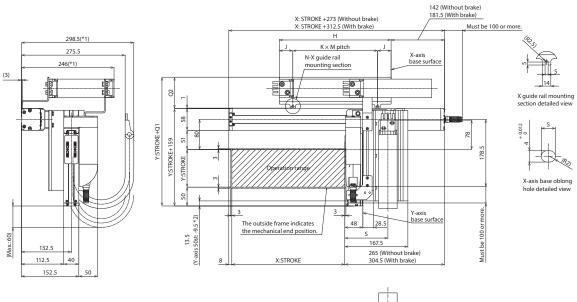
Туре	Model	Reference page	First wiring (X-axis lateral)	Second wiring (Y-axis lateral)
Without cable track (cable only)	N		0	0
Cable track S size (inner width: 38mm)	СТ		0	0
Cable track M size (inner width: 50mm)	СТМ	See P.136	0	0
Cable track L size (inner width: 63mm)	CTL	See P.136	0	0
Cable track XL size (inner width: 80mm) *	CTXL		0	Cannot be selected *

* Only the first wiring can be selected

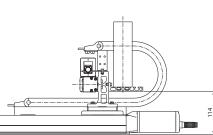

Options (1) * Please check the Options reference pages to confirm each option.

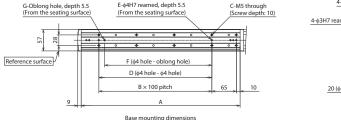
Туре	Option code	Reference page	X-axis	Y-axis
Brake *	В	See P.134	0	0
Cable exit direction (Top)	CJT	See P.134	0	
Cable exit direction (Right)	CJR	See P.134	0	Cannot be
Cable exit direction (Left)	CJL	See P.134	0	selected
Cable exit direction (Bottom)	CJB	See P.134	0	
Non-motor end specification	NM	See P.135	0	0
Slider section roller specification	SR	See P.135	0	0

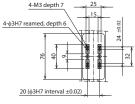
* Brake option for X-axis increases the length of the motor unit.


Please contact IAI for more information.

Options (2) * Please check the Options	Options (2) * Please check the Options reference pages to confirm each option.										
Type Option code Reference page											
Foot plate	FTP	See P.134									


Note 1. The configuration position in the figure is home.


Note 2. The diagram shows the configuration direction "1" where both the first wiring and second wiring have cable tracks. Note 3. For details on the cable track and cable track moving end bracket, refer to P.136.



*1: The cable track may swell, becoming slightly larger than the

indicated dimensions. *2: When the Y-axis is 50st, the Y guide rail overhangs the actuator tip.

Y-axis slider detailed view

(*) Notes

The X-axis cable track guide rail is to be fixed to the surface on which the X-axis is installed by the customer.

When the foot plate option is selected, the unit will be shipped fixed on the foot plate. (See P.134) $\,$

Also, the moving end of the Y-axis cable track is to be fixed to a plate or the like mounted on the Y-axis slider by the customer. (See P.136)

Dimensions by Stroke

X: Stroke	50	100	150	200	250	300	350	400	450	500	550	600	650	700	750	800
A	172	222	272	322	372	422	472	522	572	622	672	722	772	822	872	922
В	0	1	1	2	2	3	3	4	4	5	5	6	6	7	7	8
С	4	6	6	8	8	10	10	12	12	14	14	16	16	18	18	20
D	0	100	100	200	200	300	300	400	400	500	500	600	600	700	700	800
E	2	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
F	0	85	85	185	185	285	285	385	385	485	485	585	585	685	685	785
G	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Н	172	197	222	247	272	297	322	347	372	397	422	447	472	497	522	547
J	23.5	36	23.5	36	23.5	36	61	23.5	36	48.5	26	23.5	36	48.5	61	48.5
К	1	1	1	1	1	1	1	3	3	2	2	2	2	2	2	3
М	125	125	175	175	225	225	200	100	100	150	185	200	200	200	200	150
N	2	2	2	2	2	2	2	4	4	3	3	3	3	3	3	4
Cable track size	CT	CTM	CTL	CTXL												
Q1	242	255	268	285												

 Q1
 242
 255
 268
 285

 Q2
 83
 96
 109
 126

 S
 114.5
 121
 127.5

IK	2-P6	XBD	3□[⊐S	RCP6 2-axis con	figurations		xis: SA6C (stra xis: SA4C (stra	
Model Specificati Items	on IK2 – F Configuration Direction 1 to 4 Refer to Robot Type Descriptions on page 3	Type	Encoder Type — WA — Encoder Type WA: Battery-less Absolute	First Axis (X-axis) Stroke S: 50mm (Every 50mm)	Second Axis (Y-axis) Options Refer to Options table (1) below.	Controller — Controller PM1 PM2 Refer to Applicable Controllers table below.	Cable Length 1L : 1m 3L : 3m 5L : 5m L: 0m	Cable	Options Options Options Affect to Options table (2) below.
		Contraction of the second		Paylo	ad by Acceleration				

RoHS

SS type: X ultra high spe	ed/Y ultra high speed	(Unit: kg
Y-axis stroke (mm) Acceleration/ deceleration (G)	50~150 (Every 50mm)	200~300 (Every 50mm)
0.1	:	3
0.3	:	3
0.5	2	2
0.7	1	-

* When both X and Y axes have the same acceleration/deceleration.

When there is significant vibration, decrease the speed and acceleration/deceleration as required.

The photograph above shows the configuration direction "1" where both the first wiring and second wiring have cable tracks. Please refer to P.3 for other configuration directions.

Stroke

۲·	-axis stroke (mm)	50	100	150	200	250	300
	50	0	0	0	0	0	0
	100	0	0	0	0	0	0
	150	0	0	0	0	0	0
	200	0	0	0	0	0	0
	250	0	0	0	0	0	0
Ê	300	0	0	0	0	0	0
stroke (mm)	350	0	0	0	0	0	0
oke	400	0	0	0	0	0	0
s str	450	0	0	0	0	0	0
X-axis	500	0	0	0	0	0	0
×	550	0	0	0	0	0	0
	600	0	0	0	0	0	0
	650	0	0	0	0	0	0
	700	0	0	0	0	0	0
	750	0	0	0	0	0	0
	800	0	0	0	0	0	0

Applicable Controllers

Controllers are sold separately. Please refer to each controller page.

 Type
 Axis configuration
 Applicable controllers
 Reference page

турс	7 Kis configuration	Applicable controllers	neicicice page	
		PCON-CB/CGB	P-149	
		PCON-CYB/PLB/POB	Please contact IAI	
PM1	X-axis : SA6C Y-axis : SA4C	MCON-C/CG	P-153	
		MCON-LC/LCG	P-155	
		MSEL	P-139	
PM2		RCON-PC	P-159	

* Operation is possible with the high output setting specification. When connecting to the MCON controller, "HIGH OUTPUT SETTING SPECIFICATION" must be selected. Please contact IAI regarding use with the high-output setting disabled.

Cable Length

Туре	Cable code	Length
	1L	1m
Standard type	3L	3m
Stanuaru type	5L	5m
		Specified length (15m max.)

Note 1. All-axis standard cable is used.

Note 2. The length of the second axis cable is from the exit of the cable track. A separate robot cable is included for wiring inside the cable track.

Note 3. The standard lengths are 1m, 3m and 5m, but other lengths can be specified in 1m increments up to 15m.

Specifications

ltem	X-axis	Y-axis				
Axis configuration	RCP6-SA6C	RCP6-SA4C				
Stroke (Every 50mm)	50~800mm	50~300mm				
Max. speed *	640mm/s	560mm/s				
Motor size	42 Stepper motor	35 Stepper motor				
Ball screw lead	20mm	16mm				
Drive system	Ball screw Φ10mm rolled C10	Ball screw Ø8mm rolled C10				
Positioning repeatability	±0.01mm	^				
Base material	Aluminum					
Ambient operating temperature, humidity	0~40°C, 85% RH or less (non-condensing)					

* The maximum speed may not be reached if the travel distance is short or acceleration is low. Maximum speed may change depending on the stroke. For details, refer to the Maximum Speed by Stroke table on P.137.

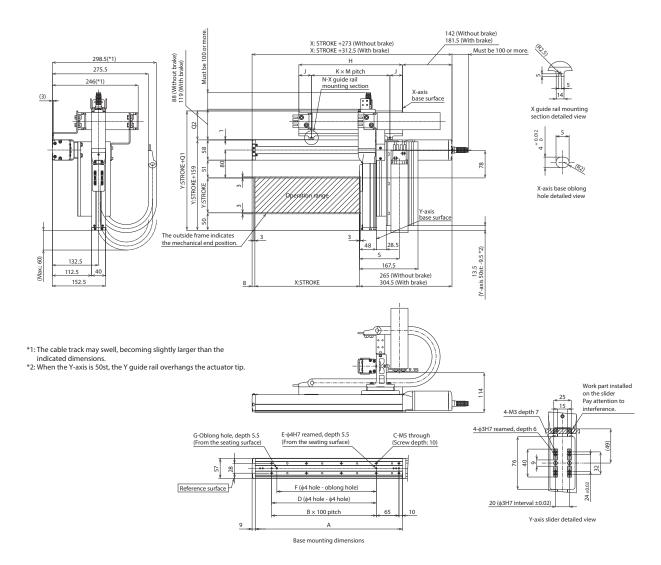
Cable Track

Туре	Model	Reference page	First wiring (X-axis lateral)	Second wiring (Y-axis lateral)
Without cable track (cable only)	N		0	0
Cable track S size (inner width: 38mm)	СТ		0	0
Cable track M size (inner width: 50mm)	СТМ	See P.136	0	0
Cable track L size (inner width: 63mm)	CTL	See P.150	0	0
Cable track XL size (inner width: 80mm) *	CTXL		0	Cannot be selected *

* Only the first wiring can be selected

Options (1) * Please check the Options reference pages to confirm each option.

Туре	Option code	Reference page	X-axis	Y-axis
Brake *	В	See P.134	0	0
Cable exit direction (Top)	CJT	See P.134	0	
Cable exit direction (Right)	CJR	See P.134	0	Cannot be
Cable exit direction (Left)	CJL	See P.134	0	selected
Cable exit direction (Bottom)	CJB	See P.134	0	
Non-motor end specification	NM	See P.135	0	0
Slider section roller specification	SR	See P.135	Ó	0


* Brake option for X- and/or Y-axes increases the length of the motor unit(s). Please contact IAI for more information.

Options (2)	* Please check the Options reference pages to confirm each option.								
	Туре	Option code	Reference page						
Foot plate		FTP	See P.134						

selected

Note 1. The configuration position in the figure is home.

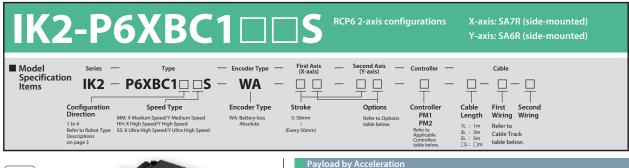
Note 2. The diagram shows the configuration direction "1" where both the first wiring and second wiring have cable tracks. Note 3. For details on the cable track and cable track moving end bracket, refer to P.136.

(*) Notes

The X-axis cable track guide rail is to be fixed to the surface on which the X-axis is installed by the customer.

When the foot plate option is selected, the unit will be shipped fixed on the foot plate. (See P.134) $\,$

Also, the moving end of the Y-axis cable track is to be fixed to a plate or the like mounted on the Y-axis slider by the customer. (See P.136)


Dimensions by Stroke

X: Stroke	50	100	150	200	250	300	350	400	450	500	550	600	650	700	750	800
A	172	222	272	322	372	422	472	522	572	622	672	722	772	822	872	922
В	0	1	1	2	2	3	3	4	4	5	5	6	6	7	7	8
С	4	6	6	8	8	10	10	12	12	14	14	16	16	18	18	20
D	0	100	100	200	200	300	300	400	400	500	500	600	600	700	700	800
E	2	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
F	0	85	85	185	185	285	285	385	385	485	485	585	585	685	685	785
G	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Н	172	197	222	247	272	297	322	347	372	397	422	447	472	497	522	547
J	23.5	36	23.5	36	23.5	36	61	23.5	36	48.5	26	23.5	36	48.5	61	48.5
К	1	1	1	1	1	1	1	3	3	2	2	2	2	2	2	3
М	125	125	175	175	225	225	200	100	100	150	185	200	200	200	200	150
N	2	2	2	2	2	2	2	4	4	3	3	3	3	3	3	4
Cable track size	CT	CTM	CTL	CTXL												
01	242	255	268	285												

 Q1
 242
 255
 268
 285

 Q2
 83
 96
 109
 126

 S
 114.5
 121
 127.5

Y-ax Acceleration/ deceleration (G)	is stroke (mm)	50~100 (Every 50mm)	150	200		50~400 ery 50mm)		
0.1		9	8	6				
0.3		9	8		6			
0.5			7	6				
0.7			6 –					
1			4			-		
HH type: X high Y-axis stroke	۱ speed/۱	/ hiah speed	SS type: X ultra	high speed	d/Y ultra h	niah speec		
	50.000		Y-axis stroke		100 200			
Acceleration/ (mm) deceleration (G)	30~200	250~400	Y-axis stroke Acceleration/ (mm deceleration (G)	50	100~200 (Every 50mm)	250~400		
	30~200	250~400	Acceleration/ (mm	50				
deceleration (G)	30~200	250~400 m) (Every 50mm)	Acceleration/ (mm deceleration (G)	50		250~400		
deceleration (G) 0.1	30~200	250~400 m) (Every 50mm) 5	Acceleration/ (mm deceleration (G) 0.1	50	(Every 50mm) 4 4	250~400		
deceleration (G) 0.1 0.3	30~200	250~400 (Every 50mm) 5 5	Acceleration/ (mm deceleration (G) 0.1 0.3	50	(Every 50mm) 4 4	250~400 (Every 50mm		

(Unit: kg)

The photograph above shows the configuration direction "1" where both the first wiring and second wiring have cable tracks. Please refer to P.3 for other configuration directions.

Ο

Ο

Ο

Ο

Ο

Ο

0.5	-)	0.5	
0.5	4	1	0.5	
0.7	2	-	0.7	
* When both X and Y axes I			1	
deceleration. When there	is significant vib	ration, decrease		
the speed and acceleration	n/deceleration a	as required.		

Applicable Controllers

MM type: X medium speed/Y medium speed

Controllers are sold separately.

Please refer to each controller page.

Туре	Axis configuration	Applicable controllers	Reference page
		PCON-CB/CGB	P-149
		PCON-CYB/PLB/POB	Please contact IAI
PM1	X-axis : SA7R	MCON-C/CG	P-153
	Y-axis : SA6R	MCON-LC/LCG	P-155
		MSEL	P-139
PM2		RCON-PC	P-159

* Operation is possible with the high output setting specification. When connecting to the MCON controller, "HIGH OUTPUT SETTING SPECIFICATION" must be selected. Please contact IAI regarding use with the high-output setting disabled.

Cable	Length	

Туре	Cable code	Length
	1L	1m
	3L	3m
Standard type	5L	5m
		Specified length (15m max.)

Note 1. All-axis standard cable is used.

Note 2. The length of the second axis cable is from the exit of the cable track. A separate robot cable is included for wiring inside the cable track.

Note 3. The standard lengths are 1m, 3m and 5m, but other lengths can be specified in 1m increments up to 15m.

Specifications

ltem		X-axis	Y-axis	
Axis configuration		RCP6-SA7R	RCP6-SA6R	
Stroke (Every 50n	חm)	50~800mm	50~400mm	
	MM	280mm/s	400mm/s	
Max. speed *	HH	560mm/s	680mm/s	
SS		640mm/s	800mm/s	
Motor size		56 Stepper motor	42 Stepper motor	
Ball screw MM		8mm	6mm	
lead	HH	16mm	12mm	
leau	SS	24mm	20mm	
Drive system		Ball screw Φ12mm rolled C10	Ball screw Φ10mm rolled C10	
Positioning repea	tability	±0.01mm		
Base material		Aluminum		
Ambient operating temperature, humidity		0~40°C, 85% RH or less (non-condensing)		

* The maximum speed may not be reached if the travel distance is short or acceleration is low. Maximum speed may change depending on the stroke. For details, refer to the Maximum Speed by Stroke table on P.137

Cable Track

Туре	Model	Reference	First wiring	Second wiring
.,pc	model	page	(X-axis lateral)	(Y-axis lateral)
Without cable track (cable only)	N		0	0
Cable track S size (inner width: 38mm)	СТ		0	0
Cable track M size (inner width: 50mm)	СТМ	See	0	0
Cable track L size (inner width: 63mm)	CTL	P.136	0	0
Cable track XL size (inner width: 80mm) *	CTXL		0	Cannot be selected *

* Only the first wiring can be selected

Options * Please check the Options reference pages to confirm each option.

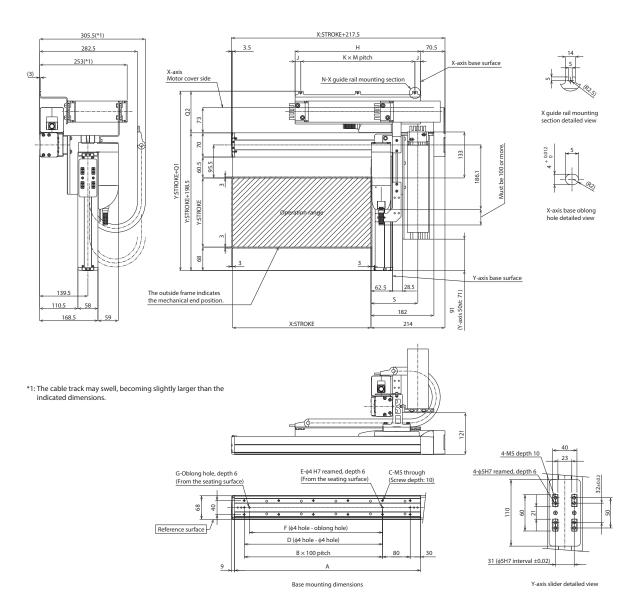
Туре	Option code	Reference page	X-axis	Y-axis
Brake	В	See P.134	0	0
Non-motor end specification	NM	See P.135	0	0
Slider section roller specification	SR	See P.135	0	0

Y-axis stroke (mn

Ĩ

X-axis stroke

RoHS

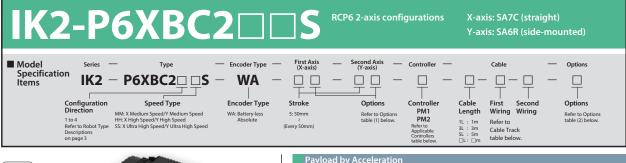

44	
	IK2-P6XBC1□□S

CAD drawings can be downloaded from our website. www.intelligentactuator.com

Note 1. The configuration position in the figure is home.

Note 2. The diagram shows the configuration direction "1" where both the first wiring and second wiring have cable tracks. Note 3. For details on the cable track and cable track moving end bracket, refer to P.136.

(*) Notes


The X-axis cable track guide rail is to be fixed to the surface on which the X-axis is installed by the customer.

Also, the moving end of the Y-axis cable track is to be fixed to a plate or the like mounted on the Y-axis slider by the customer. (See P.136)

Dimensions by Stroke

X: Stroke	50	100	150	200	250	300	350	400	450	500	550	600	650	700	750	800
A	188	238	288	338	388	438	488	538	588	638	688	738	788	838	888	938
В	0	1	1	2	2	3	3	4	4	5	5	6	6	7	7	8
C	4	6	6	8	8	10	10	12	12	14	14	16	16	18	18	20
D	0	0	100	200	200	300	300	400	400	500	500	600	600	700	700	800
E	2	2	3	3	3	3	3	3	3	3	3	3	3	3	3	3
F	0	85	85	185	185	285	285	385	385	485	485	585	585	685	685	785
G	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Н	188	213	238	263	288	313	338	363	388	413	438	463	488	513	538	563
J	16.5	16.5	14	16.5	16.5	16.5	14	16.5	14	16	15	66.5	44	56.5	69	16
K	1	1	1	2	2	2	2	2	2	3	3	3	2	2	2	3
М	155	180	210	115	127.5	140	155	165	180	127	136	110	200	200	200	177
N	2	2	2	3	3	3	3	3	3	4	4	4	3	3	3	4
Cable track size	CT	CTM	CTL	CTXL												
Q1	306	319	332	349												
Q2	107.5	120.5	133.5	150.5												

S	129	135.5	142	-

Y-axis stroke Acceleration/ (mm) deceleration (G)		150	200	250~400 (Every 50mm)		
0.1	9	8	6			
0.3	9	8	6			
0.5		7	(5		
0.7		6		-		
1		4				

Acceleration/ (mm) deceleration (G)	(Every 50mm)	(Every 50mm)	Acceleration/ (mm) deceleration (G)	50	(Every 50mm)	(Every 50mm)	
0.1	5		0.1				
0.3	5		0.3		4		
0.5	4		0.5	3	3 2.5		
0.7	2	-	0.7	2	1.5	-	
* When both X and Y axes h			1		1	-	

deceleration. When there is significant vibration, decr the speed and acceleration/deceleration as required.

The photograph above shows the configuration direction "1" where both the first wiring and second wiring have cable tracks. Please refer to P.3 for other configuration directions.

S	troke								
Y.	-axis stroke (mm)	50	100	150	200	250	300	350	400
	50	0	0	0	0	0	0	0	0
	100	0	0	0	0	0	0	0	0
	150	0	0	0	0	0	0	0	0
	200	0	0	0	0	0	0	0	0
	250	0	0	0	0	0	0	0	0
(mm)	300	0	0	0	0	0	0	0	0
<u>E</u>	350	0	0	0	0	0	0	0	0
stroke	400	0	0	0	0	0	0	0	0
sti	450	0	0	0	0	0	0	0	0
X-axis	500	0	0	0	0	0	0	0	0
×	550	0	0	0	0	0	0	0	0
	600	0	0	0	0	0	0	0	0
	650	0	0	0	0	0	0	0	0
	700	0	0	0	0	0	0	0	0
	750	0	0	0	0	0	0	0	0
	800	0	0	0	0	0	0	0	0

Applicable Controllers

Controllers are sold separately.

Please refer to each controller page.

Туре	Axis configuration	Applicable controllers	Reference page
		PCON-CB/CGB	P-149
		PCON-CYB/PLB/POB	Please contact IAI
PM1	X-axis : SA7C	MCON-C/CG	P-153
	Y-axis : SA6R	MCON-LC/LCG	P-155
		MSEL	P-139
PM2		RCON-PC	P-159

* Operation is possible with the high output setting specification. When connecting to the MCON controller, "HIGH OUTPUT SETTING SPECIFICATION" must be selected. Please contact IAI regarding use with the high-output setting disabled.

length	

. . . 61 . .

Trues	Cable code	L a se artik	
Туре	Cable code	Length	
	1L	1m	
Standard type	3L	3m	
Stanuaru type	5L	5m	
		Specified length (15m max.)	

Note 1. All-axis standard cable is used.

Note 2. The length of the second axis cable is from the exit of the cable track. A separate robot cable is included for wiring inside the cable track.

Note 3. The standard lengths are 1m, 3m and 5m, but other lengths can be specified in 1m increments up to 15m.

Specificatio	ns				
ltem		X-axis	Y-axis		
Axis configuratio	n	RCP6-SA7C	RCP6-SA6R		
Stroke (Every 50r	nm)	50~800mm	50~400mm		
	MM	280mm/s	400mm/s		
Max. speed *	HH	560mm/s	680mm/s		
	SS	640mm/s	800mm/s		
Motor size		56 Stepper motor	42 Stepper motor		
Ball screw	MM	8mm	6mm		
lead	HH	16mm	12mm		
leau	SS	24mm	20mm		
Drive system		Ball screw Φ12mmBall screw Φ10mmrolled C10rolled C10			
Positioning repea	atability	±0.01mm			
Base material		Aluminum			
Ambient operating temperature, humidity		0~40°C, 85% RH or less (non-condensing)			

* The maximum speed may not be reached if the travel distance is short or acceleration is low. Maximum speed may change depending on the stroke. For details, refer to the Maximum Speed by Stroke table on P.137.

Cable Track

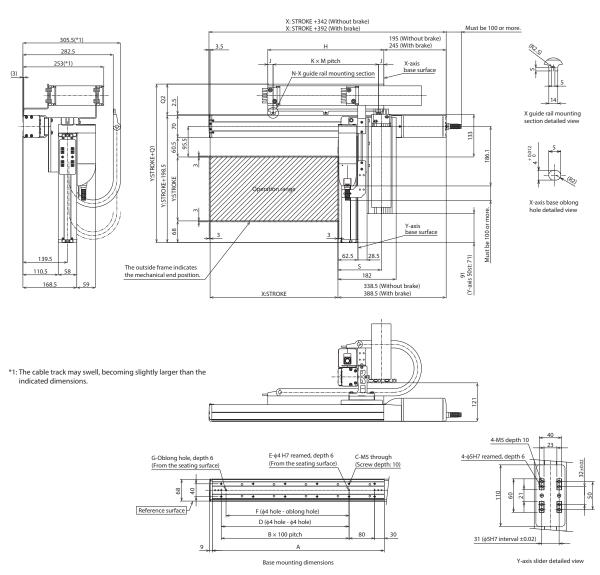
Туре	Model	Reference page	First wiring (X-axis lateral)	Second wiring (Y-axis lateral)
Without cable track (cable only)	N		0	0
Cable track S size (inner width: 38mm)	СТ		0	0
Cable track M size (inner width: 50mm)	СТМ	See	0	0
Cable track L size (inner width: 63mm)	CTL	P.136	0	0
Cable track XL size (inner width: 80mm) *	CTXL		0	Cannot be selected *

* Only the first wiring can be selected

Options (1) * Please check the Options reference pages to confirm each option.

				-
Туре	Option code	Reference page	X-axis	Y-axis
Brake *	B	See P.134	0	0
Cable exit direction (Top)	CJT	See P.134	0	
Cable exit direction (Right)	CJR	See P.134	0	Cannot be
Cable exit direction (Left)	CJL	See P.134	0	selected
Cable exit direction (Bottom)	CJB	See P.134	0	
Non-motor end specification	NM	See P.135	0	0
Slider section roller specification	SR	See P.135	0	0

* Brake option for X-axis increases the length of the motor unit. Please contact IAI for more information.


Options (2)	* Please check the Options reference pages to confirm each option.								
	Туре	Option code	Reference page						
Foot plate		FTP	See P.134						

CAD drawings can be downloaded from our website. www.intelligentactuator.com

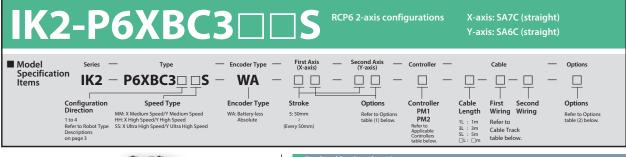
Note 1. The configuration position in the figure is home.

Note 2. The diagram shows the configuration direction "1" where both the first wiring and second wiring have cable tracks. Note 3. For details on the cable track and cable track moving end bracket, refer to P.136.

(*) Notes

The X-axis cable track guide rail is to be fixed to the surface on which the X-axis is installed by the customer.

When the foot plate option is selected, the unit will be shipped fixed on the foot plate. (See P.134)


Also, the moving end of the Y-axis cable track is to be fixed to a plate or the like mounted on the Y-axis slider by the customer. (See P.136)

Dimensions by Stroke

X: Stroke	50	100	150	200	250	300	350	400	450	500	550	600	650	700	750	800
A	188	238	288	338	388	438	488	538	588	638	688	738	788	838	888	938
В	0	1	1	2	2	3	3	4	4	5	5	6	6	7	7	8
C	4	6	6	8	8	10	10	12	12	14	14	16	16	18	18	20
D	0	0	100	200	200	300	300	400	400	500	500	600	600	700	700	800
E	2	2	3	3	3	3	3	3	3	3	3	3	3	3	3	3
F	0	85	85	185	185	285	285	385	385	485	485	585	585	685	685	785
G	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Н	188	213	238	263	288	313	338	363	388	413	438	463	488	513	538	563
J	16.5	16.5	14	16.5	16.5	16.5	14	16.5	14	16	15	66.5	44	56.5	69	16
К	1	1	1	2	2	2	2	2	2	3	3	3	2	2	2	3
М	155	180	210	115	127.5	140	155	165	180	127	136	110	200	200	200	177
N	2	2	2	3	3	3	3	3	3	4	4	4	3	3	3	4
Cable track size	CT	CTM	CTL	CTXL												
Q1	283	296	309	326												

Qi	205	2,00	505	520
Q2	84.5	97.5	110.5	127.5
S	129	135.5	142	-

RoHS

MM type: X medium speed/Y medium speed (Unit: kg								
Y-axis stroke Acceleration/ (mm) deceleration (G)	50~100 (Every 50mm)	150	200	250~400 (Every 50mm)				
0.1	9	8	6					
0.3	9	8	6					
0.5	7	7	(5				
0.7		6		-				
1		4		_				

Y-axis stroke Y-axis stroke 50~200 250~400 100~200 250~400 (mm) (mm) 50 (Every 50mm) (Every 50mm) Acceleration/ deceleration (G) (Every 50mm) (Every 50mm) celeration/ celeration (G) 0.1 5 0.1 4 .3 4 2.5 5 3

The photograph above shows the configuration dir wiring and second wiring have cable tracks. Please refer to P.3 for other configuration directions

100

0

Ο

150

0

Ο

Ο

0

Ο

0

0

Ο

0

0

Ο

0

0

0

0

0

50

0

					0.	3		5	0.3
					0.	5	4	4	0.5
				.	0.	7	2	-	0.7
re	rection "1" where both the first * When both X and Y axes have the same acceleration/								1
s.							is significant vib n/deceleration	oration, decrease as required.	
						A	pplicable	Controllers	
_									
	200	250	300	350	400			e sold separ	
	0	0	0	0	0	Plea	se refer to	each contro	oller page.
	0	0	0	0	0	T		<i>e e</i>	A 11

Ο

0

0

0

Ο

Ο

Type	Axis configuration	Applicable controllers	Reference page
		PCON-CB/CGB	P-149
		PCON-CYB/PLB/POB	Please contact IAI
PM1	X-axis : SA7C	MCON-C/CG	P-153
	Y-axis : SA6C	MCON-LC/LCG	P-155
		MSEL	P-139
PM2		RCON-PC	P-159

2

1.5

* Operation is possible with the high output setting specification. When connecting to the MCON controller, "HIGH OUTPUT SETTING SPECIFICATION" must be selected. Please contact IAI regarding use with the high-output setting disabled.

800	0
Cable Length	

Y-axis stroke (m

Ĩ

X-axis stroke

50

100

150

200 250

300

350

400 450

500 550

600

650 700

750

Cable code	Length
1L	1m
3L	3m
5L	5m
	Specified length (15m max.)
	Cable code 1L 3L 5L L

Note 1. All-axis standard cable is used.

5 IK2-P6XBC3

Note 2. The length of the second axis cable is from the exit of the cable track. A separate robot cable is included for wiring inside the cable track.

Note 3. The standard lengths are 1m, 3m and 5m, but other lengths can be specified in 1m increments up to 15m.

Specificatio	ns			
ltem		X-axis	Y-axis	
Axis configuratio	n	RCP6-SA7C	RCP6-SA6C	
Stroke (Every 50n	nm)	50~800mm	50~400mm	
	MM	280mm/s	400mm/s	
Max. speed *	HH	560mm/s	680mm/s	
	SS	640mm/s	800mm/s	
Motor size		56 Stepper motor	42 Stepper motor	
	MM	8mm	6mm	
Ball screw lead	HH	16mm	12mm	
leau	SS	24mm	20mm	
Drive system		Ball screw Φ12mm rolled C10	Ball screw Φ10mm rolled C10	
Positioning repea	itability	±0.01mm		
Base material		Aluminum		
Ambient operating temperature, humidity		0~40°C, 85% RH or less (non-condensing)		

* The maximum speed may not be reached if the travel distance is short or acceleration is low. Maximum speed may change depending on the stroke. For details, refer to the Maximum Speed by Stroke table on P.137.

Cable Trac

Foot plate

Туре	Model	Reference page	First wiring (X-axis lateral)	Second wiring (Y-axis lateral)
Without cable track (cable only)	N		0	0
Cable track S size (inner width: 38mm)	СТ		0	0
Cable track M size (inner width: 50mm)	СТМ	C D 12C	0	0
Cable track L size (inner width: 63mm)	CTL See P.136		0	0
Cable track XL size (inner width: 80mm) *	CTXL		0	Cannot be selected *

* Only the first wiring can be selected

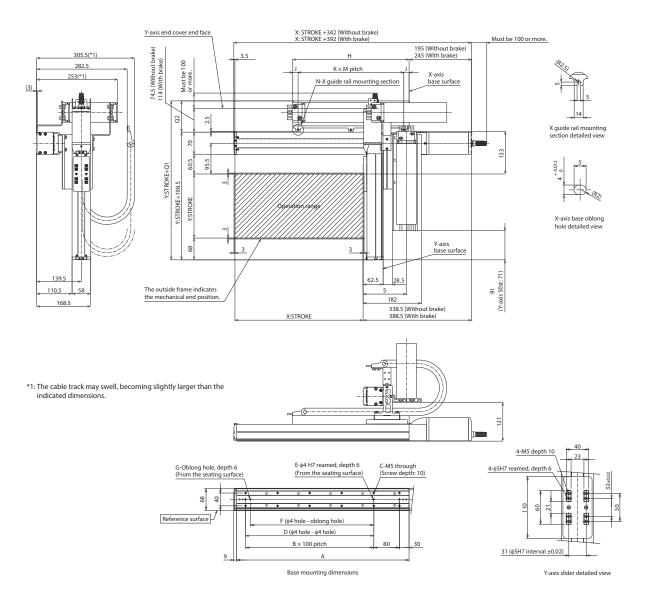
Options (1) * Please check the Options reference pages to confirm each option.

Туре	Option code	Reference page	X-axis	Y-axis
Brake *	B	See P.134	0	0
Cable exit direction (Top)	CJT	See P.134	0	
Cable exit direction (Right)	CJR	See P.134	0	Cannot be
Cable exit direction (Left)	CJL	See P.134	0	selected
Cable exit direction (Bottom)	CJB	See P.134	0	
Non-motor end specification	NM	See P.135	0	0
Slider section roller specification	SR	See P.135	0	0

* Brake option for X- and/or Y-axes increases the length of the motor unit(s). Please contact IAI for more information.

Options (2)	* Please check the Options reference pages to confirm each option.				
	Туре	Option code	Reference page		

FTP


See P.134

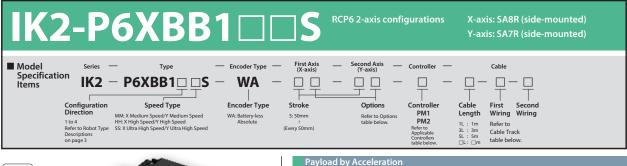
CAD drawings can be downloaded from our website. WWW.intelligentactuator.com

Note 1. The configuration position in the figure is home.

Note 2. The diagram shows the configuration direction "1" where both the first wiring and second wiring have cable tracks. Note 3. For details on the cable track and cable track moving end bracket, refer to P.136.

(*) Notes

The X-axis cable track guide rail is to be fixed to the surface on which the X-axis is installed by the customer.


When the foot plate option is selected, the unit will be shipped fixed on the foot plate. (See P.134) $\,$

Also, the moving end of the Y-axis cable track is to be fixed to a plate or the like mounted on the Y-axis slider by the customer. (See P.136)

Dimensions by Stroke

X: Stroke	50	100	150	200	250	300	350	400	450	500	550	600	650	700	750	800
A	188	238	288	338	388	438	488	538	588	638	688	738	788	838	888	938
В	0	1	1	2	2	3	3	4	4	5	5	6	6	7	7	8
С	4	6	6	8	8	10	10	12	12	14	14	16	16	18	18	20
D	0	0	100	200	200	300	300	400	400	500	500	600	600	700	700	800
E	2	2	3	3	3	3	3	3	3	3	3	3	3	3	3	3
F	0	85	85	185	185	285	285	385	385	485	485	585	585	685	685	785
G	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Н	188	213	238	263	288	313	338	363	388	413	438	463	488	513	538	563
J	16.5	16.5	14	16.5	16.5	16.5	14	16.5	14	16	15	66.5	44	56.5	69	16
К	1	1	1	2	2	2	2	2	2	3	3	3	2	2	2	3
М	155	180	210	115	127.5	140	155	165	180	127	136	110	200	200	200	177
N	2	2	2	3	3	3	3	3	3	4	4	4	3	3	3	4
Cable track size	CT	CTM	CTL	CTXL												
Q1	283	296	309	326												

Q2	84.5	97.5	110.5	127.5
S	129	135.5	142	-

MM type: X medium speed/Y medium speed (Unit:					
Y-axis stroke Acceleration/ (mm) deceleration (G)	50~100 (Every 50mm)	150	200	250	300~400 (Every 50mm)
0.1	16	15	12.5	9	8
0.3	16 15		12.5	9	8
0.5		10		9	8
0.7	e	5	5	-	
1	e	5	5.5		-
HH type: X high speed	eed		ultra high speed/	Y ultra high speed	

Y-axis stroke (mm) 300~400 50~150 (Every 50mm) 200 250 300~400 (Every 50mm) 200 250 (Every 50mm) Acceleration/ deceleration (G) 0.1 11 10.5 9 8 0.3 8 0.5 5

The photograph above shows the configuration direction "1" where both the first wiring and second wiring have cable tracks. Please refer to P.3 for other configuration directions.

Y-axis stroke (mm)	50	100	150	200	250	300	350	400
50	0	0	0	0	0	0	0	0
100	0	0	0	0	0	0	0	0
150	0	0	0	0	0	0	0	0
200	0	0	0	0	0	0	0	0
250	0	0	0	0	0	0	0	0
300	0	0	0	0	0	0	0	0
350	0	0	0	0	0	0	0	0
400	0	0	0	0	0	0	0	0
450 500 550 600	0	0	0	0	0	0	0	0
ຍ 500	0	0	0	0	0	0	0	0
550	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0
sixe-X 700	0	0	0	0	0	0	0	0
700	0	0	0	0	0	0	0	0
750	0	0	0	0	0	0	0	0
800	0	0	0	0	0	0	0	0
850	0	0	0	0	0	0	0	0
900	0	0	0	0	0	0	0	0
950	0	0	0	0	0	0	0	0
1000	0	0	0	0	0	0	0	0
1050	0	0	0	0	0	0	0	0
1100	0	0	0	0	0	0	0	0

Applicable Controllers

Controllers are sold separately.

Please refer to each controller page.

Type	Axis configuration	Applicable controllers	Reference page
	X-axis : SA8R	PCON-CFB/CGFB	P-149
	A-dXIS : SMOR	MSEL-PCF/PGF	P-139
		PCON-CB/CGB	P-149
PM1	PM1 Y-axis : SA7R	PCON-CYB/PLB/POB	Please contact IAI
		MCON-C/CG	P-153
		MCON-LC/LCG	P-155
		MSEL	P-139
PM2	X-axis : SA8R	RCON-PCF	P-159
PIVIZ	Y-axis : SA7R	RCON-PC	P-159

* Operation is possible with the high output setting specification. When connecting to the MCON controller, "HIGH OUTPUT SETTING SPECIFICATION" must be selected. Please contact IAI regarding use with the high-output setting disabled.

Cable Length

Туре	Cable code	Length
	1L	1m
Standard type	3L	3m
Standard type	5L	5m
		Specified length (15m max.)

Note 1. All-axis standard cable is used. Note 2. The length of the second axis cable is from the exit of the cable track.

A separate robot cable is included for wiring inside the cable track. Note 3. The standard lengths are 1m, 3m and 5m, but other lengths can be specified

in 1m increments up to 15m.

Specifications					
ltem		X-axis	Y-axis		
Axis configuration	۱	RCP6-SA8R	RCP6-SA7R		
Stroke (Every 50m	m)	50~1100mm	50~400mm		
	MM	300mm/s	280mm/s		
Max. speed *	HH	400mm/s	560mm/s		
	SS	650mm/s	640mm/s		
Motor size		56 High thrust stepper motor	56 Stepper motor		
Ball screw	MM	10mm	8mm		
lead	HH	20mm	16mm		
lead	SS	30mm	24mm		
Drive system		Ball screw Φ16mm rolled C10	Ball screw Φ12mm rolled C10		
Positioning repea	tability	±0.01mm			
Base material		Aluminum			
Ambient operating		0~40°C, 85% RH or less (non-condensing)			
temperature, hun	nidity	a to e, os /a fur of less (non condensing)			

* The maximum speed may not be reached if the travel distance is short or acceleration is low. Maximum speed may change depending on the stroke. For details, refer to the Maximum Speed by Stroke table on P.137.

Туре	Model	Reference page	First wiring (X-axis lateral)	Second wiring (Y-axis lateral)
Without cable track (cable only)	N		0	0
Cable track S size (inner width: 38mm)	СТ		0	0
Cable track M size (inner width: 50mm)	СТМ	See P.136	0	0
Cable track L size (inner width: 63mm)	CTL	See P.136	0	0
Table track XL size (inner width: 80mm) * CTXL			0	Cannot be selected *

* Only the first wiring can be selected

Cable Traci

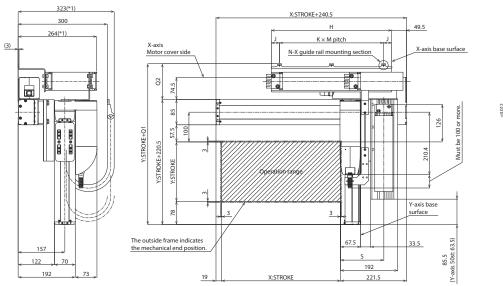
	Options	* Please check the Options reference pages to confirm (each option.
--	---------	---	--------------

Туре	Option code	Reference page	X-axis	Y-axis
Brake	В	See P.134	0	0
Non-motor end specification	NM	See P.135	0	0
Slider section roller specification	SR	See P.135	0	0

IK2-P6XBB1□□S

Y-axis stroke Acceleration/ (mm) deceleration (G)	50~400 (Every 50mm)
0.1	3
0.3	1.5

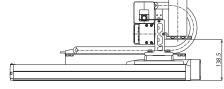
0.7 4

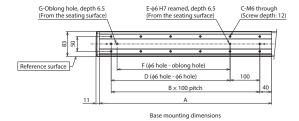

When both X and Y axes have the same acceleration/deceleration. When there is significant vibration, decrease the speed and acceleration/deceleration as required.

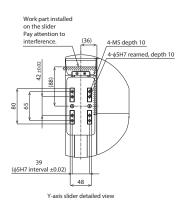
CAD drawings can be downloaded from our website. www.intelligentactuator.com

Note 1. The configuration position in the figure is home.

Note 2. The diagram shows the configuration direction "1" where both the first wiring and second wiring have cable tracks. Note 3. For details on the cable track and cable track moving end bracket, refer to P.136.




X guide rail mounting section detailed view



X-axis base oblong hole detailed view

*1: The cable track may swell, becoming slightly larger than the indicated dimensions.

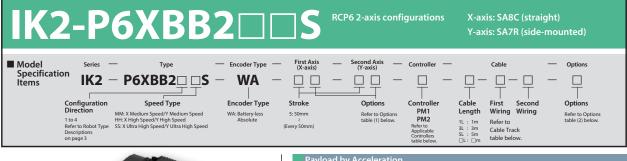
(*) Notes

The X-axis cable track guide rail is to be fixed to the surface on which the X-axis is installed by the customer.

Also, the moving end of the Y-axis cable track is to be fixed to a plate or the like mounted on the Y-axis slider by the customer. (See P.136)

Dimensions by Stroke

X: Stroke	50	100	150	200	250	300	350	400	450	500	550	600	650	700	750	800	850	900	950	1000	1050	1100
A	230	280	330	380	430	480	530	580	630	680	730	780	830	880	930	980	1030	1080	1130	1180	1230	1280
В	1	2	2	3	3	4	4	5	5	6	6	7	7	8	8	9	9	10	10	11	11	12
С	4	6	6	8	8	10	10	12	12	14	14	16	16	18	18	20	20	22	22	24	24	26
D	0	100	100	200	200	300	300	400	400	500	500	600	600	700	700	800	800	900	900	1000	1000	1100
E	2	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
F	0	0	80	180	180	280	280	380	380	480	480	580	580	680	680	780	780	880	880	980	980	1080
G	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Н	230	255	280	305	330	355	380	405	430	455	480	505	530	555	580	605	630	655	680	705	730	755
J	30	27.5	27.5	27.5	27.5	27.5	27.5	27.5	27.5	27.5	22.5	27.5	77.5	52.5	65	77.5	52.5	27.5	77.5	22.5	55	27.5
К	1	1	1	2	2	2	2	2	2	2	3	3	3	3	3	3	3	3	3	4	4	4
М	170	200	225	125	137.5	150	162.5	175	187.5	200	145	150	125	150	150	150	175	200	175	165	155	175
N	2	2	2	3	3	3	3	3	3	3	4	4	4	4	4	4	4	4	4	5	5	5
					1																	
Cable track size	CT	CTM	CTL	CTXL																		


 Q1
 328
 341
 354
 371

 Q2
 107.5
 120.5
 133.5
 150.5

 S
 139
 145.5
 152

 * Dimensions Q1, Q2 and S change depending on the size of the cable track.

The photograph above shows the configuration direction "1" where both the first wiring and second wiring have cable tracks. Please refer to P.3 for other configuration directions.

Y-axis stroke Acceleration/ (mm) deceleration (G)	50~100 (Every 50mm)	150	200	250	300~400 (Every 50mm)	
0.1	16	15	12.5	9	8	
0.3	16	15	12.5	9	8	
0.5	0.5 10 9			9	8	
0.7	e	5	5	-		
1	e	5	5.5		-	

		-				
Y-axis stroke Acceleration/ (mm) deceleration (G)	50~150 (Every 50mm)	200	250	300~400 (Every 50mm)		
0.1	11	10.5	9	8		
0.3	8					
0.5	5					
0.7	Λ					

SS type: X ultra high speed/Y	ultra high speed
-------------------------------	------------------

Acceleration/ (mm) deceleration (G)	50~400 (Every 50mm)
0.1	3
0.3	1.5

0.7 4

* When both X and Y axes have the same acceleration/deceleration. When there is significant vibration, decrease the speed and acceleration/deceleration as required.

S	troke								
Y-axi	s stroke (mm)	50	100	150	200	250	300	350	400
	50	0	0	0	0	0	0	0	0
	100	0	0	0	0	0	0	0	0
	150	0	0	0	0	0	0	0	0
	200	0	0	0	0	0	0	0	0
	250	0	0	0	0	0	0	0	0
	300	0	0	0	0	0	0	0	0
	350	0	0	0	0	0	0	0	0
	400	0	0	0	0	0	0	0	0
stroke (mm)	450	0	0	0	0	0	0	0	0
ē	500	0	0	0	0	0	0	0	0
ě	550	0	0	0	0	0	0	0	0
	600	0	0	0	0	0	0	0	0
X-axis	650	0	0	0	0	0	0	0	0
-a	700	0	0	0	0	0	0	0	0
	750	0	0	0	0	0	0	0	0
	800	0	0	0	0	0	0	0	0
	850	0	0	0	0	0	0	0	0
	900	0	0	0	0	0	0	0	0
	950	0	0	0	0	0	0	0	0
	1000	0	0	0	0	0	0	0	0
	1050	0	0	0	0	0	0	0	0
	1100	0	0	0	0	0	0	0	0

Applicable Controllers

Controllers are sold separately.

Please refer to each controller page.

Туре	Axis configuration	Applicable controllers	Reference page	
	X-axis : SA8C	PCON-CFB/CGFB	P-149	
	A-dXIS : SHOC	MSEL-PCF/PGF	P-139	
		PCON-CB/CGB	P-149	
PM1	Y-axis : SA7R	PCON-CYB/PLB/POB	Please contact IAI	
		Y-axis : SA7R MCON-C/CG		
		MCON-LC/LCG	P-153	
		MSEL	P-139	
PM2	X-axis : SA8C	RCON-PCF	P-159	
PIVIZ	Y-axis : SA7R	RCON-PC	P-159	

* Operation is possible with the high output setting specification. When connecting to the MCON controller, "HIGH OUTPUT SETTING SPECIFICATION" must be selected. Please contact IAI regarding use with the high-output setting disabled.

Cable Length

Cable code	Length
1L	1m
3L	3m
5L	5m
	Specified length (15m max.)
	Cable code 1L 3L 5L L

Note 1. All-axis standard cable is used. Note 2. The length of the second axis cable is from the exit of the cable track.

A separate robot cable is included for wiring inside the cable track. Note 3. The standard lengths are 1m, 3m and 5m, but other lengths can be specified in 1m increments up to 15m.

Specificatio	ns				
ltem		X-axis	Y-axis		
Axis configuration	n	RCP6-SA8C	RCP6-SA7R		
Stroke (Every 50n	าm)	50~1100mm	50~400mm		
	MM	300mm/s	280mm/s		
Max. speed *	HH	400mm/s	560mm/s		
	SS	650mm/s	640mm/s		
Motor size		56 High thrust stepper motor	56 Stepper motor		
Ball screw	MM	10mm	8mm		
	HH	20mm	16mm		
lead	SS	30mm	24mm		
Drive system		Ball screw Ф16mm rolled C10	Ball screw Ø12mm rolled C10		
Positioning repea	tability	±0.01mm			
Base material		Aluminum			
Ambient operatir temperature, hur	5	0~40°C, 85% RH or less (non	-condensing)		

* The maximum speed may not be reached if the travel distance is short or acceleration is low. Maximum speed may change depending on the stroke. For details, refer to the Maximum Speed by Stroke table on P.137.

Cable Track

Туре	Model	Reference page	First wiring (X-axis lateral)	Second wiring (Y-axis lateral)
Without cable track (cable only)	N		0	0
Cable track S size (inner width: 38mm)	СТ		0	0
Cable track M size (inner width: 50mm)	СТМ	See P.136	0	0
Cable track L size (inner width: 63mm)	CTL	See P.150	0	0
Cable track XL size (inner width: 80mm) *	CTXL		0	Cannot be selected *

* Only the first wiring can be selected

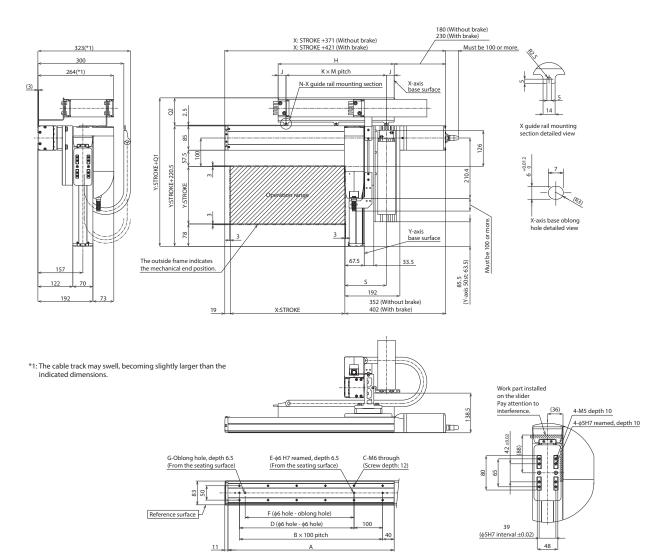
Options (1) * Please check the Options reference pages to confirm each option.

Туре	Option code	Reference page	X-axis	Y-axis
Brake *	В	See P.134	0	0
Cable exit direction (Top)	CJT	See P.134	0	
Cable exit direction (Right)	CJR	See P.134	0	Cannot be
Cable exit direction (Left)	CJL	See P.134	0	selected
Cable exit direction (Bottom)	CJB	See P.134	0	
Non-motor end specification	NM	See P.135	0	0
Slider section roller specification	SR	See P.135	0	0

* Brake option for X-axis increases the length of the motor unit.

Please contact IAI for more information.

Options (2) * Please check the	* Please check the Options reference pages to confirm each option.					
Туре	Option code	Reference page				
Foot plate	FTP	See P.134				


/	0	0	0	0	
)	0	0	0	0	
)	0	0	0	0	
)	0	0	0	0	
)	0	0	0	0	
)	0	0	0	0	
					1

CAD drawings can be downloaded from our website.

Note 1. The configuration position in the figure is home.

Note 2. The diagram shows the configuration direction "1" where both the first wiring and second wiring have cable tracks. Note 3. For details on the cable track and cable track moving end bracket, refer to P.136.

(*) Notes

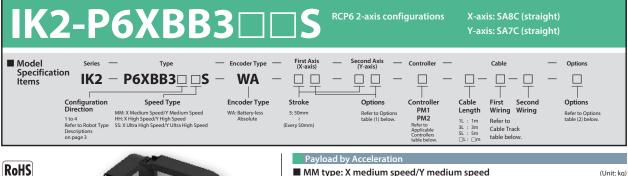
The X-axis cable track guide rail is to be fixed to the surface on which the X-axis is installed by the customer.

When the foot plate option is selected, the unit will be shipped fixed on the foot plate. (See P.134) $\,$

Also, the moving end of the Y-axis cable track is to be fixed to a plate or the like mounted on the Y-axis slider by the customer. (See P.136)

Dimensions by Stroke

X: Stroke	50	100	150	200	250	300	350	400	450	500	550	600	650	700	750	800	850	900	950	1000	1050	1100
A	230	280	330	380	430	480	530	580	630	680	730	780	830	880	930	980	1030	1080	1130	1180	1230	1280
В	1	2	2	3	3	4	4	5	5	6	6	7	7	8	8	9	9	10	10	11	11	12
С	4	6	6	8	8	10	10	12	12	14	14	16	16	18	18	20	20	22	22	24	24	26
D	0	100	100	200	200	300	300	400	400	500	500	600	600	700	700	800	800	900	900	1000	1000	1100
E	2	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
F	0	0	80	180	180	280	280	380	380	480	480	580	580	680	680	780	780	880	880	980	980	1080
G	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Н	230	255	280	305	330	355	380	405	430	455	480	505	530	555	580	605	630	655	680	705	730	755
J	30	27.5	27.5	27.5	27.5	27.5	27.5	27.5	27.5	27.5	22.5	27.5	77.5	52.5	65	77.5	52.5	27.5	77.5	22.5	55	27.5
К	1	1	1	2	2	2	2	2	2	2	3	3	3	3	3	3	3	3	3	4	4	4
М	170	200	225	125	137.5	150	162.5	175	187.5	200	145	150	125	150	150	150	175	200	175	165	155	175
N	2	2	2	3	3	3	3	3	3	3	4	4	4	4	4	4	4	4	4	5	5	5
					1																	
Cable track size	CT	CTM	CTL	CTXL																		


Base mounting dimensions

Cable track size	CT	CTM	CTL	CTXL
Q1	305	318	331	348
Q2	84.5	97.5	110.5	127.5
S	139	145.5	152	-

* Dimensions Q1, Q2 and S change depending on the size of the cable track.

Y-axis slider detailed view

MM type: X medium s	speed/Y me	b		(Unit: kg)	
Y-axis stroke Acceleration/ (mm) deceleration (G)		150	200	250	300~400 (Every 50mm)
0.1	16	15	12.5	9	8
0.3	16	15	12.5	9	8
0.5		10		9	8
0.7	(5	5	.5	-
1	(5	5	.5	-
HH type: X high spee	d/Y high sp	SS type: X	ultra high speed/	Y ultra high speed	
V-avis stroke				V-avic stroke	=

50~150 300~400 (mm) (Every 50mm) 200 250 (Every 50mm) Acceleration/ deceleration (G) 0.1 11 10.5 9 8 0.3 8 0.5 5

50~400 (mm) Acceleration/ deceleration (G) (Every 50mm) 0.1 3 0.3 15

0.7 4

When both X and Y axes have the same acceleration/deceleration. When there is significant vibration, decrease the speed and acceleration/deceleration as required.

The photograph above shows the configuration direction "1" where both the first wiring and second wiring have cable tracks. Please refer to P.3 for other configuration directions.

S	troke								
Y-axi	s stroke (mm)	50	100	150	200	250	300	350	400
	50	0	0	0	0	0	0	0	0
	100	0	0	0	0	0	0	0	0
	150	0	0	0	0	0	0	0	0
	200	0	0	0	0	0	0	0	0
	250	0	0	0	0	0	0	0	0
	300	0	0	0	0	0	0	0	0
	350	0	0	0	0	0	0	0	0
	400	0	0	0	0	0	0	0	0
stroke (mm)	450	0	0	0	0	0	0	0	0
e	500	0	0	0	0	0	0	0	0
1 Š	550	0	0	0	0	0	0	0	0
	600	0	0	0	0	0	0	0	0
X-axis	650	0	0	0	0	0	0	0	0
-a	700	0	0	0	0	0	0	0	0
$ ^{\sim}$	750	0	0	0	0	0	0	0	0
	800	0	0	0	0	0	0	0	0
	850	0	0	0	0	0	0	0	0
	900	0	0	0	0	0	0	0	0
	950	0	0	0	0	0	0	0	0
	1000	0	0	0	0	0	0	0	0
	1050	0	0	0	0	0	0	0	0
	1100	0	0	0	0	0	0	0	0

Applicable Controllers

Controllers are sold separately.

Please refer to each controller page.

Туре	Axis configuration	Applicable controllers	Reference page		
	X-axis : SA8C	PCON-CFB/CGFB	P-149		
	X-axis : SA8C MSEL-PCF/PGF		P-139		
		PCON-CB/CGB	P-149		
PM1		Please contact IAI			
	Y-axis : SA7C	MCON-C/CG	P-153		
		MCON-LC/LCG	P-155		
		MSEL	P-139		
PM2	X-axis : SA8C	RCON-PCF	P-159		
PIVIZ	Y-axis : SA7C	RCON-PC	P-139		

* Operation is possible with the high output setting specification. When connecting to the MCON controller, "HIGH OUTPUT SETTING SPECIFICATION" must be selected. Please contact IAI regarding use with the high-output setting disabled.

Cable Length

Cable code	Length
1L	1m
3L	3m
5L	5m
	Specified length (15m max.)
	Cable code 1L 3L 5L L

Note 1. All-axis standard cable is used. Note 2. The length of the second axis cable is from the exit of the cable track.

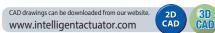
A separate robot cable is included for wiring inside the cable track. Note 3. The standard lengths are 1m, 3m and 5m, but other lengths can be specified in 1m increments up to 15m.

Specificatio	ns				
ltem		X-axis	Y-axis		
Axis configuration	n	RCP6-SA8C	RCP6-SA7C		
Stroke (Every 50n	าm)	50~1100mm	50~400mm		
	MM	300mm/s	280mm/s		
Max. speed *	HH	400mm/s	560mm/s		
	SS	650mm/s	640mm/s		
Motor size		56 High thrust stepper motor	56 Stepper motor		
Ball screw	MM	10mm 8mm			
lead	HH	20mm	16mm		
leau	SS	30mm	24mm		
Drive system		Ball screw Φ16mm rolled C10	Ball screw Φ12mm rolled C10		
Positioning repea	tability	±0.01mm			
Base material		Aluminum			
Ambient operatir temperature, hur	5	0~40°C, 85% RH or less (non	-condensing)		

* The maximum speed may not be reached if the travel distance is short or acceleration is low. Maximum speed may change depending on the stroke. For details, refer to the Maximum Speed by Stroke table on P.137.

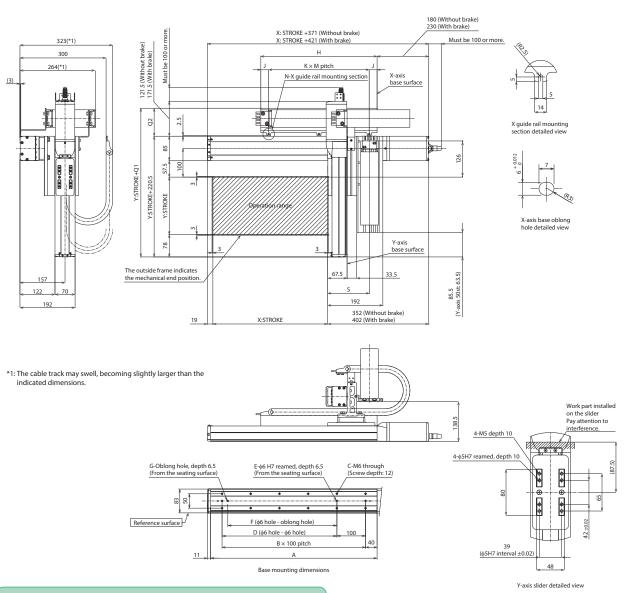
Туре	Model	Reference page	First wiring (X-axis lateral)	Second wiring (Y-axis lateral)
Without cable track (cable only)	N		0	0
Cable track S size (inner width: 38mm)	СТ		0	0
Cable track M size (inner width: 50mm)	СТМ	See P.136	0	0
Cable track L size (inner width: 63mm)	CTL	See P.150	0	0
Cable track XL size (inner width: 80mm) *	CTXL		0	Cannot be selected *

* Only the first wiring can be selected


Options (1) * Please check the Options reference pages to confirm each option.

Туре	Option code	Reference page	X-axis	Y-axis
Brake *	В	See P.134	0	0
Cable exit direction (Top)	CJT	See P.134	0	
Cable exit direction (Right)	CJR	See P.134	0	Cannot be
Cable exit direction (Left)	CJL	See P.134	0	selected
Cable exit direction (Bottom)	CJB	See P.134	0	
Non-motor end specification	NM	See P.135	0	0
Slider section roller specification	SR	See P.135	0	0

* Brake option for X- and/or Y-axes increases the length of the motor unit(s). Please contact IAI for more information.


Options (2)	* Please check the Options re	ference pages to confi	rm each option.

Туре	Option code	Reference page
Foot plate	FTP	See P.134

Note 1. The configuration position in the figure is home.

Note 2. The diagram shows the configuration direction "1" where both the first wiring and second wiring have cable tracks. Note 3. For details on the cable track and cable track moving end bracket, refer to P.136.

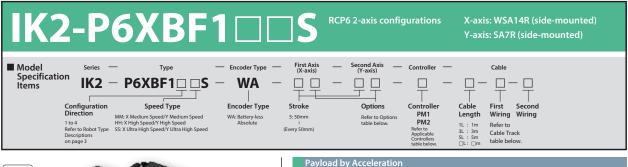
(*) Notes

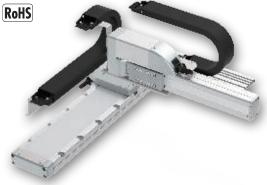
The X-axis cable track guide rail is to be fixed to the surface on which the X-axis is installed by the customer.

When the foot plate option is selected, the unit will be shipped fixed on the foot plate. (See P.134)

Also, the moving end of the Y-axis cable track is to be fixed to a plate or the like mounted on the Y-axis slider by the customer. (See P.136)

Dimensions by Stroke


X: Stroke	50	100	150	200	250	300	350	400	450	500	550	600	650	700	750	800	850	900	950	1000	1050	1100
A	230	280	330	380	430	480	530	580	630	680	730	780	830	880	930	980	1030	1080	1130	1180	1230	1280
В	1	2	2	3	3	4	4	5	5	6	6	7	7	8	8	9	9	10	10	11	11	12
C	4	6	6	8	8	10	10	12	12	14	14	16	16	18	18	20	20	22	22	24	24	26
D	0	100	100	200	200	300	300	400	400	500	500	600	600	700	700	800	800	900	900	1000	1000	1100
E	2	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
F	0	0	80	180	180	280	280	380	380	480	480	580	580	680	680	780	780	880	880	980	980	1080
G	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Н	230	255	280	305	330	355	380	405	430	455	480	505	530	555	580	605	630	655	680	705	730	755
J	30	27.5	27.5	27.5	27.5	27.5	27.5	27.5	27.5	27.5	22.5	27.5	77.5	52.5	65	77.5	52.5	27.5	77.5	22.5	55	27.5
К	1	1	1	2	2	2	2	2	2	2	3	3	3	3	3	3	3	3	3	4	4	4
М	170	200	225	125	137.5	150	162.5	175	187.5	200	145	150	125	150	150	150	175	200	175	165	155	175
N	2	2	2	3	3	3	3	3	3	3	4	4	4	4	4	4	4	4	4	5	5	5
					1																	
Cable track size	CT	CTM	CTL	CTXL																		


 Q1
 305
 318
 331
 348

 Q2
 84.5
 97.5
 110.5
 127.5

 S
 139
 145.5
 152

MM type: X medium speed/Y medium speed (Unit: kg)									
Y-axis strol Acceleration/ (mr deceleration (G)	n) ·	50~100 ery 50mm)	150~2 (Every 5		250~300 (Every 50mm)	350	4	100	
0.1		16	15	5	12.5	12	1	0.5	
0.3		16	15	5	12.5	12	1	0.5	
0.5				1	2		1	0.5	
0.7		9.5							
HH type: X high speed/Y high speed SS type: X ultra high speed/Y ultra high speed									
.,		rnigns	peea	S	type: X ultra h	igh speed/Y	ultra hig	Jh speed	
Y-axis stroke (mm)	50~100 (Every 50mm)	150~300 3 (Every	50~400 (Every 50mm)	Accele	Y-axis stro		ultra hig 150~300 (Every 50mm)	h speed 350~400 (Every 50mm)	
Y-axis stroke Acceleration/ (mm)	50~100 (Every 50mm)	150~300 3 (Every	350~400 (Every	Accele	Y-axis stro ration/ (m	oke 50~100 m) (Every	150~300 (Every	350~400 (Every	
Y-axis stroke (mm) deceleration/ G)	50~100 (Every 50mm)	150~300 (Every 50mm)	350~400 (Every 50mm)	Accele	Y-axis stro ration/ ration (G)	oke 50~100 (Every 50mm)	150~300 (Every 50mm)	350~400 (Every 50mm)	
Y-axis stroke Acceleration/ deceleration (G) 0.1	50~100 (Every 50mm)	150~300 (Every 50mm) 8	350~400 (Every 50mm) 7.5	Accele	Y-axis stro ration/ ration (G) 0.1	bke 50~100 (Every 50mm) 6	150~300 (Every 50mm) 5.5	350~400 (Every 50mm) 5	

* When both X and Y axes have the same acceleration/deceleration. When there is significant vibration, decrease the speed and acceleration/deceleration as required.

The photograph above shows the configuration direction "1" where both the first wiring and second wiring have cable tracks. Please refer to P.3 for other configuration directions.

Y-axis	stroke (mm)	50	100	150	200	250	300	350	400
	50	0	0	0	0	0	0	0	0
	100	0	0	0	0	0	0	0	0
	150	0	0	0	0	0	0	0	0
	200	0	0	0	0	0	0	0	0
	250	0	0	0	0	0	0	0	0
(mm)	300	0	0	0	0	0	0	0	0
	350	0	0	0	0	0	0	0	0
stroke	400	0	0	0	0	0	0	0	0
s str	450	0	0	0	0	0	0	0	0
-axis	500	0	0	0	0	0	0	0	0
×	550	0	0	0	0	0	0	0	0
	600	0	0	0	0	0	0	0	0
	650	0	0	0	0	0	0	0	0
	700	0	0	0	0	0	0	0	0
	750	0	0	0	0	0	0	0	0
	800	0	0	0	0	0	0	0	0

Applicable Controllers

Controllers are sold separately.

Please refer to each controller page.

Туре	Axis configuration	Applicable controllers	Reference page
		PCON-CB/CGB	P-149
	X-axis : WSA14R	PCON-CYB/PLB/ POB	Please contact IAI
PM1		MCON-C/CG	P-153
	Y-axis :	MCON-LC/LCG	P-155
	SA7R	MSEL	P-139
PM2		RCON-PC	P-159

* Operation is possible with the high output setting specification. When connecting to the MCON controller, "HIGH OUTPUT SETTING SPECIFICATION" must be selected. Please contact IAI regarding use with the high-output setting disabled.

Cable Length

Туре	Cable code	Length			
	1L	1m			
Chan doubt was	3L	3m			
Standard type	5L	5m			
		Specified length (15m max.)			

Note is used.

Note 2. The length of the second axis cable is from the exit of the cable track. A separate robot cable is included for wiring inside the cable track.

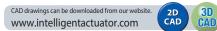
Note 3. The standard lengths are 1m, 3m and 5m, but other lengths can be specified

Specifications ltem X-axis Y-axis RCP6-WSA14R RCP6-SA7R Axis configuration 50~800mm 50~400mm Stroke (Every 50mm) MM 210mm/s 280mm/s Max. speed * ΗH 420mm/s 560mm/s SS 560mm/s 640mm/s Motor size 56 Stepper motor 56 Stepper motor MM 8mm 8mm Ball screw HH 16mm 16mm lead SS 24mm 24mm Ball screw Ø12mm Ball screw Ø12mm Drive system rolled C10 rolled C10 Positioning repeatability ±0.01mm Base material Aluminum Ambient operating 0~40°C, 85% RH or less (non-condensing) temperature, humidity

* The maximum speed may not be reached if the travel distance is short or acceleration is low. Maximum speed may change depending on the stroke. For details, refer to the Maximum Speed by Stroke table on P.137.

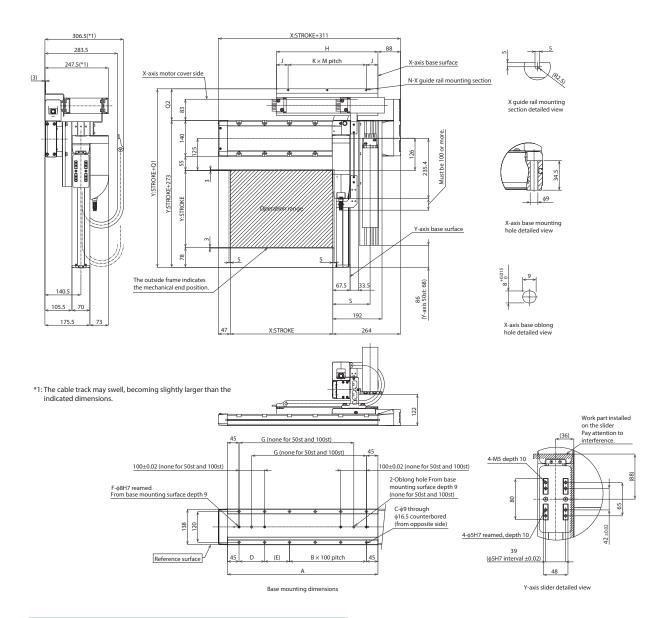
Cable Track

Туре	Model	Reference page	First wiring (X-axis lateral)	Second wiring (Y-axis lateral)
Without cable track (cable only)	N		0	0
Cable track S size (inner width: 38mm)	СТ		0	0
Cable track M size (inner width: 50mm)	СТМ	See P.136	0	0
Cable track L size (inner width: 63mm)	CTL	See P.150	0	0
Cable track XL size (inner width: 80mm) *	CTXL		0	Cannot be selected *


* Only the first wiring can be selected

Options * Please check the Options reference pages to confirm each option.

Туре	Option code	Reference page	X-axis	Y-axis
Brake	В	See P.134	0	0
Non-motor end specification	NM	See P.135	0	0
Slider section roller specification	SR	See P.135	0	0


1. All-axis sta	andard cable

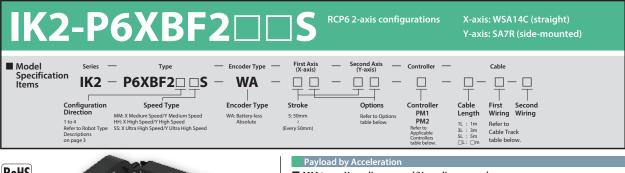
in 1m increments up to 15m.

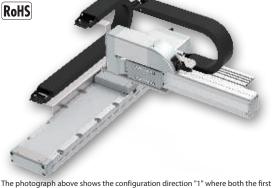
Note 1. The configuration position in the figure is home.

Note 2. The diagram shows the configuration direction "1" where both the first wiring and second wiring have cable tracks. Note 3. For details on the cable track and cable track moving end bracket, refer to P.136.

(*) Notes

The X-axis cable track guide rail is to be fixed to the surface on which the X-axis is installed by the customer.


Also, the moving end of the Y-axis cable track is to be fixed to a plate or the like mounted on the Y-axis slider by the customer. (See P.136)


Dimensions by Stroke

X: Stroke	50	100	150	200	250	300	350	400	450	500	550	600	650	700	750	800
A	237	287	337	387	437	487	537	587	637	687	737	787	837	887	937	987
В	0	0	1	1	2	2	3	3	4	4	5	5	6	6	7	7
С	4	4	8	8	10	10	12	12	14	14	16	16	18	18	20	20
D	-	-	100	100	100	100	100	100	100	100	100	100	100	100	100	100
E	147	197	47	97	47	97	47	97	47	97	47	97	47	97	47	97
F	2	2	4	4	4	4	4	4	4	4	4	4	4	4	4	4
G	-	-	198	248	298	348	398	448	498	548	598	648	698	748	798	848
Н	221	246	271	296	321	346	371	396	421	446	471	496	521	546	571	596
J	45.5	45.5	45.5	45.5	45.5	45.5	45.5	45.5	45.5	43	48	45.5	43	43	45.5	43
К	1	1	2	2	2	2	2	2	3	3	3	3	3	4	4	4
М	130	155	90	102.5	115	127.5	140	152.5	110	120	125	135	145	115	120	127.5
N	2	2	3	3	3	3	3	3	4	4	4	4	4	5	5	5
Cable track size	CT	CTM	CTL	CTXL												

Cable track size	CT	CTM	CTL	CTXL
Q1	383.5	396.5	409.5	426.5
Q2	110.5	123.5	136.5	153.5
S	139	145.5	152	-

100

150

200

0

 \bigcirc

0

0

0

250

0

0

0

300

0

0

0

Ο

350

0

0

0

0

wiring and second wiring have cable tracks. Please refer to P.3 for other configuration directions.

50

0

0

MM type: X medium speed/Y medium speed (Unit: kg)										
Y-axis stro Acceleration/ (mr deceleration (G)	m) '	50~100 150~ (Every 50mm) (Every 5			250~300 (Every 50mm)	350	4	400		
0.1		16	15		12.5	12	1	0.5		
0.3		16	15		12.5	12	1	0.5		
0.5				1	2		1	10.5		
07		9.5								
0.7					9.5					
HH type: X high s				ss	type: X ultra h	5 1				
HH type: X high s	peed / 50~100 (Every 50mm)	150~300 3 (Every	350~400 (Every	Accele	type: X ultra h	5 1	ultra hig 150~300 (Every 50mm)	Jh speed 350~400 (Every 50mm)		
HH type: X high s	50~100 (Every 50mm)	150~300 3 (Every	350~400 (Every	Accele	type: X ultra h Y-axis stro	oke 50~100 nm) (Every	150~300 (Every	350~400 (Every		
HH type: X high s	50~100 (Every 50mm)	150~300 (Every 50mm)	350~400 (Every 50mm)	Accele	type: X ultra h Y-axis stra ration/ ration (G)	oke 50~100 (Every 50mm)	150~300 (Every 50mm)	350~400 (Every 50mm)		
HH type: X high s Y-axis stroke Acceleration/ deceleration (G) 0.1	50~100 (Every 50mm)	150~300 (Every 50mm) 8	350~400 (Every 50mm) 7.5	Accele	type: X ultra h Y-axis stro ration/ (m ration (G) 0.1	bke 50~100 (Every 50mm) 6	150~300 (Every 50mm) 5.5	350~400 (Every 50mm) 5		

* When both X and Y axes have the same acceleration/deceleration.

400

0

0

0

Ο

When there is significant vibration, decrease the speed and acceleration/deceleration as required.

Applicable Controllers Controllers are sold separately. Please refer to each controller page.

	Туре	Axis configuration	Applicable controllers	Reference page	
ĺ			PCON-CB/CGB	P-149	
		X-axis : WSA14C	PCON-CYB/PLB/ POB	Please contact IAI	
	PM1		MCON-C/CG	P-153	
		Y-axis :	MCON-LC/LCG	P-155	
		SA7R	MSEL	P-139	
	PM2		RCON-PC	P-159	

* Operation is possible with the high output setting specification. When connecting to the MCON controller, "HIGH OUTPUT SETTING SPECIFICATION" must be selected. Please contact IAI regarding use with the high-output setting disabled.

800 Cable Length

Y-axis stroke (mm)

50

100

150

200 250

300

350

400

450

500

550

600

650 700

750

(mn

stroke

X-axis :

Туре	Cable code	Length				
	1L	1m				
Chan doubt was	3L	3m				
Standard type	5L	5m				
		Specified length (15m max.)				

Note 1. All-axis standard cable is used.

Note 2. The length of the second axis cable is from the exit of the cable track. A separate robot cable is included for wiring inside the cable track.

Note 3. The standard lengths are 1m, 3m and 5m, but other lengths can be specified in 1m increments up to 15m.

Specifications									
ltem		X-axis	Y-axis						
Axis configuration	n	RCP6-WSA14C	RCP6-SA7R						
Stroke (Every 50n	nm)	50~800mm	50~400mm						
	MM	210mm/s	280mm/s						
Max. speed *	HH	420mm/s	560mm/s						
	SS	560mm/s	640mm/s						
Motor size		56 Stepper motor	56 Stepper motor						
Ball screw	MM	8mm	8mm						
lead	HH	16mm	16mm						
leau	SS	24mm	24mm						
Drive system		Ball screw Φ12mm rolled C10	Ball screw Φ12mm rolled C10						
Positioning repea	tability	±0.01mm							
Base material		Aluminum							
Ambient operatir temperature, hur		0~40°C, 85% RH or less (non-condensing)							

* The maximum speed may not be reached if the travel distance is short or acceleration is low. Maximum speed may change depending on the stroke. For details, refer to the Maximum Speed by Stroke table on P.137.

Cable Track

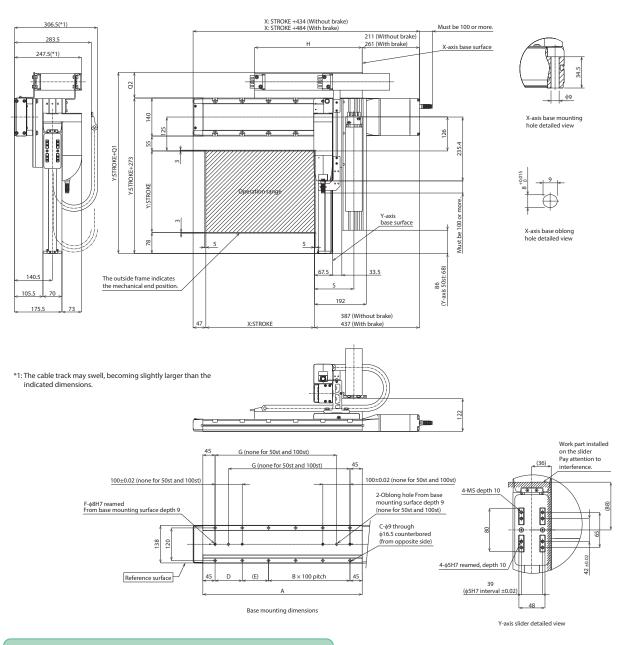
Туре	Model	Reference page	First wiring (X-axis lateral)	Second wiring (Y-axis lateral)
Without cable track (cable only)	N		0	0
Cable track S size (inner width: 38mm)	СТ		0	0
Cable track M size (inner width: 50mm)	СТМ	See P.136	0	0
Cable track L size (inner width: 63mm)	CTL	See P.136	0	0
Cable track XL size (inner width: 80mm) *	CTXL		0	Cannot be selected *

* Only the first wiring can be selected

Options * Please check the Options reference pages to confirm each option.

Туре	Option code	Reference page	X-axis	Y-axis
Brake *	В	See P.134	0	0
Cable exit direction (Top)	CJT	See P.134	0	
Cable exit direction (Right)	CJR	See P.134	0	Cannot be
Cable exit direction (Left)	CJL	See P.134	0	selected
Cable exit direction (Bottom)	CJB	See P.134	0	
Non-motor end specification	NM	See P.135	0	0
Slider section roller specification	SR	See P.135	0	0

* Brake option for X-axis increases the length of the motor unit.


Please contact IAI for more information.

CAD drawings can be downloaded from our website.

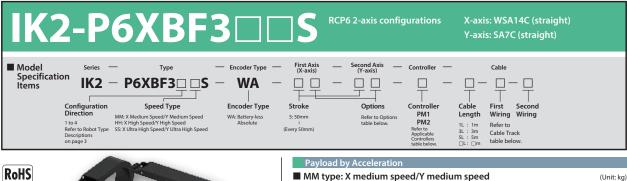
Note 1. The configuration position in the figure is home.

Note 2. The diagram shows the configuration direction "1" where both the first wiring and second wiring have cable tracks. Note 3. For details on the cable track and cable track moving end bracket, refer to P.136.

(*) Notes

The X-axis cable track guide rail is fixed on the X-axis body. Also, the moving end of the Y-axis cable track is to be fixed to a plate or the like mounted on the Y-axis slider by the customer. (See P.136)

Dimensions by Stroke


,																
X: Stroke	50	100	150	200	250	300	350	400	450	500	550	600	650	700	750	800
A	237	287	337	387	437	487	537	587	637	687	737	787	837	887	937	987
В	0	0	1	1	2	2	3	3	4	4	5	5	6	6	7	7
С	4	4	8	8	10	10	12	12	14	14	16	16	18	18	20	20
D	-	-	100	100	100	100	100	100	100	100	100	100	100	100	100	100
E	147	197	47	97	47	97	47	97	47	97	47	97	47	97	47	97
F	2	2	4	4	4	4	4	4	4	4	4	4	4	4	4	4
G	-	-	198	248	298	348	398	448	498	548	598	648	698	748	798	848
Н	221	246	271	296	321	346	371	396	421	446	471	496	521	546	571	596
Cable track size	CT	CTM	CTL	CTXL												
Q1	356	368	383	401												

 Q1
 356
 368
 383
 401

 Q2
 83
 95
 110
 128

 S
 139
 145.5
 152

MM type: X medium speed/Y medium speed (Unit: kg)											
Y-axis str Acceleration/ (n deceleration (G)	nm)	50~100 (Every 50mm) (E		~200 50mm)	250~300 (Every 50mm)		350	4	400		
0.1		16	1	5	12.5		12	1	0.5		
0.3		16	1	5	12.5		12	1	0.5		
0.5		12 10.5									
0.7		9.5									
HH type: X high Y-axis stroke Acceleration/ deceleration (G)	<u> </u>	0 150~300 / (Every i) 50mm)	350~400 (Every 50mm)	Accele	ration/ ration (G)	-	50~100 (Every 50mm)	150~300 (Every 50mm)	350~400 (Every 50mm)		
0.1		8	7.5		0.1		6	5.5	5		
0.3		8	7.5		0.3		5.5	5	4.5		
0.5	5	4.5 4			0.5		3	2.5	2		
0.7	3	25	2								

0.7	3	2.5	2							
* When both X and Y axes have the same acceleration/deceleration.										
When there is significant vibration, decrease the speed and acceleration/deceleration as required.										

The photograph above shows the configuration direction "1" where both the first wiring and second wiring have cable tracks. Please refer to P.3 for other configuration directions.

|--|

Y-axi	is stroke (mm)	50	100	150	200	250	300	350	400
	50	0	0	0	0	0	0	0	0
	100	0	0	0	0	0	0	0	0
	150	0	0	0	0	0	0	0	0
	200	0	0	0	0	0	0	0	0
	250	0	0	0	0	0	0	0	0
(mm)	300	0	0	0	0	0	0	0	0
<u></u>	350	0	0	0	0	0	0	0	0
stroke (400	0	0	0	0	0	0	0	0
str	450	0	0	0	0	0	0	0	0
X-axis	500	0	0	0	0	0	0	0	0
×	550	0	0	0	0	0	0	0	0
	600	0	0	0	0	0	0	0	0
	650	0	0	0	0	0	0	0	0
	700	0	0	0	0	0	0	0	0
	750	0	0	0	0	0	0	0	0
	800	0	0	0	0	0	0	0	0

Applicable Controllers

Controllers are sold separately. Please refer to each controller page.

		• =			
Туре	Axis configuration	Applicable controllers	Reference page		
		PCON-CB/CGB	P-149		
	X-axis : WSA14C	PCON-CYB/PLB/ POB	Please contact IAI		
PM1		MCON-C/CG	P-153		
	Y-axis :	MCON-LC/LCG	P-155		
	SA7C	A7C MSEL			
PM2		RCON-PC	P-159		

* Operation is possible with the high output setting specification. When connecting to the MCON controller, "HIGH OUTPUT SETTING SPECIFICATION" must be selected. Please contact IAI regarding use with the high-output cotting disabled. setting disabled.

Cable Length

Type	Cable code	Length
	1L	1m
Chan doubt to ma	3L	3m
Standard type	5L	5m
		Specified length (15m max.)

Note 1. All-axis standard cable is used.

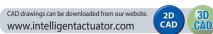
Note 2. The length of the second axis cable is from the exit of the cable track. A separate robot cable is included for wiring inside the cable track.

Note 3. The standard lengths are 1m, 3m and 5m, but other lengths can be specified in 1m increments up to 15m.

Specificatio	ns				
ltem		X-axis	Y-axis		
Axis configuration	n	RCP6-WSA14C	RCP6-SA7C		
Stroke (Every 50n	าm)	50~800mm	50~400mm		
	MM	210mm/s	280mm/s		
Max. speed *	HH	420mm/s	560mm/s		
SS		560mm/s	640mm/s		
Motor size		56 Stepper motor	56 Stepper motor		
Ball screw	MM	8mm	8mm		
lead	HH	16mm	16mm		
leau	SS	24mm	24mm		
Drive system		Ball screw Φ12mm rolled C10	Ball screw Φ12mm rolled C10		
Positioning repea	itability	±0.01mm			
Base material		Aluminum			
Ambient operating temperature, humidity		0~40°C, 85% RH or less (non-condensing)			

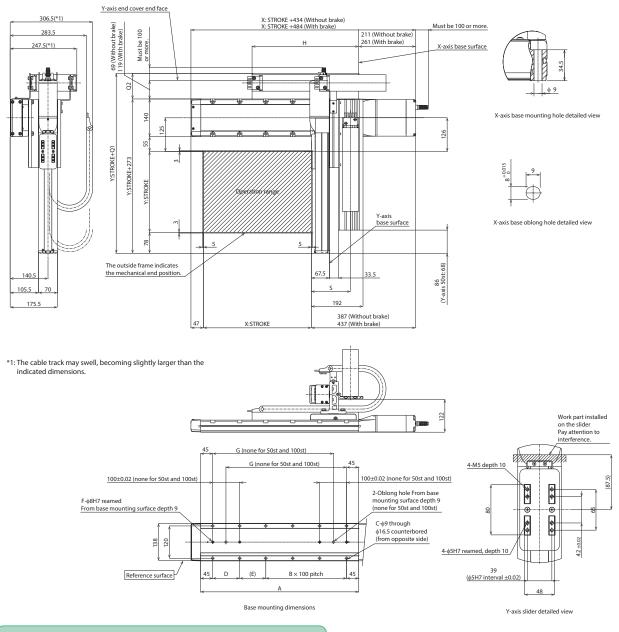
* The maximum speed may not be reached if the travel distance is short or acceleration is low. Maximum speed may change depending on the stroke. For details, refer to the Maximum Speed by Stroke table on P.137.

Cable Track


Туре	Model	Reference page	First wiring (X-axis lateral)	Second wiring (Y-axis lateral)
Without cable track (cable only)	N		0	0
Cable track S size (inner width: 38mm)	СТ		0	0
Cable track M size (inner width: 50mm)	СТМ	See P.136	0	0
Cable track L size (inner width: 63mm)	CTL See P.136		0	0
Cable track XL size (inner width: 80mm) *	CTXL		0	Cannot be selected *

* Only the first wiring can be selected

Options * Please check the Options reference pages to confirm each option.


Туре	Option code	Reference page	X-axis	Y-axis
Brake *	В	See P.134	0	0
Cable exit direction (Top)	CJT	See P.134	0	
Cable exit direction (Right)	CJR	See P.134	0	Cannot be
Cable exit direction (Left)	CJL	See P.134	0	selected
Cable exit direction (Bottom)	CJB	See P.134	0	
Non-motor end specification	NM	See P.135	0	0
Slider section roller specification	SR	See P.135	0	0

* Brake option for X- and/or Y-axes increases the length of the motor unit(s). Please contact IAI for more information.

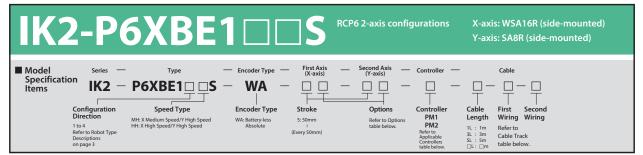
Note 1. The configuration position in the figure is home.

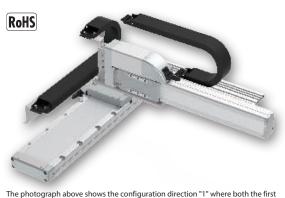
Note 2. The diagram shows the configuration direction "1" where both the first wiring and second wiring have cable tracks. Note 3. For details on the cable track and cable track moving end bracket, refer to P.136.

(*) Notes

The X-axis cable track guide rail is fixed on the X-axis body. Also, the moving end of the Y-axis cable track is to be fixed to a plate or the like mounted on the Y-axis slider by the customer. (See P.136)

Dimensions by Stroke


X: Stroke	50	100	150	200	250	300	350	400	450	500	550	600	650	700	750	800
A	237	287	337	387	437	487	537	587	637	687	737	787	837	887	937	987
В	0	0	1	1	2	2	3	3	4	4	5	5	6	6	7	7
С	4	4	8	8	10	10	12	12	14	14	16	16	18	18	20	20
D	-	-	100	100	100	100	100	100	100	100	100	100	100	100	100	100
E	147	197	47	97	47	97	47	97	47	97	47	97	47	97	47	97
F	2	2	4	4	4	4	4	4	4	4	4	4	4	4	4	4
G	-	-	198	248	298	348	398	448	498	548	598	648	698	748	798	848
Н	221	246	271	296	321	346	371	396	421	446	471	496	521	546	571	596
Cable track size	CT	CTM	CTL	CTXL												
01	356	368	383	401	1											


 Q1
 356
 368
 383
 401

 Q2
 83
 95
 110
 128

 S
 139
 145.5
 152

Payload by Acceleration							
MH type: X medium speed/Y high speed (Unit: kg)							
Y-axis stroke (mm) deceleration/ deceleration (G)	50~100 (Every 50mm)	150~200 (Every 50mm)	250~300 (Every 50mm)	350~400 (Every 50mm)	450	500	
0.1	17	16	15	14	12	10	
0.3	17	16	15	14	12	10	
0.5	1	1	10).5	1	0	

HH type: X high speed/Y high speed

Y-axis stroke (mm) deceleration (G)	50~100	150~250 (Every 50mm)	300~400 (Every 50mm)	450~500 (Every 50mm)
0.1	10	9.5	9	8.5
0.3	9	8.5	8	7.5
0.5	4	3.5	3	2.5

* When both X and Y axes have the same acceleration/deceleration. When there is significant vibration, decrease the speed and acceleration/deceleration as required.

Y-axis stroke (mm) 50 100 150 200 250 300 350 400 450 500 50 100 150 200 250 300 350 400 450 0 0 0 0 0 0 0 0 500 550 0 stroke (i 600 Õ 650 700 750 X-axis Ō Ō 800 850 900 C C C 0 0 0 0 0 950 1000 1050 1100 Ō

Applicable Controllers

Controllers are sold separately. Please refer to each controller page.

Type	Axis configuration	Applicable controllers	Reference page
DM1	X-axis :	PCON-CFB/ CGFB	P-149
PM1	WSA16R Y-axis :	MSEL-PCF/ PGF	P-139
PM2	SA8R	RCON-PCF	P-159

Cable Length

Cable code	Length
1L	1m
3L	3m
5L	5m
	Specified length (15m max.)
	Cable code 1L 3L 5L L

Note 1. All-axis standard cable is used. Note 2. The length of the second axis cable is from the exit of the cable track.

A separate robot cable is included for wiring inside the cable track. Note 3. The standard lengths are 1m, 3m and 5m, but other lengths can be specified in 1m increments up to 15m.

Specificatio	ns						
ltem		X-axis	Y-axis				
Axis configuration	n	RCP6-WSA16R	RCP6-SA8R				
Stroke (Every 50n	nm)	50~1100mm	50~500mm				
Max. speed * MH		210mm/s	400mm/s				
Max. speed	HH	365mm/s	650mm/s				
Motor size		56 High thrust stepper	56 High thrust stepper				
MOLOT SIZE		motor	motor				
Ball screw	MH	10mm	20mm				
lead	HH	20mm	2011111				
Drive system		Ball screw Ф16mm rolled C10	Ball screw Φ16mm rolled C10				
Positioning repea	tability	±0.01mm					
Base material		Aluminum					
Ambient operatir temperature, hur		0~40°C, 85% RH or less (non	-condensing)				

* The maximum speed may not be reached if the travel distance is short or acceleration is low. Maximum speed may change depending on the stroke. For details, refer to the Maximum Speed by Stroke table on P.137.

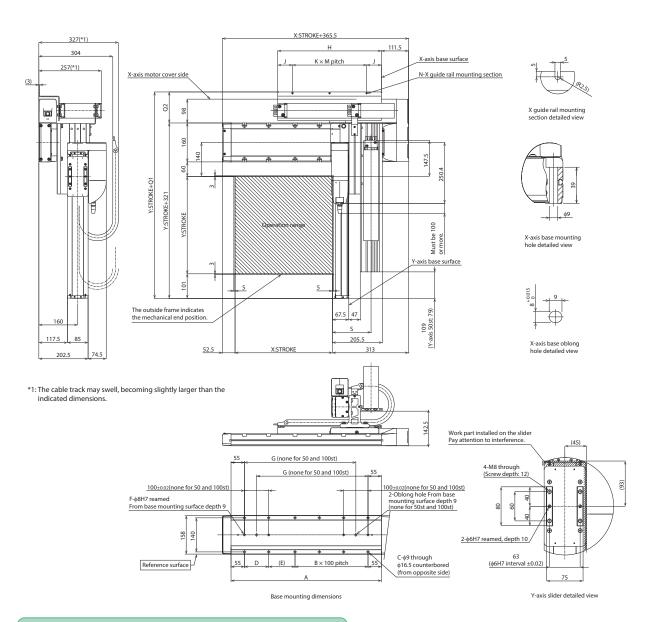
Cable Track

Туре	Model	Reference page	First wiring (X-axis lateral)	Second wiring (Y-axis lateral)
Without cable track (cable only)	N		0	0
Cable track S size (inner width: 38mm)	СТ		0	0
Cable track M size (inner width: 50mm)	СТМ	See P.136	0	0
Cable track L size (inner width: 63mm)	CTL	See P.150	0	0
Cable track XL size (inner width: 80mm) *	CTXL		0	Cannot be selected *

* Only the first wiring can be selected

Options * Please check the Options reference pages to confirm each option.

Туре	Option code	Reference page	X-axis	Y-axis
Brake	В	See P.134	0	0
Non-motor end specification	NM	See P.135	0	0
Slider section roller specification	SR	See P.135	0	0


wiring and second wiring have cable tracks. Please refer to P.3 for other configuration directions.

29 IK2-P6XBE1 S

Note 1. The configuration position in the figure is home.

Note 2. The diagram shows the configuration direction "1" where both the first wiring and second wiring have cable tracks. Note 3. For details on the cable track and cable track moving end bracket, refer to P.136.

(*) Notes

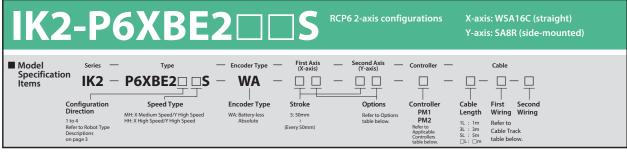
The X-axis cable track guide rail is to be fixed to the surface on which the X-axis is installed by the customer.

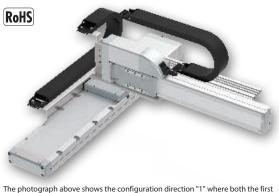
Also, the moving end of the Y-axis cable track is to be fixed to a plate or the like mounted on the Y-axis slider by the customer. (See P.136)

Dimensions by Stroke

X: Stroke	50	100	150	200	250	300	350	400	450	500	550	600	650	700	750	800	850	900	950	1000	1050	1100
A. SUORE																						
A	268	318	368	418	468	518	568	618	668	718	768	818	868	918	968	1018	1068	1118	1168	1218	1268	1318
В	0	0	1	1	2	2	3	3	4	4	5	5	6	6	7	7	8	8	9	9	10	10
C	4	4	8	8	10	10	12	12	14	14	16	16	18	18	20	20	22	22	24	24	26	26
D	-	-	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
E	158	208	58	108	58	108	58	108	58	108	58	108	58	108	58	108	58	108	58	108	58	108
F	2	2	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4
G	-	-	208	258	308	358	408	458	508	558	608	658	708	758	808	858	908	958	1008	1058	1108	1158
Н	251	276	301	326	351	376	401	426	451	476	501	526	551	576	601	626	651	676	701	726	751	776
J	60.5	60.5	60.5	60.5	60.5	60.5	60.5	60.5	60.5	58	63	60.5	58	58	60.5	58	60.5	58	60.5	63	63	63
К	1	1	2	2	2	2	2	2	3	3	3	3	3	4	4	4	4	4	4	5	5	5
М	130	155	90	102.5	115	127.5	140	152.5	110	120	125	135	145	115	120	127.5	132.5	140	145	120	125	130
N	2	2	3	3	3	3	3	3	4	4	4	4	4	5	5	5	5	5	5	6	6	6
Cable track size	CT	CTM	CTI	CTXL																		
Cable track size	CI	CTIVI	CIL	CIXL																		

 Cable data size
 Clin
 Clin
 Clin
 Clin


 Q1
 448.5
 448.5
 448.5
 465.5


 Q2
 127.5
 127.5
 124.5

 \$
 152.5
 159
 165.5

 * Dimensions Q1, Q2 and S change depending on the size of the cable track.
 152.5
 159
 165.5

wiring and second wiring have cable tracks. Please refer to P.3 for other configuration directions.

Payload by Acceleration														
MH type: X medium speed/Y high speed														
Y-axis stroke (mm) deceleration/ deceleration (G)	50~100 (Every 50mm)	150~200 (Every 50mm)	250~300 (Every 50mm)	350~400 (Every 50mm)	450	500								
0.1	17	16	15	14	12	10								
0.3	17	16	15	14	12	10								
0.5	1	1	10).5	1	0								

HH type: X high speed/Y high speed

71 5 1	5 1			
Y-axis stroke (mm) deceleration/ G)	50~100	150~250 (Every 50mm)	300~400 (Every 50mm)	450~500 (Every 50mm)
0.1	10	9.5	9	8.5
0.3	9	8.5	8	7.5
0.5	4	3.5	3	2.5

* When both X and Y axes have the same acceleration/deceleration. When there is significant vibration, decrease the speed and acceleration/deceleration as required.

Y-axis stroke (mm) 50 100 150 200 250 300 350 400 450 500 50 100 150 200 250 Ō 300 350 400 450 0 0 0 0 0 0 0 0 500 550 0 stroke (i 600 Õ Õ õ 650 700 X-axis Ō 750 Ō Ō 800 850 900 C C 0 0 0 0 950 1000 1050 1100 Ō

Applicable Controllers

Controllers are sold separately. Please refer to each controller page.

Type	Axis configuration	Applicable controllers	Reference page		
DM1	X-axis :	PCON-CFB/ CGFB	P-149		
PM1	WSA16C Y-axis :	MSEL-PCF/ PGF	P-139		
PM2	SA8R	RCON-PCF	P-159		

Cable Length

Type	Cable code	Length
	1L	1m
Standard type	3L	3m
stanuaru type	5L	5m
		Specified length (15m max.)

Note 1. All-axis standard cable is used. Note 2. The length of the second axis cable is from the exit of the cable track.

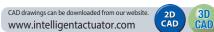
A separate robot cable is included for wiring inside the cable track. Note 3. The standard lengths are 1m, 3m and 5m, but other lengths can be specified in 1m increments up to 15m.

Specificatio	ns						
ltem		X-axis	Y-axis				
Axis configuration	ı	RCP6-WSA16C	RCP6-SA8R				
Stroke (Every 50m	nm)	50~1100mm	50~500mm				
Max. speed *	MH	210mm/s	400mm/s				
Max. speed	HH	365mm/s	650mm/s				
Motor size		56 High thrust stepper	56 High thrust stepper				
MOLOI SIZE		motor	motor				
Ball screw	MH	10mm	20mm				
lead	HH	20mm	2011111				
Drive system		Ball screw Ф16mm rolled C10	Ball screw Φ16mm rolled C10				
Positioning repea	tability	±0.01mm					
Base material		Aluminum					
Ambient operatin temperature, hun		0~40°C, 85% RH or less (non	-condensing)				

* The maximum speed may not be reached if the travel distance is short or acceleration is low. Maximum speed may change depending on the stroke. For details, refer to the Maximum Speed by Stroke table on P.137.

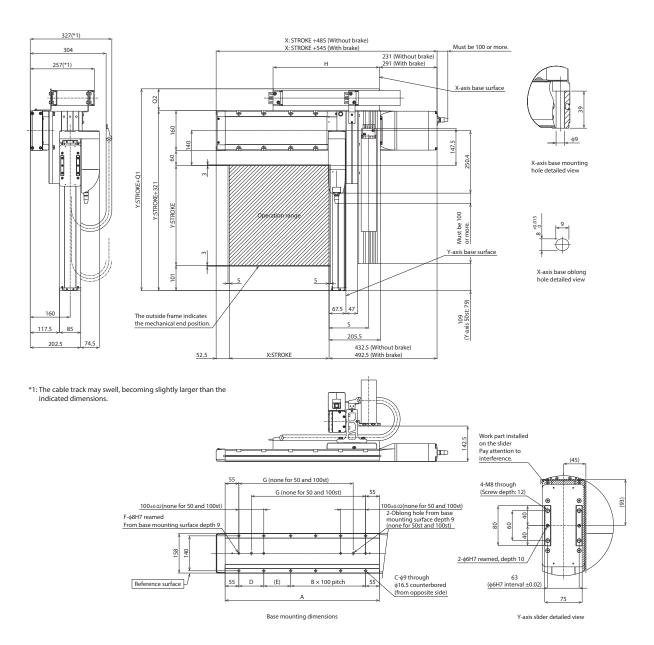
Cable Track

Туре	Model	Reference page	First wiring (X-axis lateral)	Second wiring (Y-axis lateral)
Without cable track (cable only)	N		0	0
Cable track S size (inner width: 38mm)	СТ		0	0
Cable track M size (inner width: 50mm)	СТМ	See P.136	0	0
Cable track L size (inner width: 63mm)	CTL	See P.150	0	0
Cable track XL size (inner width: 80mm) *	CTXL		0	Cannot be selected *


* Only the first wiring can be selected

Options * Please check the Options reference pages to confirm each option.

Туре	Option code	Reference page	X-axis	Y-axis
Brake *	В	See P.134	0	0
Cable exit direction (Top)	CJT	See P.134	0	
Cable exit direction (Right)	CJR	See P.134	0	Cannot be
Cable exit direction (Left)	CJL	See P.134	0	selected
Cable exit direction (Bottom)	CJB	See P.134	0	
Non-motor end specification	NM	See P.135	0	0
Slider section roller specification	SR	See P.135	0	0

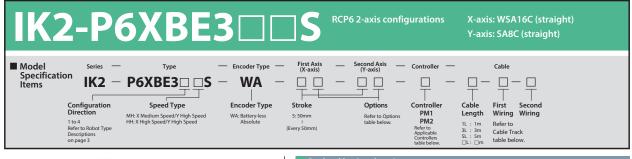

* Brake option for X-axis increases the length of the motor unit.

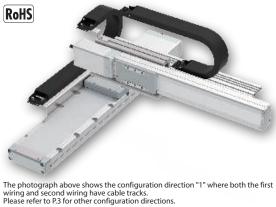
Please contact IAI for more information.

Note 1. The configuration position in the figure is home.

Note 2. The diagram shows the configuration direction "1" where both the first wiring and second wiring have cable tracks. Note 3. For details on the cable track and cable track moving end bracket, refer to P.136.

(*) Notes


The X-axis cable track guide rail is fixed on the X-axis body. Also, the moving end of the Y-axis cable track is to be fixed to a plate or the like mounted on the Y-axis slider by the customer. (See P.136)


Dimensions by Stroke

X: Stroke	50	100	150	200	250	300	350	400	450	500	550	600	650	700	750	800	850	900	950	1000	1050	1100
A	268	318	368	418	468	518	568	618	668	718	768	818	868	918	968	1018	1068	1118	1168	1218	1268	1318
В	0	0	1	1	2	2	3	3	4	4	5	5	6	6	7	7	8	8	9	9	10	10
С	4	4	8	8	10	10	12	12	14	14	16	16	18	18	20	20	22	22	24	24	26	26
D	-	-	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
E	158	208	58	108	58	108	58	108	58	108	58	108	58	108	58	108	58	108	58	108	58	108
F	2	2	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4
G	-	-	208	258	308	358	408	458	508	558	608	658	708	758	808	858	908	958	1008	1058	1108	1158
Н	251	276	301	326	351	376	401	426	451	476	501	526	551	576	601	626	651	676	701	726	751	776
	· · · · · · · · · · · · · · · · · · ·																					
Cable track size	CT	CTM	CTL	CTXL																		
01	206 E	400 F	433 E	441 5																		

Cable track size	CT	CTM	CTL	CTXL
Q1	396.5	408.5	423.5	441.5
Q2	75.5	87.5	102.5	120.5
S	152.5	159	165.5	-

MH type: X medium speed/Y high speed (Unit: kg										
Y-axis stroke (mm) deceleration/ G)	50~100 (Every 50mm)	150~200 (Every 50mm)	250~300 (Every 50mm)	350~400 (Every 50mm)	450	500				
0.1	17	16	15	14	12	10				
0.3	17	16	15	14	12	10				
0.5	1	1	10	0.5	10					

HH type: X high speed/Y high speed

Y-axis stroke (mm) deceleration (G)	50~100	150~250 (Every 50mm)	300~400 (Every 50mm)	450~500 (Every 50mm)
0.1	10	9.5	9	8.5
0.3	9	8.5	8	7.5
0.5	4	3.5	3	2.5

page

P-149

P-139

P-159

* When both X and Y axes have the same acceleration/deceleration. When there is significant vibration, decrease the speed and acceleration/deceleration as required.

Applicable Controllers Controllers are sold separately. Y-axis stroke (mm) 50 100 150 200 250 300 350 400 450 500 Please refer to each controller page. 50 100 150 Applicable controllers Reference Axis configuration Type 200 250 Ō PCON-CFB/ 300 350 CGFB X-axis : 400 450 0 0 0 0 0 0 0 0 PM1 WSA16C MSEL-PCF/ 500 550 0 0 PGF stroke (Y-axis : 600 Õ Õ õ SA8C PM2 RCON-PCF 650 700 X-axis Ō 750 Ō Ō 800 850 900 C C \cap C 0 0 0 0 950 1000 1050 1100 Ō

Cable Length

Cable code	Length											
1L	1m											
3L	3m											
5L	5m											
□L	Specified length (15m max.)											
	Cable code 1L 3L 5L L											

Note 1. All-axis standard cable is used.

IK2-P6XBE3

Note 2. The length of the second axis cable is from the exit of the cable track

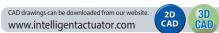
A separate robot cable is included for wiring inside the cable track. Note 3. The standard lengths are 1m, 3m and 5m, but other lengths can be specified in 1m increments up to 15m.

Specifications									
ltem		X-axis	Y-axis						
Axis configuration	n	RCP6-WSA16C	RCP6-SA8C						
Stroke (Every 50n	าm)	50~1100mm	50~500mm						
Max. speed *	MH	210mm/s	400mm/s						
Max. speed	HH	365mm/s	650mm/s						
Motor size		56 High thrust stepper	56 High thrust stepper						
MOLOI SIZE		motor	motor						
Ball screw	MH	10mm 20mm							
lead	HH	20mm	2011111						
Drive system		Ball screw Ф16mm rolled C10	Ball screw Φ16mm rolled C10						
Positioning repea	itability	±0.01mm							
Base material		Aluminum							
Ambient operating temperature, humidity		0~40°C, 85% RH or less (non-condensing)							

* The maximum speed may not be reached if the travel distance is short or acceleration is low. Maximum speed may change depending on the stroke. For details, refer to the Maximum Speed by Stroke table on P.137.

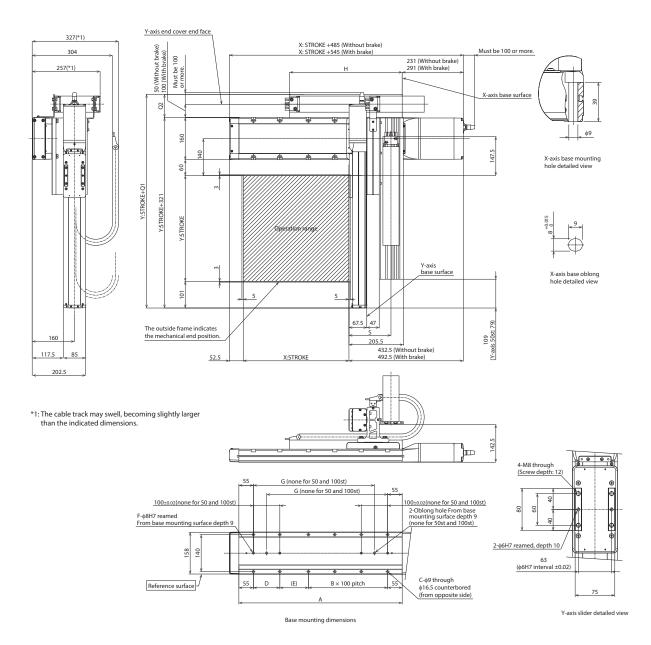
Cable Track

Туре	Model	Reference page	First wiring (X-axis lateral)	Second wiring (Y-axis lateral)
Without cable track (cable only)	N		0	0
Cable track S size (inner width: 38mm)	СТ		0	0
Cable track M size (inner width: 50mm)	СТМ	See P.136	0	0
Cable track L size (inner width: 63mm)	CTL	See P.150	0	0
Cable track XL size (inner width: 80mm) *	CTXL		0	Cannot be selected *


* Only the first wiring can be selected

Options * Please check the Options reference pages to confirm each option.

Туре	Option code	Reference page	X-axis	Y-axis		
Brake *	В	See P.134	0	0		
Cable exit direction (Top)	CJT	See P.134	0			
Cable exit direction (Right)	CJR	See P.134	0	Cannot be		
Cable exit direction (Left)	CJL	See P.134	0	selected		
Cable exit direction (Bottom)	CJB	See P.134	0			
Non-motor end specification	NM	See P.135	0	0		
Slider section roller specification	SR	See P.135	0	0		

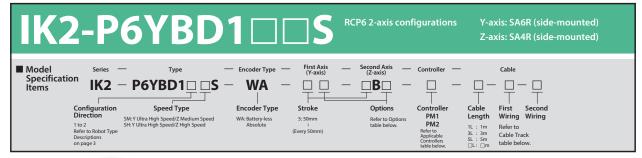

* Brake option for X- and/or Y-axes increases the length of the motor unit(s).

Please contact IAI for more information.

Note 1. The configuration position in the figure is home.

Note 2. The diagram shows the configuration direction "1" where both the first wiring and second wiring have cable tracks. Note 3. For details on the cable track and cable track moving end bracket, refer to P.136.

(*) Notes


The X-axis cable track guide rail is fixed on the X-axis body. Also, the moving end of the Y-axis cable track is to be fixed to a plate or the like mounted on the Y-axis slider by the customer. (See P.136)

Dimensions by Stroke

X: Stroke	50	100	150	200	250	300	350	400	450	500	550	600	650	700	750	800	850	900	950	1000	1050	1100
A	268	318	368	418	468	518	568	618	668	718	768	818	868	918	968	1018	1068	1118	1168	1218	1268	1318
В	0	0	1	1	2	2	3	3	4	4	5	5	6	6	7	7	8	8	9	9	10	10
С	4	4	8	8	10	10	12	12	14	14	16	16	18	18	20	20	22	22	24	24	26	26
D	-	-	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
E	158	208	58	108	58	108	58	108	58	108	58	108	58	108	58	108	58	108	58	108	58	108
F	2	2	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4
G	-	-	208	258	308	358	408	458	508	558	608	658	708	758	808	858	908	958	1008	1058	1108	1158
Н	251	276	301	326	351	376	401	426	451	476	501	526	551	576	601	626	651	676	701	726	751	776
Cable track size	CT	CTM	CTL	CTXL																		
01	2045	100 5	400.5		1																	

Cable track size	CT	CTM	CTL	CTXL
Q1	396.5	408.5	423.5	441.5
Q2	75.5	87.5	102.5	120.5
S	152.5	159	165.5	-

RoHS

Payload by Acceleration SM type: Y ultra high speed/Z medium speed (Unit: kg) Z-axis stroke 50~150 (mm) Acceleration/ deceleration (G) (Every 50mm) 0.1 1.5 0.3 1.5 0.5 1.5

SH type: Y ultra high speed/Z high speed

Z-axis stroke (mm) deceleration (G)	50~150 (Every 50mm)
0.1	1
0.3	1
0.5	1

* When both Y and Z axes have the same acceleration/deceleration. When there is significant vibration, decrease the speed and acceleration/deceleration as required.

Stroke

2	Stroke										
Z	-axis stroke (mm)	50	100	150							
	50	0	0	0							
	100	0	0	0							
	150	0	0	0							
	200	0	0	0							
	250	0	0	0							
Ê	300	0	0	0							
stroke (mm)	350	0	0	0							
- No	400	0	0	0							
str	450	0	0	0							
Y-axis	500	0	0	0							
×	550	0	0	0							
	600	0	0	0							
	650	0	0	0							
	700	0	0	0							
	750	0	0	0							
	800	0	0	0							

Applicable Controllers

Controllers are sold separately.

Please refer to each controller page.

Type	Axis configuration	Applicable controllers	Reference page
		PCON-CB/CGB	P-149
		PCON-CYB/PLB/POB	Please contact IAI
PM1	Y-axis : SA6R	MCON-C/CG	P-153
	Z-axis : SA4R	MCON-LC/LCG	P-155
		MSEL	P-139
PM2		RCON-PC	P-159

* Operation is possible with the high output setting specification. When connecting to the MCON controller, "HIGH OUTPUT SETTING SPECIFICATION" must be selected. Please contact IAI regarding use with the high-output setting disabled.

Cable Length

Туре	Cable code	Length	
Standard type	1L	1m	
	3L	3m	
	5L	5m	
		Specified length (15m max.)	

Note 1. All-axis standard cable is used.

Note 2. The length of the second axis cable is from the exit of the cable track. A separate robot cable is included for wiring inside the cable track.

Note 3. The standard lengths are 1m, 3m and 5m, but other lengths can be specified in 1m increments up to 15m.

Specifications

Item		Y-axis Z-axis		
Axis configuration		RCP6-SA6R	RCP6-SA4R	
Stroke (Every 50mm)		50~800mm	50~150mm	
Max. speed *	SM	800mm/s	350mm/s	
	SH	8001111/5	610mm/s	
Motor size		42 Stepper motor	35 Stepper motor	
Ball screw	SM	20mm	5mm 10mm	
lead	SH	ZUMM		
Drive system		Ball screw Φ10mm rolled C10	Ball screw Φ8mm rolled C10	
Positioning repeatability		±0.01mm		
Base material		Aluminum		
Ambient operating temperature, humidity		0~40°C, 85% RH or less (non-condensing)		

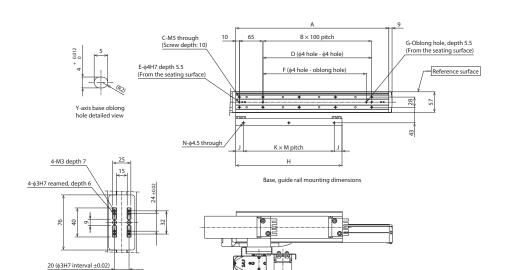
* The maximum speed may not be reached if the travel distance is short or acceleration is low. Maximum speed may change depending on the stroke. For details, refer to the Maximum Speed by Stroke table on P.137. Cable Track

Туре	Model	Reference page	First wiring (Y-axis lateral)	Second wiring (Z-axis lateral)
Without cable track (cable only)	N		0	0
Cable track S size (inner width: 38mm)	СТ		0	0
Cable track M size (inner width: 50mm)	СТМ	See P.136	0	0
Cable track L size (inner width: 63mm)	CTL	See P.136	0	0
Cable track XL size (inner width: 80mm) *	CTXL		0	Cannot be selected *

* Only the first wiring can be selected

Options * Please check the Options reference pages to confirm each option.

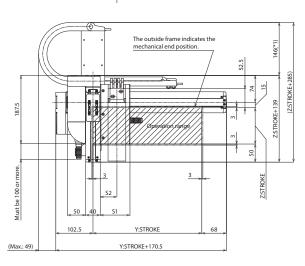
Туре	Option code	Reference page	Y-axis	Z-axis
Brake	В	See P.134	0	Standard equipment *
Cable exit direction (Outside)	CIO	See P.134	0	Cannot be selected
Non-motor end specification	NM	See P.135	0	0
Slider section roller specification	SR	See P.135	0	0

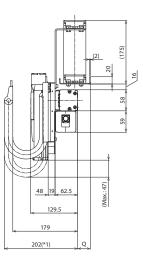

* Be sure to specify.

uetalis, relef	to the Maxi	num speed b	by stroke	Lable on P. I

CAD drawings can be downloaded from our website. 2D CAD www.intelligentactuator.com

Note 1. The configuration position in the figure is home.


Note 2. The diagram shows the configuration direction "1" where both the first wiring and second wiring have cable tracks. Note 3. For details on the cable track and cable track moving end bracket, refer to P.136.



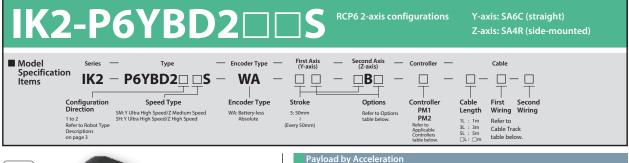
3D CAD

*1: The cable track may swell, becoming slightly larger than the indicated dimensions.

Z-axis slider detailed view

(*) Notes

The Y-axis cable track guide rail is to be fixed to the Y-axis mounting surface by the customer. Please note that there will be an overhang outside the Y-axis mounting surface. Also, the moving end of the Z-axis cable track is to be fixed to a plate or the like mounted on the Z-axis slider by the customer.


Dimensions by Stroke

50	100	150	200	250	300	350	400	450	500	550	600	650	700	750	800
172	222	272	322	372	422	472	522	572	622	672	722	772	822	872	922
0	1	1	2	2	3	3	4	4	5	5	6	6	7	7	8
4	6	6	8	8	10	10	12	12	14	14	16	16	18	18	20
0	100	100	200	200	300	300	400	400	500	500	600	600	700	700	800
2	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
0	85	85	185	185	285	285	385	385	485	485	585	585	685	685	785
0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
168	193	218	243	268	293	318	343	368	393	418	443	468	493	518	543
9	21.5	9	21.5	9	21.5	9	21.5	9	21.5	9	21.5	9	21.5	34	9
1	1	1	1	2	2	2	2	2	2	2	2	3	3	3	3
150	150	200	200	125	125	150	150	175	175	200	200	150	150	150	175
2	2	2	2	3	3	3	3	3	3	3	3	4	4	4	4
CT	CTM	CTL	CTXL												
23	35	50	68												
82	94	107	-												
46	52.5	59	-												
	172 0 4 0 2 0 0 168 9 1 150 2 2 CT 23 82	172 222 0 1 4 6 0 100 2 3 0 85 0 1 168 193 9 21.5 1 1 150 150 2 2 CT CTM 23 35 82 94	172 222 272 0 1 1 4 6 6 0 100 100 2 3 3 0 85 85 0 1 1 168 193 218 9 21.5 9 1 1 1 150 150 200 2 2 2 CT CTM CTL 23 35 50 82 94 107	172 222 272 322 0 1 1 2 4 6 6 8 0 100 100 200 2 3 3 3 0 85 85 185 0 1 1 1 1 168 193 218 243 9 21.5 1 1 1 1 1 1 1 150 150 200 200 2 2 2 2 CT CTM CTM CTM CTXL CTXL 23 35 50 68 82 94 107 - - - -	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	172 222 272 322 372 422 0 1 1 2 2 3 4 6 6 8 8 10 0 100 100 200 200 300 2 3 3 3 3 3 0 85 85 185 185 285 0 1 1 1 1 1 168 193 218 243 268 293 9 21.5 9 21.5 9 21.5 1 1 1 1 2 2 150 150 200 200 125 125 2 2 2 3 3 3 CT CTM CTL CTL CTL KTL 23 35 50 68 82 94 107	172 222 272 322 372 422 472 0 1 1 2 2 3 3 4 6 6 8 8 10 10 0 100 100 200 200 300 300 2 3 3 3 3 3 3 3 0 85 85 185 185 185 285 285 0 1 1 1 1 1 1 1 1 168 193 218 243 268 293 318 9 21.5 9 21.5 9 21.5 9 1 1 1 1 2 2 2 2 150 150 200 200 125 125 150 2 2 2 3 3 3 3 23 35	172 222 272 322 372 422 472 522 0 1 1 2 2 3 3 4 4 6 6 8 8 10 10 12 0 100 100 200 200 300 300 400 2 3 3 3 3 3 3 3 3 0 85 85 185 185 285 285 383 0 1 1 1 1 1 1 1 168 193 218 243 268 293 318 343 9 21.5 9 21.5 9 21.5 9 21.5 1 1 1 2 2 2 2 150 150 2 2 2 2 3 3 3 3 3 3	172 222 272 322 372 422 472 522 572 0 1 1 2 2 3 4 4 4 6 6 8 10 10 12 12 0 100 100 200 200 300 300 400 400 2 3	172 222 272 322 372 422 472 522 572 622 0 1 1 2 2 3 3 4 4 5 4 6 6 8 10 10 12 12 14 0 100 100 200 200 300 300 400 400 500 2 3 3 3 3 3 3 3 3 3 0 85 85 185 185 285 285 385 385 485 0 1 1 1 1 1 1 1 1 1 168 193 218 243 268 293 318 343 368 393 9 21.5 9 21.5 9 21.5 9 21.5 9 21.5 1 1 1 1 2 2 2 2 2 2 150 150 200 200 125 125 150 150 175 175 2 2 2 2 3 3 3 3	172 222 272 322 372 422 472 522 572 622 672 0 1 1 2 2 3 3 4 4 5 5 4 6 6 8 10 10 12 14 14 0 100 100 200 200 300 300 400 400 500 500 2 3 3 3 3 3 3 3 3 3 0 85 85 185 185 285 385 385 485 485 0 1 1 1 1 1 1 1 1 1 168 193 218 243 268 293 318 343 368 393 418 9 21.5 9 21.5 9 21.5 9 21.5 9 21.5 9 21.5 9 21.5 9 21.5 9 21.5 9 21.5 9 21.5 9 21.5 9 21.5 9 21.5 9 21.5 9 21.5 200 2 2 2 <td>172 222 272 322 372 422 472 522 572 622 672 722 0 1 1 2 2 3 3 4 4 5 5 6 4 6 6 8 8 10 10 12 12 14 14 16 0 100 100 200 200 300 300 400 400 500 500 600 2 3 3 3 3 3 3 3 3 3 3 0 85 85 185 185 285 285 385 485 485 585 0 1 1 1 1 1 1 1 1 1 1 168 193 218 243 268 293 318 343 368 393 418 443 9 21.5 9 21.5 9 21.5 9 21.5 9 21.5 150 150 175 175 200 200 2 2 2 2 2 2 2 2 2 2<</td> <td>172 222 272 322 372 422 472 522 572 622 672 722 772 0 1 1 2 2 3 3 4 4 5 5 6 6 0 100 100 200 200 300 300 400 400 500 500 600 2 3 3 3 3 3 3 3 3 3 0 100 100 200 200 300 300 400 400 500 500 600 2 3 3 3 3 3 3 3 3 3 3 0 85 85 185 185 285 285 385 485 485 585 0 1 1 1 1 1 1 1 1 1 1 168 193 218 243 268 293 318 343 368 393 418 443 9 21.5 9 21.5 9 21.5 9 21.5 9 21.5 9 2 <</td> <td>172 222 272 322 372 422 472 522 572 622 672 722 772 822 0 1 1 2 2 3 4 4 5 5 6 6 7 4 6 6 8 8 10 10 12 14 14 16 16 18 0 100 100 200 200 300 300 400 400 500 500 600 600 700 2 3<</td> <td>172 222 272 322 372 422 472 522 572 622 672 722 772 822 872 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 0 100 100 200 200 300 300 400 400 500 600 600 700 700 2 3</td>	172 222 272 322 372 422 472 522 572 622 672 722 0 1 1 2 2 3 3 4 4 5 5 6 4 6 6 8 8 10 10 12 12 14 14 16 0 100 100 200 200 300 300 400 400 500 500 600 2 3 3 3 3 3 3 3 3 3 3 0 85 85 185 185 285 285 385 485 485 585 0 1 1 1 1 1 1 1 1 1 1 168 193 218 243 268 293 318 343 368 393 418 443 9 21.5 9 21.5 9 21.5 9 21.5 9 21.5 150 150 175 175 200 200 2 2 2 2 2 2 2 2 2 2<	172 222 272 322 372 422 472 522 572 622 672 722 772 0 1 1 2 2 3 3 4 4 5 5 6 6 0 100 100 200 200 300 300 400 400 500 500 600 2 3 3 3 3 3 3 3 3 3 0 100 100 200 200 300 300 400 400 500 500 600 2 3 3 3 3 3 3 3 3 3 3 0 85 85 185 185 285 285 385 485 485 585 0 1 1 1 1 1 1 1 1 1 1 168 193 218 243 268 293 318 343 368 393 418 443 9 21.5 9 21.5 9 21.5 9 21.5 9 21.5 9 2 <	172 222 272 322 372 422 472 522 572 622 672 722 772 822 0 1 1 2 2 3 4 4 5 5 6 6 7 4 6 6 8 8 10 10 12 14 14 16 16 18 0 100 100 200 200 300 300 400 400 500 500 600 600 700 2 3<	172 222 272 322 372 422 472 522 572 622 672 722 772 822 872 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 0 100 100 200 200 300 300 400 400 500 600 600 700 700 2 3

S2 46 52.5 59

* Dimensions Q, S1 and S2 change depending on the size of the cable track.

Acceleration/ deceleration (G)

0.1

0.3 0.5

Z-axis stroke (mm) deceleration (G)	50~150 (Every 50mm)	
0.1	1.5	
0.3	1.5	
0.5	1.5	

* When both Y and Z axes have the same acceleration/deceleration. When there is significant

The photograph above shows the configuration direction "1" where both the first wiring and second wiring have cable tracks. Please refer to P.3 for other configuration directions.

-	lioke			
Z	-axis stroke (mm)	50	100	150
	50	0	0	0
	100	0	0	0
	150	0	0	0
	200	0	0	0
	250	0	0	0
Ê	300	0	0	0
stroke (mm)	350	0	0	0
l %	400	0	0	0
str	450	0	0	0
Y-axis	500	0	0	0
×	550	0	0	0
	600	0	0	0
	650	0	0	0
	700	0	0	0
	750	0	0	0
	800	0	0	0

Applicable Controllers

Z-axis stroke

(mm)

Controllers are sold separately.

vibration, decrease the speed and acceleration/deceleration as required.

Please refer to each controller page.

Axis configuration	Applicable controllers	Reference page
	PCON-CB/CGB	P-149
	PCON-CYB/PLB/POB	Please contact IAI
Y-axis : SA6C	MCON-C/CG	P-153
Z-axis : SA4R	MCON-LC/LCG	P-155
	MSEL	P-139
	RCON-PC	P-159
	Y-axis : SA6C	PCON-CB/CGB PCON-CYB/PLB/POB Y-axis : SA6C MCON-C/CG Z-axis : SA4R MCON-LC/LCG MSEL

50~150

(Every 50mm)

1

* Operation is possible with the high output setting specification. When connecting to the MCON controller, "HIGH OUTPUT SETTING SPECIFICATION" must be selected. Please contact IAI regarding use with the high-output setting disabled.

Cable Length

Type	Cable code	Length
	1L	1m
Chan doubt was	3L	3m
Standard type	5L	5m
		Specified length (15m max.)

Note 1. All-axis standard cable is used.

Note 2. The length of the second axis cable is from the exit of the cable track. A separate robot cable is included for wiring inside the cable track.

Note 3. The standard lengths are 1m, 3m and 5m, but other lengths can be specified in 1m increments up to 15m.

S	pe	citi	icat	tio	ns	

ltem		Y-axis	Z-axis			
Axis configuratio	n	RCP6-SA6C	RCP6-SA4R			
Stroke (Every 50r	nm)	50~800mm	50~150mm			
Marrison and *	SM	800mm/s	350mm/s			
Max. speed *	SH	800mm/s	610mm/s			
Motor size		42 Stepper motor	35 Stepper motor			
Ball screw	SM	20mm	5mm			
lead	SH	ZUMM	10mm			
Drive system		Ball screw Φ10mm rolled C10	Ball screw Φ8mm rolled C10			
Positioning repe	atability	±0.01mm				
Base material		Aluminum				
Ambient operati temperature, hu		0~40°C, 85% RH or less (non-condensing)				

* The maximum speed may not be reached if the travel distance is short or acceleration is low. Maximum speed may change depending on the stroke. For details, refer to the Maximum Speed by Stroke table on P.137.

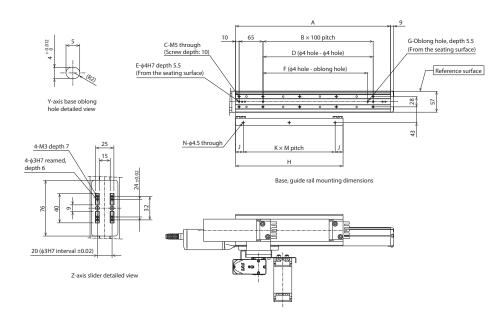
Cable Track

Туре	Model	Reference page	First wiring (Y-axis lateral)	Second wiring (Z-axis lateral)
Without cable track (cable only)	N		0	0
Cable track S size (inner width: 38mm)	СТ		0	0
Cable track M size (inner width: 50mm)	СТМ	See P.136	0	0
Cable track L size (inner width: 63mm)	CTL	See P.130	0	0
Cable track XL size (inner width: 80mm) *	CTXL		0	Cannot be selected *

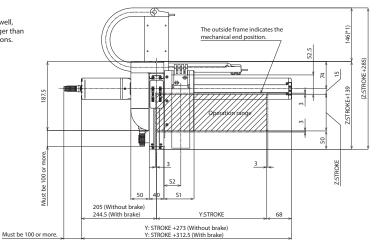
* Only the first wiring can be selected

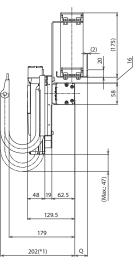
Options * Please check the Options reference pages to confirm each option.

Туре	Option code	Reference page	Y-axis	Z-axis
Brake *	В	See P.134	0	Standard equipment *
Cable exit direction (Top)	CJT	See P.134	0	
Cable exit direction (Right)	CJR	See P.134	0	Cannot be
Cable exit direction (Left)	CJL	See P.134	0	selected
Cable exit direction (Bottom)	CJB	See P.134	0	
Non-motor end specification	NM	See P.135	0	0
Slider section roller specification	SR	See P.135	0	0


* Be sure to specify.

* Brake option for Y-axis increases the length of the motor unit. Please contact IAI for more information.


CAD drawings can be downloaded from our website. (2D CAD WWW.intelligentactuator.com CAD CAD CAD CAD


Note 1. The configuration position in the figure is home.

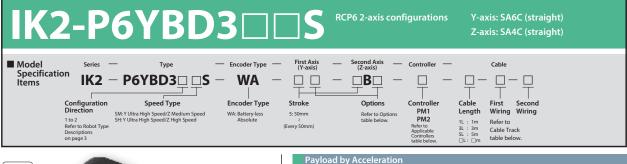
Note 2. The diagram shows the configuration direction "1" where both the first wiring and second wiring have cable tracks. Note 3. For details on the cable track and cable track moving end bracket, refer to P.136.

*1: The cable track may swell, becoming slightly larger than the indicated dimensions.

(*) Notes

The Y-axis cable track guide rail is to be fixed to the Y-axis mounting surface by the customer. Please note that there will be an overhang outside the Y-axis mounting surface. Also, the moving end of the Z-axis cable track is to be fixed to a plate or the like mounted on the Z-axis slider by the customer.

Dimensions by Stroke


Y: Stroke	50	100	150	200	250	300	350	400	450	500	550	600	650	700	750	800
A	172	222	272	322	372	422	472	522	572	622	672	722	772	822	872	922
В	0	1	1	2	2	3	3	4	4	5	5	6	6	7	7	8
C	4	6	6	8	8	10	10	12	12	14	14	16	16	18	18	20
D	0	100	100	200	200	300	300	400	400	500	500	600	600	700	700	800
E	2	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
F	0	85	85	185	185	285	285	385	385	485	485	585	585	685	685	785
G	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Н	168	193	218	243	268	293	318	343	368	393	418	443	468	493	518	543
J	9	21.5	9	21.5	9	21.5	9	21.5	9	21.5	9	21.5	9	21.5	34	9
K	1	1	1	1	2	2	2	2	2	2	2	2	3	3	3	3
М	150	150	200	200	125	125	150	150	175	175	200	200	150	150	150	175
N	2	2	2	2	3	3	3	3	3	3	3	3	4	4	4	4
Cable track size	CT	CTM	CTL	CTXL												
Q	23	35	50	68												
C 4		0.4														

 S1
 82
 94
 107

 S2
 46
 52.5
 59

 * Dimensions Q, S1 and S2 change depending on the size of the cable track.

Z-axis stroke (mm) deceleration (G)	50~150 (Every 50mm)	
0.1	1.5	
0.3	1.5	
0.5	1.5	

Z-axis stroke (mm) deceleration (G)	50~150 (Every 50mm)
0.1	1
0.3	1
0.5	1

* When both Y and Z axes have the same acceleration/deceleration. When there is significant vibration, decrease the speed and acceleration/deceleration as required.

The photograph above shows the configuration direction "1" where both the first wiring and second wiring have cable tracks. Please refer to P.3 for other configuration directions.

Stroke

Z	-axis stroke (mm)	50	100	150
	50	0	0	0
	100	0	0	0
	150	0	0	0
	200	0	0	0
	250	0	0	0
Ê	300	0	0	0
stroke (mm)	350	0	0	0
l %	400	0	0	0
str	450	0	0	0
Y-axis	500	0	0	0
×	550	0	0	0
	600	0	0	0
	650	0	0	0
	700	0	0	0
	750	0	0	0
	800	0	0	0

Applicable Controllers

Controllers are sold separately. Please refer to each controller page.

Type	Axis configuration	Applicable controllers	Reference page
		PCON-CB/CGB	P-149
		PCON-CYB/PLB/POB	Please contact IAI
PM1	Y-axis : SA6C	MCON-C/CG	P-153
	Z-axis : SA4C	MCON-LC/LCG	P-155
		MSEL	P-139
PM2		RCON-PC	P-159

* Operation is possible with the high output setting specification. When connecting to the MCON controller, "HIGH OUTPUT SETTING SPECIFICATION" must be selected. Please contact IAI regarding use with the high-output setting disabled.

Cable Length

Туре	Cable code	Length
	1L	1m
Chan doubt was	3L	3m
Standard type	5L	5m
		Specified length (15m max.)

Note 1. All-axis standard cable is used.

Note 2. The length of the second axis cable is from the exit of the cable track. A separate robot cable is included for wiring inside the cable track.

Note 3. The standard lengths are 1m, 3m and 5m, but other lengths can be specified in 1m increments up to 15m.

Specifications

ltem		Y-axis	Z-axis	
Axis configuratio	n	RCP6-SA6C	RCP6-SA4C	
Stroke (Every 50r	nm)	50~800mm	50~150mm	
Max. speed *	SM	800mm/s	350mm/s	
Max. speed "	SH	800mm/s	610mm/s	
Motor size		42 Stepper motor	35 Stepper motor	
Ball screw	SM	20mm	5mm	
lead	SH	ZUMM	10mm	
Drive system		Ball screw Φ10mm rolled C10	Ball screw Φ8mm rolled C10	
Positioning repea	atability	±0.01mm		
Base material		Aluminum		
Ambient operatii temperature, hui		0~40°C, 85% RH or less (non-condensing)		

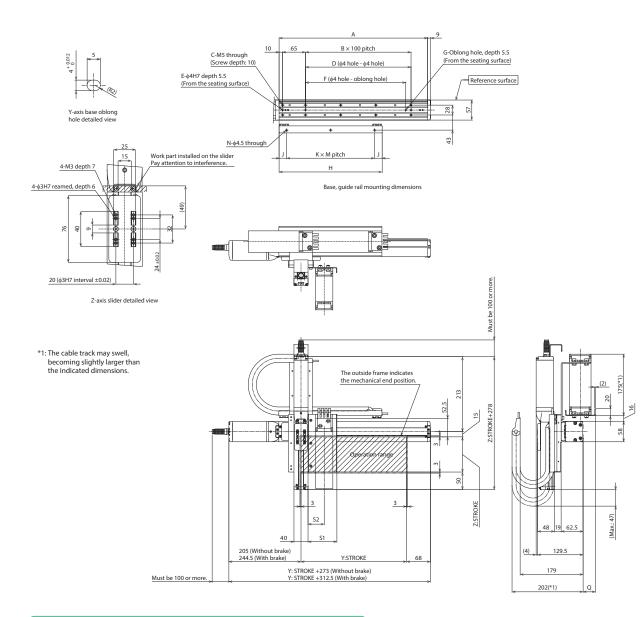
* The maximum speed may not be reached if the travel distance is short or acceleration is low. Maximum speed may change depending on the stroke. For details, refer to the Maximum Speed by Stroke table on P.137.

Cable Track

Туре	Model	Reference page	First wiring (Y-axis lateral)	Second wiring (Z-axis lateral)
Without cable track (cable only)	N		0	0
Cable track S size (inner width: 38mm)	СТ		0	0
Cable track M size (inner width: 50mm)	СТМ	See P.136	0	0
Cable track L size (inner width: 63mm)	CTL	See P.136	0	0
Cable track XL size (inner width: 80mm) *	CTXL		0	Cannot be selected *

* Only the first wiring can be selected

Options * Please check the Options reference pages to confirm each option.


Туре	Option code	Reference page	Y-axis	Z-axis
Brake *	В	See P.134	0	Standard equipment *
Cable exit direction (Top)	CJT	See P.134	0	
Cable exit direction (Right)	CJR	See P.134	0	Cannot be
Cable exit direction (Left)	CJL	See P.134	0	selected
Cable exit direction (Bottom)	CJB	See P.134	0	
Non-motor end specification	NM	See P.135	0	0
Slider section roller specification	SR	See P.135	0	0

* Be sure to specify.

* Brake option for Y-axis increases the length of the motor unit. Please contact IAI for more information.

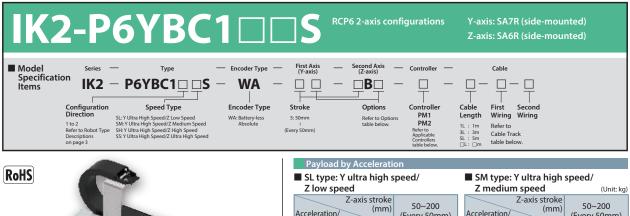
Note 1. The configuration position in the figure is home.

Note 2. The diagram shows the configuration direction "1" where both the first wiring and second wiring have cable tracks. Note 3. For details on the cable track and cable track moving end bracket, refer to P.136.

(*) Notes

The Y-axis cable track guide rail is to be fixed to the Y-axis mounting surface by the customer. Please note that there will be an overhang outside the Y-axis mounting surface. Also, the moving end of the Z-axis cable track is to be fixed to a plate or the like mounted on the Z-axis slider by the customer.

Dimensions by Stroke


Y: Stroke	50	100	150	200	250	300	350	400	450	500	550	600	650	700	750	800
A	172	222	272	322	372	422	472	522	572	622	672	722	772	822	872	922
В	0	1	1	2	2	3	3	4	4	5	5	6	6	7	7	8
C	4	6	6	8	8	10	10	12	12	14	14	16	16	18	18	20
D	0	100	100	200	200	300	300	400	400	500	500	600	600	700	700	800
E	2	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
F	0	85	85	185	185	285	285	385	385	485	485	585	585	685	685	785
G	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Н	168	193	218	243	268	293	318	343	368	393	418	443	468	493	518	543
J	9	21.5	9	21.5	9	21.5	9	21.5	9	21.5	9	21.5	9	21.5	34	9
K	1	1	1	1	2	2	2	2	2	2	2	2	3	3	3	3
Μ	150	150	200	200	125	125	150	150	175	175	200	200	150	150	150	175
N	2	2	2	2	3	3	3	3	3	3	3	3	4	4	4	4
Cable track size	CT	CTM	CTL	CTXL												
Q	23	35	50	68												

 S1
 82
 94
 107

 S2
 46
 52.5
 59

* Dimensions Q, S1 and S2 change depending on the size of the cable track.

deceleration (G)		Acceleration/ deceleration (G)	50~200 (Every 50mm)
0.1	3	0.1	2
0.3	3	0.3	2
0.5	2.5	0.5	2
SH type: Y ultra high s	speea/	SS type: Y ultra high s	speea/
Z high speed		Z ultra high speed	
Z high speed Z-axis stroke (mm) deceleration (G)	50~200 (Every 50mm)	Z ultra high speed Z-axis stroke Acceleration/ deceleration (G)	50~200 (Every 50mm)
Z-axis stroke Acceleration/ (mm)		Z-axis stroke Acceleration/ (mm)	
Z-axis stroke Acceleration/ deceleration (G)		Z-axis stroke Acceleration/ (mm) deceleration (G)	(Every 50mm)

* When both Y and Z axes have the same acceleration/deceleration. When there is significant vibration, decrease the speed and acceleration/deceleration as required.

The photograph above shows the configuration direction "1" where both the first wiring and second wiring have cable tracks. Please refer to P.3 for other configuration directions.

Stroke

Z	-axis stroke (mm)	50	100	150	200
	50	0	0	0	0
	100	0	0	0	0
	150	0	0	0	0
	200	0	0	0	0
	250	0	0	0	0
Ê	300	0	0	0	0
stroke (mm)	350	0	0	0	0
oke	400	0	0	0	0
sti	450	0	0	0	0
Y-axis	500	0	0	0	0
×	550	0	0	0	0
	600	0	0	0	0
	650	0	0	0	0
	700	0	0	0	0
	750	0	0	0	0
	800	0	0	0	0

Applicable Controllers

Controllers are sold separately.

Please refer to each controller page.

Axis configuration	Applicable controllers	Reference page
	PCON-CB/CGB	P-149
	PCON-CYB/PLB/POB	Please contact IAI
Y-axis : SA7R	MCON-C/CG	P-153
Z-axis : SA6R	MCON-LC/LCG	P-155
	MSEL	P-139
	RCON-PC	P-159
	Y-axis : SA7R	Y-axis : SA7R MCON-C/CG Z-axis : SA6R MCON-C/LCG MSEL

* Operation is possible with the high output setting specification. When connecting to the MCON controller, "HIGH OUTPUT SETTING SPECIFICATION" must be selected. Please contact IAI regarding use with the high-output setting disabled.

Cable Length

Туре	Cable code	Length
	1L	1m
Standard tuna	3L	3m
Standard type	5L	5m
		Specified length (15m max.)

Note 1. All-axis standard cable is used.

Note 2. The length of the second axis cable is from the exit of the cable track. A separate robot cable is included for wiring inside the cable track.

Note 3. The standard lengths are 1m, 3m and 5m, but other lengths can be specified in 1m increments up to 15m.

Specificatio	ns			
ltem		Y-axis	Z-axis	
Axis configuratio	n	RCP6-SA7R	RCP6-SA6R	
Stroke (Every 50n	nm)	50~800mm	50~200mm	
	SL		170mm/s	
Max. speed *	SM	640mm/s	340mm/s	
Max. speeu	SH	0401111/3	680mm/s	
	SS		800mm/s	
Motor size		56 Stepper motor	42 Stepper motor	
	SL		3mm	
Ball screw	SM	24mm	бmm	
lead	SH	24000	12mm	
	SS		20mm	
Drive system		Ball screw Φ12mm rolled C10	Ball screw Φ10mm rolled C10	
Positioning repea	atability	±0.01mm		
Base material		Aluminum		
Ambient operatir temperature, hur		0~40°C, 85% RH or less (non-condensing)		

* The maximum speed may not be reached if the travel distance is short or acceleration is low. Maximum speed may change depending on the stroke. For details, refer to the Maximum Speed by Stroke table on P.137.

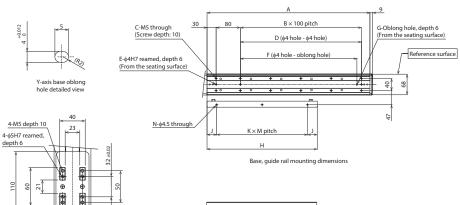
Cable Track

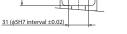
Туре	Model	Reference page	First wiring (Y-axis lateral)	Second wiring (Z-axis lateral)
Without cable track (cable only)	N		0	0
Cable track S size (inner width: 38mm)	СТ		0	0
Cable track M size (inner width: 50mm)	СТМ	See P.136	0	0
Cable track L size (inner width: 63mm)	CTL	See P.150	0	0
ble track XL size (inner width: 80mm) * CTXL		0	Cannot be selected *	

* Only the first wiring can be selected

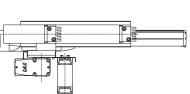
Options * Please check the Options reference pages to confirm each option.							
Option code	Reference page	Y-axis	Z-axis				
В	See P.134	0	Standard equipment *				
CJO	See P.134	0	Cannot be selected				
NM	See P.135	0	0				
SR	See P.135	0	0				
	Option code B CJO NM	Option code Reference page B See P.134 CJO See P.134 NM See P.135	Option code Reference page Y-axis B See P.134 O CJO See P.134 O NM See P.135 O				

* Be sure to specify.

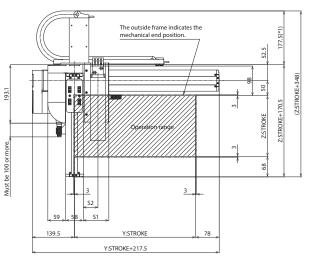

+0.012

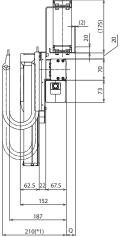

110

CAD drawings can be downloaded from our website. 3D CAD 2D CAD www.intelligentactuator.com


Note 1. The configuration position in the figure is home.

Note 2. The diagram shows the configuration direction "1" where both the first wiring and second wiring have cable tracks. Note 3. For details on the cable track and cable track moving end bracket, refer to P.136.



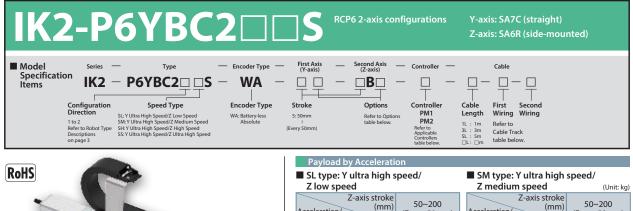


Z-axis slider detailed view

*1: The cable track may swell, becoming slightly larger than the indicated dimensions.

(*) Notes

The Y-axis cable track guide rail is to be fixed to the Y-axis mounting surface by the customer. Please note that there will be an overhang outside the Y-axis mounting surface. Also, the moving end of the Z-axis cable track is to be fixed to a plate or the like mounted on the Z-axis slider by the customer.


Dimensions by Stroke

Y: Stroke	50	100	150	200	250	300	350	400	450	500	550	600	650	700	750	800
A	188	238	288	338	388	438	488	538	588	638	688	738	788	838	888	938
В	0	1	1	2	2	3	3	4	4	5	5	6	6	7	7	8
С	4	6	6	8	8	10	10	12	12	14	14	16	16	18	18	20
D	0	0	100	200	200	300	300	400	400	500	500	600	600	700	700	800
E	2	2	3	3	3	3	3	3	3	3	3	3	3	3	3	3
F	0	85	85	185	185	285	285	385	385	485	485	585	585	685	685	785
G	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Н	189	214	239	264	289	314	339	364	389	414	439	464	489	514	539	564
J	19.5	32	19.5	32	19.5	32	19.5	32	19.5	32	19.5	32	19.5	32	44.5	19.5
К	1	1	1	1	1	1	2	2	2	2	2	2	3	3	3	3
М	150	150	200	200	250	250	150	150	175	175	200	200	150	150	150	175
N	2	2	2	2	2	2	3	3	3	3	3	3	4	4	4	4
Cable track size	CT	CTM	CTL	CTXL												
Q	18	30	45	63												

S1	84.5	96.5	109.5	-
S2	48.5	55	61.5	-

* Dimensions Q, S1 and S2 change depending on the size of the cable track.

SL type: Y ultra high s	peed/	SM type: Y ultra high speed/			
Z low speed		Z medium speed	(Unit: kg)		
Z-axis stroke (mm) deceleration (G)	50~200 (Every 50mm)	Z-axis stroke (mm) deceleration (G)	50~200 (Every 50mm)		
0.1	3	0.1	2		
0.3	3	0.3	2		
0.5	2.5	0.5	2		
SH type: Y ultra high	speed/	SS type: Y ultra high speed/			
Z high speed		Z ultra high speed			
Z-axis stroke (mm) deceleration (G)	50~200 (Every 50mm)	Z-axis stroke (mm) deceleration (G)	50~200 (Every 50mm)		
0.1	1	0.1	0.5		
			0.5		
0.3	1	0.3	0.5		

* When both Y and Z axes have the same acceleration/deceleration. When there is significant vibration, decrease the speed and acceleration/deceleration as required.

The photograph above shows the configuration direction "1" where both the first wiring and second wiring have cable tracks. Please refer to P.3 for other configuration directions.

Stroko	

5	Stroke								
Z	-axis stroke (mm)	50	100	150	200				
	50	0	0	0	0				
	100	0	0	0	0				
	150	0	0	0	0				
	200	0	0	0	0				
	250	0	0	0	0				
Ê	300	0	0	0	0				
stroke (mm)	350	0	0	0	0				
- Ne	400	0	0	0	0				
str	450	0	0	0	0				
Y-axis	500	0	0	0	0				
≻́	550	0	0	0	0				
	600	0	0	0	0				
	650	0	0	0	0				
	700	0	0	0	0				
	750	0	0	0	0				
	800	0	0	0	0				

Applicable Controllers

Controllers are sold separately.

Please refer to each controller page.

Туре	Axis configuration	Applicable controllers	Reference page
		PCON-CB/CGB	P-149
		PCON-CYB/PLB/POB	Please contact IAI
PM1	Y-axis : SA7C	MCON-C/CG	P-153
	Z-axis : SA6R	MCON-LC/LCG	P-155
		MSEL	P-139
PM2		RCON-PC	P-159

* Operation is possible with the high output setting specification. When connecting to the MCON controller, "HIGH OUTPUT SETTING SPECIFICATION" must be selected. Please contact IAI regarding use with the high-output setting disabled.

Cable Length

Cable code	Length
1L	1m
3L	3m
5L	5m
	Specified length (15m max.)
	Cable code 1L 3L 5L L

Note 1. All-axis standard cable is used.

Note 2. The length of the second axis cable is from the exit of the cable track. A separate robot cable is included for wiring inside the cable track.

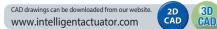
Note 3. The standard lengths are 1m, 3m and 5m, but other lengths can be specified in 1m increments up to 15m.

Specificatio	Specifications						
ltem		Y-axis	Z-axis				
Axis configuratio	n	RCP6-SA7C	RCP6-SA6R				
Stroke (Every 50n	nm)	50~800mm	50~200mm				
	SL		170mm/s				
May speed *	SM	640mm/s	340mm/s				
Max. speed *	SH	0401111/5	680mm/s				
	SS		800mm/s				
Motor size		56 Stepper motor	42 Stepper motor				
	SL		3mm				
Ball screw	SM	24mm	6mm				
lead	SH	24000	12mm				
	SS		20mm				
Drive system		Ball screw Φ12mm rolled C10	Ball screw Φ10mm rolled C10				
Positioning repea	atability	±0.01mm					
Base material		Aluminum					
Ambient operatir temperature, hur		0~40°C, 85% RH or less (non-condensing)					

* The maximum speed may not be reached if the travel distance is short or acceleration is low. Maximum speed may change depending on the stroke. For details, refer to the Maximum Speed by Stroke table on P.137.

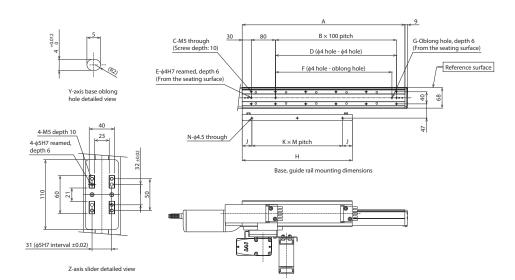
Cable Track

Туре	Model	Reference page	First wiring (Y-axis lateral)	Second wiring (Z-axis lateral)
Without cable track (cable only)	N		0	0
Cable track S size (inner width: 38mm)	СТ		0	0
Cable track M size (inner width: 50mm)	СТМ	See P.136	0	0
Cable track L size (inner width: 63mm)	CTL	See P.136	0	0
Cable track XL size (inner width: 80mm) *	m) * CTXL		0	Cannot be selected *

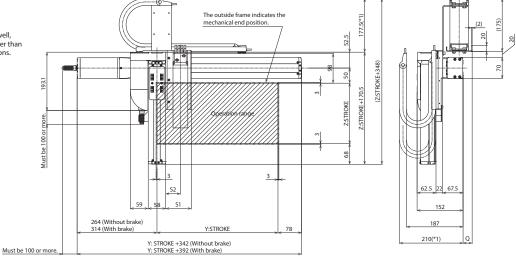

* Only the first wiring can be selected

Options * Please check the Options reference pages to confirm each option.

Туре	Option code	Reference page	Y-axis	Z-axis
Brake *	В	See P.134	0	Standard equipment *
Cable exit direction (Top)	CJT	See P.134	0	
Cable exit direction (Right)	CJR	See P.134	0	Cannot be
Cable exit direction (Left)	CJL	See P.134	0	selected
Cable exit direction (Bottom)	CJB	See P.134	0	
Non-motor end specification	NM	See P.135	0	0
Slider section roller specification	SR	See P.135	0	0


* Be sure to specify.

* Brake option for Y-axis increases the length of the motor unit. Please contact IAI for more information.



Note 1. The configuration position in the figure is home.

Note 2. The diagram shows the configuration direction "1" where both the first wiring and second wiring have cable tracks. Note 3. For details on the cable track and cable track moving end bracket, refer to P.136.

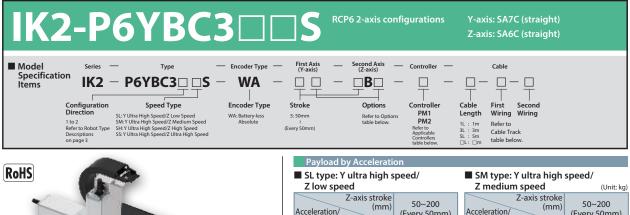
*1: The cable track may swell, becoming slightly larger than the indicated dimensions.

(*) Notes

The Y-axis cable track guide rail is to be fixed to the Y-axis mounting surface by the customer. Please note that there will be an overhang outside the Y-axis mounting surface. Also, the moving end of the Z-axis cable track is to be fixed to a plate or the like mounted on the Z-axis slider by the customer.

Dimensions by Stroke

Y: Stroke	50	100	150	200	250	300	350	400	450	500	550	600	650	700	750	800
A	188	238	288	338	388	438	488	538	588	638	688	738	788	838	888	938
В	0	1	1	2	2	3	3	4	4	5	5	6	6	7	7	8
C	4	6	6	8	8	10	10	12	12	14	14	16	16	18	18	20
D	0	0	100	200	200	300	300	400	400	500	500	600	600	700	700	800
E	2	2	3	3	3	3	3	3	3	3	3	3	3	3	3	3
F	0	85	85	185	185	285	285	385	385	485	485	585	585	685	685	785
G	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Н	189	214	239	264	289	314	339	364	389	414	439	464	489	514	539	564
J	19.5	32	19.5	32	19.5	32	19.5	32	19.5	32	19.5	32	19.5	32	44.5	19.5
К	1	1	1	1	1	1	2	2	2	2	2	2	3	3	3	3
М	150	150	200	200	250	250	150	150	175	175	200	200	150	150	150	175
N	2	2	2	2	2	2	3	3	3	3	3	3	4	4	4	4
Cable track size	CT	CTM	CTL	CTXL												
Q	18	30	45	63												


 Q
 18
 30
 45
 65

 S1
 84.5
 96.5
 109.5

 S2
 48.5
 55
 61.5

* Dimensions Q, S1 and S2 change depending on the size of the cable track.

Z-axis stroke Acceleration/ deceleration (G)	50~200 (Every 50mm)	Z-axis stroke Acceleration/ deceleration (G)	50~200 (Every 50mm)
0.1	3	0.1	2
0.3	3	0.3	2
0.5	2.5	0.5	2
SH type: Y ultra high Z high speed	speed/	SS type: Y ultra high s Z ultra high speed	speed/
	50~200 (Every 50mm)		-
Z high speed Z-axis stroke Acceleration/ (mm)	50~200	Z ultra high speed Z-axis stroke Acceleration/	50~200
Z high speed Z-axis stroke Acceleration/ deceleration (G)	50~200	Z ultra high speed Z-axis stroke Acceleration/ deceleration (G)	50~200 (Every 50mm)

* When both Y and Z axes have the same acceleration/deceleration. When there is significant vibration, decrease the speed and acceleration/deceleration as required.

The photograph above shows the configuration direction "1" where both the first wiring and second wiring have cable tracks. Please refer to P.3 for other configuration directions.

Stroke	

Z·	-axis stroke (mm)	50	100	150	200
	50	0	0	0	0
	100	0	0	0	0
	150	0	0	0	0
	200	0	0	0	0
	250	0	0	0	0
Ê	300	0	0	0	0
stroke (mm)	350	0	0	0	0
N N	400	0	0	0	0
str	450	0	0	0	0
Y-axis	500	0	0	0	0
×	550	0	0	0	0
	600	0	0	0	0
	650	0	0	0	0
	700	0	0	0	0
	750	0	0	0	0
	800	0	0	0	0

Applicable Controllers

Controllers are sold separately.

Please refer to each controller page.

Type	Axis configuration	Applicable controllers	Reference page
		PCON-CB/CGB	P-149
		PCON-CYB/PLB/POB	Please contact IAI
PM1	Y-axis : SA7C	MCON-C/CG	P-153
	Z-axis : SA6C	MCON-LC/LCG	P-155
		MSEL	P-139
PM2		RCON-PC	P-159

* Operation is possible with the high output setting specification. When connecting to the MCON controller, "HIGH OUTPUT SETTING SPECIFICATION" must be selected. Please contact IAI regarding use with the high-output setting disabled.

Cable Length

Туре	Cable code	Length
	1L	1m
Chan doubt was	3L	3m
Standard type	5L	5m
		Specified length (15m max.)

Note 1. All-axis standard cable is used.

Note 2. The length of the second axis cable is from the exit of the cable track. A separate robot cable is included for wiring inside the cable track.

Note 3. The standard lengths are 1m, 3m and 5m, but other lengths can be specified in 1m increments up to 15m.

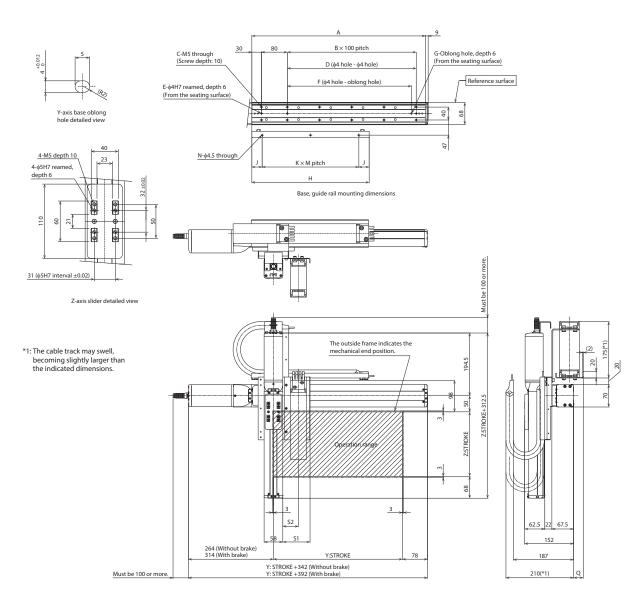
Specificatio	ns		
ltem		Y-axis	Z-axis
Axis configuratio	n	RCP6-SA7C	RCP6-SA6C
Stroke (Every 50n	nm)	50~800mm	50~200mm
	SL		170mm/s
Max. speed *	SM	640mm/s	340mm/s
Max. speed	SH	0401111/5	680mm/s
	SS		800mm/s
Motor size		56 Stepper motor	42 Stepper motor
	SL		3mm
Ball screw	SM	24mm	6mm
lead	SH	24000	12mm
	SS		20mm
Drive system		Ball screw Ф12mm rolled C10	Ball screw Φ10mm rolled C10
Positioning repea	tability	±0.01mm	
Base material		Aluminum	
Ambient operatir temperature, hur		0~40°C, 85% RH or less (non	i-condensing)

* The maximum speed may not be reached if the travel distance is short or acceleration is low. Maximum speed may change depending on the stroke. For details, refer to the Maximum Speed by Stroke table on P.137.

Cable Track

Туре	Model	Reference page	First wiring (Y-axis lateral)	Second wiring (Z-axis lateral)
Without cable track (cable only)	N		0	0
Cable track S size (inner width: 38mm)	СТ		0	0
Cable track M size (inner width: 50mm)	СТМ	See P.136	0	0
Cable track L size (inner width: 63mm)	CTL	See P.150	0	0
Cable track XL size (inner width: 80mm) *	CTXL		0	Cannot be selected *

* Only the first wiring can be selected


Options * Please check th	e Options referer	nce pages to c	onfirm each	option.
Туре	Option code	Reference page	Y-axis	Z-axis
Brake *	В	See P.134	0	Standard equipment *
Cable exit direction (Top)	CJT	See P.134	0	
Cable exit direction (Right)	CJR	See P.134	0	Cannot be
Cable exit direction (Left)	CJL	See P.134	0	selected
Cable exit direction (Bottom)	CJB	See P.134	0	
Non-motor end specification	NM	See P.135	0	0
Slider section roller specification	SR	See P.135	0	0

* Be sure to specify.

* Brake option for Y-axis increases the length of the motor unit. Please contact IAI for more information.

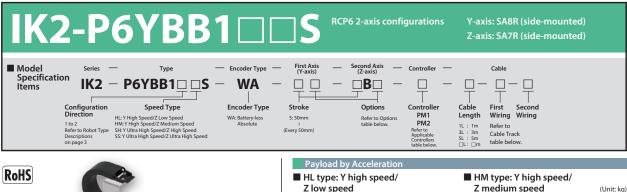
Note 1. The configuration position in the figure is home.

Note 2. The diagram shows the configuration direction "1" where both the first wiring and second wiring have cable tracks. Note 3. For details on the cable track and cable track moving end bracket, refer to P.136.

(*) Notes

The Y-axis cable track guide rail is to be fixed to the Y-axis mounting surface by the customer. Please note that there will be an overhang outside the Y-axis mounting surface. Also, the moving end of the Z-axis cable track is to be fixed to a plate or the like mounted on the Z-axis slider by the customer.

Dimensions by Stroke


Y: Stroke	50	100	150	200	250	300	350	400	450	500	550	600	650	700	750	800
A	188	238	288	338	388	438	488	538	588	638	688	738	788	838	888	938
В	0	1	1	2	2	3	3	4	4	5	5	6	6	7	7	8
С	4	6	6	8	8	10	10	12	12	14	14	16	16	18	18	20
D	0	0	100	200	200	300	300	400	400	500	500	600	600	700	700	800
E	2	2	3	3	3	3	3	3	3	3	3	3	3	3	3	3
F	0	85	85	185	185	285	285	385	385	485	485	585	585	685	685	785
G	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Н	189	214	239	264	289	314	339	364	389	414	439	464	489	514	539	564
J	19.5	32	19.5	32	19.5	32	19.5	32	19.5	32	19.5	32	19.5	32	44.5	19.5
К	1	1	1	1	1	1	2	2	2	2	2	2	3	3	3	3
M	150	150	200	200	250	250	150	150	175	175	200	200	150	150	150	175
N	2	2	2	2	2	2	3	3	3	3	3	3	4	4	4	4
					1											
Cable track size	CT	CTM	CTL	CTXL												
Q	18	30	45	63												

 S1
 84.5
 96.5
 109.5

 S2
 48.5
 55
 61.5

* Dimensions Q, S1 and S2 change depending on the size of the cable track.

HL type: Y high speed Z low speed	/	HM type: Y high spee Z medium speed	d/ (Unit: kg)
Z-axis stroke Acceleration/ (mm) deceleration (G)	50~300 (Every 50mm)	Z-axis stroke (mm) deceleration (G)	50~300 (Every 50mm)
0.1	9	0.1	4.5
0.3	8	0.3	4
0.5	7	0.5	3.5
0.5 SH type: Y ultra high s Z high speed		0.5 ■ SS type: Y ultra high s Z ultra high speed	
SH type: Y ultra high		SS type: Y ultra high s	peed/
SH type: Y ultra high s Z high speed Z-axis stroke (mm)	speed/	SS type: Y ultra high s Z ultra high speed Z-axis stroke Acceleration/	50~200 250~300 (Every (Every
SH type: Y ultra high s Z high speed Z-axis stroke Acceleration/ deceleration (G)	50~300 (Every 50mm)	SS type: Y ultra high speed Z ultra high speed Z-axis stroke Acceleration/ deceleration (G)	50~200 250~300 (Every (Every 50mm) 50mm)

The photograph above shows the configuration direction "1" where both the first wiring and second wiring have cable tracks. Please refer to P.3 for other configuration directions.

leiau	peeu anu acci	, decrease the sp	vibration		15.	uration direction	r other config	P.3 TO
licabl	Арр							
	Contro	300	250	200	150	100	50	nm)
refer t	Please	0	0	0	0	0	0	
]	0	0	0	0	0	0	
Axis o	Type	0	0	0	0	0	0	
		0	0	0	0	0	0	
Y-ax	1	0	0	0	0	0	0	
	1	0	0	0	0	0	0	
	1	0	0	0	0	0	0	
	PM1	0	0	0	0	0	0	
Z-ax	1	0	0	0	0	0	0	
	1	0	0	0	0	0	0	
	1	0	0	0	0	0	0	
V		0	0	0	0	0	0	
Y-ax	PM2	0	0	0	0	0	0	
Z-ax		0	0	0	0	0	0	
on is p	* Operati	0	0	0	0	0	0	

0

le Controllers

are sold separately.

to each controller page.

Type	Axis configuration	Applicable controllers	Reference page	
	Y-axis : SA8R PCON-CFB/CGFB		P-149	
	T-dXIS : SAON	MSEL-PCF/PGF	P-139	
		PCON-CB/CGB	P-149	
PM1	PCON-CYB/PLB/ Z-axis : SA7R MCON-C/CG	PCON-CYB/PLB/POB	Please contact IAI	
		MCON-C/CG	P-153	
		MCON-LC/LCG	F=135	
		MSEL	P-139	
PM2	Y-axis : SA8R	RCON-PCF	P-159	
PIVIZ	Z-axis : SA7R	RCON-PC	P-159	

Operation is possible with the high output setting specification. When connecting to the MCON controller, "HIGH OUTPUT SETTING SPECIFICATION" must be selected. Please contact IAI regarding use with the high-output setting disabled.

Cable Length

Stroke

Z-axis stroke (m

(mm

Y-axis stroke

450 500 550

600 650 700

800 850

900

950

1000 1050 1100

Cubic Lenge	•••	
Туре	Cable code	Length
	1L	1m
Standard type	3L	3m
Stanuaru type	5L	5m
		Specified length (15m max.)

0

Õ

0

0

Note 1. All-axis standard cable is used. Note 2. The length of the second axis cable is from the exit of the cable track.

A separate robot cable is included for wiring inside the cable track. Note 3. The standard lengths are 1m, 3m and 5m, but other lengths can be specified

in 1m increments up to 15m.

Specificatio	ns				
ltem		Y-axis	Z-axis		
Axis configuration	n	RCP6-SA8R	RCP6-SA7R		
Stroke (Every 50n	าm)	50~1100mm	50~300mm		
	HL	400mm/s	105mm/s		
Max. speed *	HM	40011111/5	280mm/s		
Max. speed	SH	650mm/s	560mm/s		
SS		65011111/5	640mm/s		
Motor size		56 High thrust stepper motor	56 Stepper motor		
	HL	20mm	4mm		
Ball screw	HM	2011111	8mm		
lead	SH	30mm	16mm		
	SS	3011111	24mm		
Drive system		Ball screw @16mm rolled C10	Ball screw Ø12mm rolled C10		
Positioning repea	tability	±0.01mm			
Base material		Aluminum			
Ambient operatir temperature, hur		0~40°C, 85% RH or less (non-condensing)			

* The maximum speed may not be reached if the travel distance is short or acceleration is low. Maximum speed may change depending on the stroke. For details, refer to the Maximum Speed by Stroke table on P.137.

Cable Track

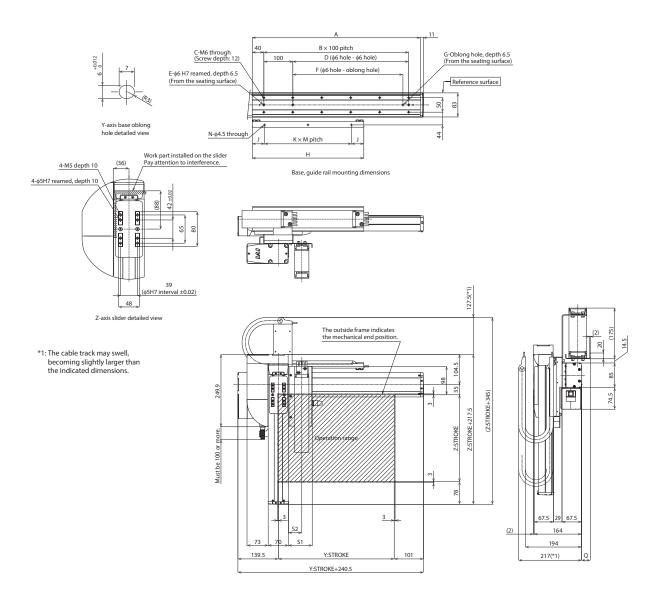
0

0000

Туре	Model	Reference page	First wiring (Y-axis lateral)	Second wiring (Z-axis lateral)
Without cable track (cable only)	N		0	0
Cable track S size (inner width: 38mm)	СТ		0	0
Cable track M size (inner width: 50mm)	СТМ	See P.136	0	0
Cable track L size (inner width: 63mm)	CTL	See P.150	0	0
Cable track XL size (inner width: 80mm) *	CTXL		0	Cannot be selected *

* Only the first wiring can be selected

Options * Please check the Options reference pages to confirm each option.


Туре	Option code	Reference page	Y-axis	Z-axis
Brake	В	See P.134	0	Standard equipment *
Cable exit direction (Outside)	CIO	See P.134	0	Cannot be selected
Non-motor end specification	NM	See P.135	0	0
Slider section roller specification	SR	See P.135	0	0

* Be sure to specify.

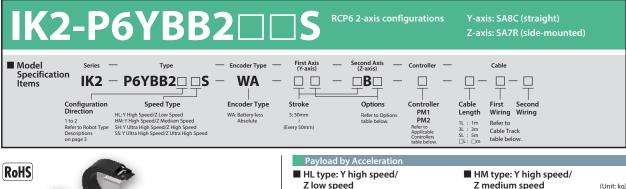
CAD drawings can be downloaded from our website. (2D CAD WWW.intelligentactuator.com CAD CAD CAD CAD

Note 1. The configuration position in the figure is home.

Note 2. The diagram shows the configuration direction "1" where both the first wiring and second wiring have cable tracks. Note 3. For details on the cable track and cable track moving end bracket, refer to P.136.

(*) Notes

The Y-axis cable track guide rail is to be fixed to the Y-axis mounting surface by the customer. Please note that there will be an overhang outside the Y-axis mounting surface. Also, the moving end of the Z-axis cable track is to be fixed to a plate or the like mounted on the Z-axis slider by the customer.


Dimensions by Stroke

Y: Stroke	50	100	150	200	250	300	350	400	450	500	550	600	650	700	750	800	850	900	950	1000	1050	1100
A	230	280	330	380	430	480	530	580	630	680	730	780	830	880	930	980	1030	1080	1130	1180	1230	1280
В	1	2	2	3	3	4	4	5	5	6	6	7	7	8	8	9	9	10	10	11	11	12
C	4	6	6	8	8	10	10	12	12	14	14	16	16	18	18	20	20	22	22	24	24	26
D	0	100	100	200	200	300	300	400	400	500	500	600	600	700	700	800	800	900	900	1000	1000	1100
E	2	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
F	0	0	80	180	180	280	280	380	380	480	480	580	580	680	680	780	780	880	880	980	980	1080
G	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Н	210	235	260	285	310	335	360	385	410	435	460	485	510	535	560	585	610	635	660	685	710	735
J	30	42.5	30	42.5	30	42.5	30	42.5	30	42.5	30	42.5	30	42.5	55	30	42.5	55	30	42.5	55	17.5
К	1	1	1	1	2	2	2	2	2	2	2	2	3	3	3	3	3	3	3	3	3	4
М	150	150	200	200	125	125	150	150	175	175	200	200	150	150	150	175	175	175	200	200	200	175
N	2	2	2	2	3	3	3	3	3	3	3	3	4	4	4	4	4	4	4	4	4	5
					1																	
Cable track size	CT	CTM	CTL	CTXL																		
Q	18	30	45	63																		

Q 18 50 15 1 S1 82 94 107 -S2 46 52.5 59 -

* Dimensions Q, S1 and S2 change depending on the size of the cable track.

HL type: Y high speed Z low speed	/	HM type: Y high spee Z medium speed	d/ (Unit: kg	
Z-axis stroke Acceleration/ deceleration (G)	50~300 (Every 50mm)	Z-axis stroke Acceleration/ deceleration (G)	50~300 (Every 50mm)	
0.1	9	0.1	4.5	
0.3	8	0.3	4	
0.5	7	0.5	3.5	
SH type: Y ultra high s Z high speed	speed/	SS type: Y ultra high s Z ultra high speed	peed/	
Z-axis stroke Acceleration/ deceleration (G)	50~300 (Every 50mm)	Z-axis stroke (mm) deceleration/ G	50~200 250~300 (Every (Every 50mm) 50mm)	
0.1	3	0.1	1.5	
0.3	2	0.3	1.5	

The photograph above shows the configuration direction "1" where both the first wiring and second wiring have cable tracks. Please refer to P.3 for other configuration directions.

* When both Y and Z axes have the same acceleration/deceleration. When there is significant vibration, decrease the speed and acceleration/deceleration as required.

S	troke						
Z-ax	is stroke (mm)	50	100	150	200	250	300
	50	0	0	0	0	0	0
	100	0	0	0	0	0	0
	150	0	0	0	0	0	0
	200	0	0	0	0	0	0
	250	0	0	0	0	0	0
	300	0	0	0	0	0	0
	350	0	0	0	0	0	0
	400	0	0	0	0	0	0
stroke (mm)	450	0	0	0	0	0	0
<u>ت</u>	500	0	0	0	0	0	0
- ×	550	0	0	0	0	0	0
str	600	0	0	0	0	0	0
<i s<="" td=""><td>650</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></i>	650	0	0	0	0	0	0
Y-axis	700	0	0	0	0	0	0
1	750	0	0	0	0	0	0
	800	0	0	0	0	0	0
	850	0	0	0	0	0	0
	900	0	0	0	0	0	0
	950	0	0	0	0	0	0
	1000	0	0	0	0	0	0
	1050	0	0	0	0	0	0
	1100	0	0	0	0	0	0

Applicable Controllers

Controllers are sold separately.

Please refer to each controller page.

Туре	Axis configuration	Applicable controllers	Reference page
	Y-axis : SA8C	PCON-CFB/CGFB	P-149
	T-dXIS: SAOC	MSEL-PCF/PGF	P-139
		PCON-CB/CGB	P-149
PM1		PCON-CYB/PLB/POB	Please contact IAI
	Z-axis : SA7R	MCON-C/CG	P-153
		MCON-LC/LCG	P-155
		MSEL	P-139
PM2	Y-axis : SA8C	RCON-PCF	P-159
PIVIZ	Z-axis : SA7R	RCON-PC	P-159

* Operation is possible with the high output setting specification. When connecting to the MCON controller, "HIGH OUTPUT SETTING SPECIFICATION" must be selected. Please contact IAI regarding use with the high-output setting disabled.

Cable Length

cubic Lengar							
Cable code	Length						
1L	1m						
3L	3m						
5L	5m						
	Specified length (15m max.)						

Note 1. All-axis standard cable is used. Note 2. The length of the second axis cable is from the exit of the cable track.

A separate robot cable is included for wiring inside the cable track. Note 3. The standard lengths are 1m, 3m and 5m, but other lengths can be specified in 1m increments up to 15m.

Specificatio	ons				
ltem		Y-axis	Z-axis		
Axis configuration	n	RCP6-SA8C	RCP6-SA7R		
Stroke (Every 50)	nm)	50~1100mm	50~300mm		
	HL	100	105mm/s		
Mar	HM	400mm/s	280mm/s		
Max. speed *	SH	650	560mm/s		
SS		650mm/s	640mm/s		
Motor size		56 High thrust stepper motor	56 Stepper motor		
	HL	20mm	4mm		
Ball screw	HM	2011111	8mm		
lead	SH	30mm	16mm		
	SS	5011111	24mm		
Drive system		Ball screw Ø16mm rolled C10	Ball screw Ø12mm rolled C10		
Positioning repe	atability	±0.01mm			
Base material		Aluminum			
Ambient operati temperature, hu		0~40°C, 85% RH or less (non-condensing)			

* The maximum speed may not be reached if the travel distance is short or acceleration is low. Maximum speed may change depending on the stroke. For details, refer to the Maximum Speed by Stroke table on P.137.

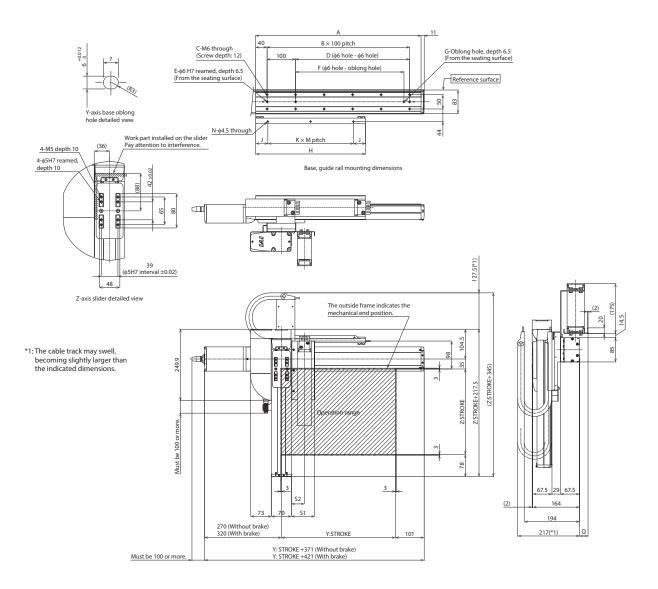
Cable Track

Туре	Model	Reference page	First wiring (Y-axis lateral)	Second wiring (Z-axis lateral)
Without cable track (cable only)	N		0	0
Cable track S size (inner width: 38mm)	СТ		0	0
Cable track M size (inner width: 50mm)	СТМ	See P.136	0	0
Cable track L size (inner width: 63mm)	CTL	See P.150	0	0
Cable track XL size (inner width: 80mm) *	CTXL		0	Cannot be selected *

* Only the first wiring can be selected

Options * Please check the Options reference pages to confirm each option.

Туре	Option code	Reference page	Y-axis	Z-axis
Brake *	В	See P.134	0	Standard equipment *
Cable exit direction (Top)	CJT	See P.134	0	
Cable exit direction (Right)	CJR	See P.134	0	Cannot be
Cable exit direction (Left)	CJL	See P.134	0	selected
Cable exit direction (Bottom)	CJB	See P.134	0	
Non-motor end specification	NM	See P.135	0	0
Slider section roller specification	SR	See P.135	0	0


* Be sure to specify.

* Brake option for Y-axis increases the length of the motor unit. Please contact IAI for more information.

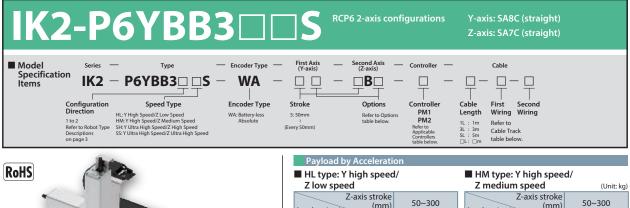
CAD drawings can be downloaded from our website. (2D CAD WWW.intelligentactuator.com CAD CAD CAD CAD

Note 1. The configuration position in the figure is home.

Note 2. The diagram shows the configuration direction "1" where both the first wiring and second wiring have cable tracks. Note 3. For details on the cable track and cable track moving end bracket, refer to P.136.

(*) Notes

The Y-axis cable track guide rail is to be fixed to the Y-axis mounting surface by the customer. Please note that there will be an overhang outside the Y-axis mounting surface. Also, the moving end of the Z-axis cable track is to be fixed to a plate or the like mounted on the Z-axis slider by the customer.


Dimensions by Stroke

Y: Stroke	50	100	150	200	250	300	350	400	450	500	550	600	650	700	750	800	850	900	950	1000	1050	1100
A	230	280	330	380	430	480	530	580	630	680	730	780	830	880	930	980	1030	1080	1130	1180	1230	1280
В	1	2	2	3	3	4	4	5	5	6	6	7	7	8	8	9	9	10	10	11	11	12
C	4	6	6	8	8	10	10	12	12	14	14	16	16	18	18	20	20	22	22	24	24	26
D	0	100	100	200	200	300	300	400	400	500	500	600	600	700	700	800	800	900	900	1000	1000	1100
E	2	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
F	0	0	80	180	180	280	280	380	380	480	480	580	580	680	680	780	780	880	880	980	980	1080
G	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
н	210	235	260	285	310	335	360	385	410	435	460	485	510	535	560	585	610	635	660	685	710	735
J	30	42.5	30	42.5	30	42.5	30	42.5	30	42.5	30	42.5	30	42.5	55	30	42.5	55	30	42.5	55	17.5
K	1	1	1	1	2	2	2	2	2	2	2	2	3	3	3	3	3	3	3	3	3	4
М	150	150	200	200	125	125	150	150	175	175	200	200	150	150	150	175	175	175	200	200	200	175
N	2	2	2	2	3	3	3	3	3	3	3	3	4	4	4	4	4	4	4	4	4	5
Cable track size	CT	CTM	CTL	CTXL																		
Q	18	30	45	63																		

Q 18 50 15 1 S1 82 94 107 -S2 46 52.5 59 -

* Dimensions Q, S1 and S2 change depending on the size of the cable track.

HL type: Y high speed Z low speed	/	HM type: Y high spee Z medium speed	ed/	(Unit: kg)
Z-axis stroke (mm) deceleration (G)	50~300 (Every 50mm)	Z-axis stroke (mm) deceleration (G)	E0	300 50mm)
0.1	9	0.1	4	.5
0.3	8	0.3	4	1
0.5	7	0.5	3	.5
SH type: Y ultra high s Z high speed	speed/	SS type: Y ultra high Z ultra high speed	speed/	
Z-axis stroke (mm) deceleration (G)	50~300 (Every 50mm)	Z-axis stroke (mm) deceleration (G)	100 200	250~300 (Every 50mm)
0.1	3	0.1	1.	.5
0.3	2	0.3	1.	.5
	1.5	0.5	1.5	

The photograph above shows the configuration direction "1" where both the first wiring and second wiring have cable tracks. Please refer to P.3 for other configuration directions.

acceleration/deceleratio					15.	ble tracks. uration directior	other config
malisable Controller	A 10 10						
pplicable Controlle	Арр						
trollers are sold sepa	Contro	300	250	200	150	100	50
se refer to each cont	Please	0	0	0	0	0	0
		0	0	0	0	0	0
be Axis configuration	Type	0	0	0	0	0	0
		0	0	0	0	0	0
Y-axis : SA8C		0	0	0	0	0	0
		0	0	0	0	0	0
		0	0	0	0	0	0
1	PM1	0	0	0	0	0	0
Z-axis : SA7C		0	0	0	0	0	0
		0	0	0	0	0	0
		0	0	0	0	0	0
Y-axis : SA8C		0	0	0	0	0	0
2 1-axis. 3AOC	04/2		0		0	0	0

 \cap

0

ontrollers

Type	Axis configuration	Applicable controllers	Reference page		
	Y-axis : SA8C	PCON-CFB/CGFB	P-149		
	T-dXIS: SAOC	MSEL-PCF/PGF	P-139		
		PCON-CB/CGB	P-149		
PM1		PCON-CYB/PLB/POB	Please contact IAI		
	Z-axis : SA7C	MCON-C/CG	P-153		
		MCON-LC/LCG	F=135		
		MSEL	P-139		
PM2	Y-axis : SA8C	RCON-PCF	P-159		
FIVIZ	Z-axis : SA7C	RCON-PC	P-159		

* Operation is possible with the high output setting specification. When connecting to the MCON controller, "HIGH OUTPUT SETTING SPECIFICATION" must be selected. Please contact IAI regarding use with the high-output setting disabled.

Cable Length

Stroke

500 550

600 650 700

Z-axis stroke (mm)

(mm

Y-axis stroke

cubic Lenge		
Туре	Cable code	Length
	1L	1m
Standard type	3L	3m
Standard type	5L	5m
		Specified length (15m max.)

0

0

Note 1. All-axis standard cable is used. Note 2. The length of the second axis cable is from the exit of the cable track.

A separate robot cable is included for wiring inside the cable track. Note 3. The standard lengths are 1m, 3m and 5m, but other lengths can be specified in 1m increments up to 15m.

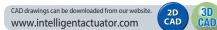
Specificatio	ns							
ltem		Y-axis	Z-axis					
Axis configuratio	n	RCP6-SA8C	RCP6-SA7C					
Stroke (Every 50n	nm)	50~1100mm	50~300mm					
	HL	400mm/s	105mm/s					
Max. speed *	HM	40011111/5	280mm/s					
Max. speed " SH		650mm/s	560mm/s					
	SS	0501111/5	640mm/s					
Motor size		56 High thrust stepper motor	56 Stepper motor					
	HL	20mm	4mm					
Ball screw	HM	2011111	8mm					
lead	SH	30mm	16mm					
	SS	3011111	24mm					
Drive system		Ball screw Ø16mm rolled C10	Ball screw Ø12mm rolled C10					
Positioning repea	atability	±0.01mm						
Base material		Aluminum						
Ambient operatir temperature, hur		0~40°C, 85% RH or less (non-condensing)						

* The maximum speed may not be reached if the travel distance is short or acceleration is low. Maximum speed may change depending on the stroke. For details, refer to the Maximum Speed by Stroke table on P.137.

Cable Track

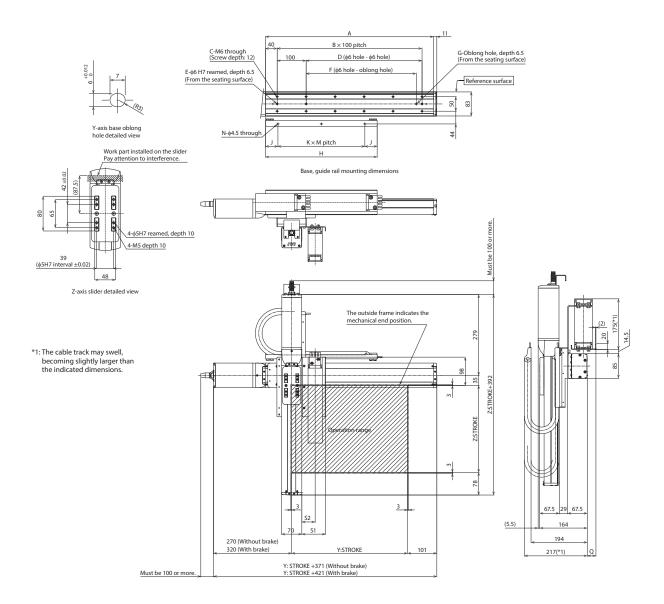
0

Туре	Model	Reference page	First wiring (Y-axis lateral)	Second wiring (Z-axis lateral)
Without cable track (cable only)	N		0	0
Cable track S size (inner width: 38mm)	СТ		0	0
Cable track M size (inner width: 50mm)	СТМ	See P.136	0	0
Cable track L size (inner width: 63mm)	CTL	See P.150	0	0
Cable track XL size (inner width: 80mm) *	CTXL		0	Cannot be selected *


* Only the first wiring can be selected

Options * Please check the Options reference pages to confirm each option.

Туре	Option code	Reference page	Y-axis	Z-axis
Brake *	В	See P.134	0	Standard equipment *
Cable exit direction (Top)	CJT	See P.134	0	
Cable exit direction (Right)	CJR	See P.134	0	Cannot be
Cable exit direction (Left)	CJL	See P.134	0	selected
Cable exit direction (Bottom)	CJB	See P.134	0	
Non-motor end specification	NM	See P.135	0	0
Slider section roller specification	SR	See P.135	0	0


* Be sure to specify.

* Brake option for Y-axis increases the length of the motor unit. Please contact IAI for more information.

Note 1. The configuration position in the figure is home.

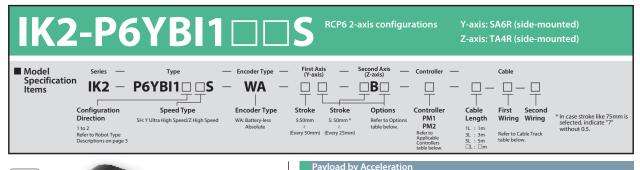
Note 2. The diagram shows the configuration direction "1" where both the first wiring and second wiring have cable tracks. Note 3. For details on the cable track and cable track moving end bracket, refer to P.136.

(*) Notes

The Y-axis cable track guide rail is to be fixed to the Y-axis mounting surface by the customer. Please note that there will be an overhang outside the Y-axis mounting surface. Also, the moving end of the Z-axis cable track is to be fixed to a plate or the like mounted on the Z-axis slider by the customer.

Dimensions by Stroke

·																						
Y: Stroke	50	100	150	200	250	300	350	400	450	500	550	600	650	700	750	800	850	900	950	1000	1050	1100
A	230	280	330	380	430	480	530	580	630	680	730	780	830	880	930	980	1030	1080	1130	1180	1230	1280
В	1	2	2	3	3	4	4	5	5	6	6	7	7	8	8	9	9	10	10	11	11	12
С	4	6	6	8	8	10	10	12	12	14	14	16	16	18	18	20	20	22	22	24	24	26
D	0	100	100	200	200	300	300	400	400	500	500	600	600	700	700	800	800	900	900	1000	1000	1100
E	2	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
F	0	0	80	180	180	280	280	380	380	480	480	580	580	680	680	780	780	880	880	980	980	1080
G	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Н	210	235	260	285	310	335	360	385	410	435	460	485	510	535	560	585	610	635	660	685	710	735
J	30	42.5	30	42.5	30	42.5	30	42.5	30	42.5	30	42.5	30	42.5	55	30	42.5	55	30	42.5	55	17.5
К	1	1	1	1	2	2	2	2	2	2	2	2	3	3	3	3	3	3	3	3	3	4
М	150	150	200	200	125	125	150	150	175	175	200	200	150	150	150	175	175	175	200	200	200	175
N	2	2	2	2	3	3	3	3	3	3	3	3	4	4	4	4	4	4	4	4	4	5
Cable track size	CT	CTM	CTL	CTXL																		
Q	18	30	45	63																		


 Q
 18
 30
 10

 S1
 82
 94
 107

 S2
 46
 52.5
 59

 * Dimensions Q, S1 and S2 change depending on the size of the cable track.

RoHS

eed/Z high speed	(Unit: kg
50~150 (Every 25mm)	
1	
1	
1	

When there is significant vibration, decrease the speed and acceleration/deceleration as required.

The photograph above shows the configuration direction "1" where both the first wiring and second wiring have cable tracks. Please refer to P.3 for other configuration directions.

S	Stroke									
	Z-axis stroke (mm)	50	75	100	125	150				
	50	0	0	0	0	0				
	100	0	0	0	0	0				
	150	0	0	0	0	0				
	200	0	0	0	0	0				
	250	0	0	0	0	0				
Ê	300	0	0	0	0	0				
stroke (mm)	350	0	0	0	0	0				
l %	400	0	0	0	0	0				
	450	0	0	0	0	0				
Y-axis	500	0	0	0	0	0				
×	550	0	0	0	0	0				
	600	0	0	0	0	0				
	650	0	0	0	0	0				
	700	0	0	0	0	0				
	750	0	0	0	0	0				
	800	0	0	0	0	0				

Applicable Controllers

Controllers are sold separately.

Please refer to each controller page.

Axis configuration	Applicable controllers	Reference page	
	PCON-CFB/CGFB	P-149	
	PCON-CYB/PLB/POB	Please contact IAI	
Y-axis : SA6R	MCON-C/CG	P-153	
Z-axis : TA4R	MCON-LC/LCG	P-155	
	MSEL	P-139	
	RCON-PC	P-159	
	Y-axis : SA6R	Y-axis : SA6R PCON-CFB/CGFB PCON-CYB/PLB/POB MCON-C/CG Z-axis : TA4R MCON-LC/LCG MSEL	

* Operation is possible with the high output setting specification. When connecting to the MCON controller, "HIGH OUTPUT SETTING SPECIFICATION" must be selected. Please contact IAI regarding use with the high-output setting disabled.

Cable Length							
Туре	Cable code	Length					
	1L	1m					
Standard type	3L	3m					
Stanuaru type	5L	5m					
		Specified length (15m max.)					

Note 1. All-axis standard cable is used. Note 2. The length of the second axis cable is from the exit of the cable track.

A separate robot cable is included for wiring inside the cable track. Note 3. The standard lengths are 1m, 3m and 5m, but other lengths can be specified

in 1m increments up to 15m.

Specifications					
ltem	Y-axis	Z-axis			
Axis configuration	RCP6-SA6R	RCP6-TA4R			
Stroke	50 ~ 800mm (Every 50mm)	50 ~ 150mm (Every 25mm)			
Max speed *	800mm/s	350mm/s			
Motor size	42 Stepper motor	35 Stepper motor			
Ball screw lead	20mm	10mm			
Drive system	Ball screw Φ10mm rolled C10	Ball screw Φ8mm rolled C10			
Positioning repeatability	±0.01mm				
Base material	Aluminum				
Ambient operating temperature, humidity	0~40°C, 85% RH or less (non-condensing)				

* The maximum speed may not be reached if the travel distance is short or acceleration is low. Maximum speed may change depending on the stroke. For details, refer to the Maximum Speed by Stroke table on P.137.

Туре	Model	Reference page	First wiring (Y-axis side)	Second wiring (Z-axis side)
Without cable track (cable only)	N		-	-
Cable track S size (inner width: 38mm)	СТ		0	0
Cable track M size (inner width: 50mm)	СТМ	See	0	0
Cable track L size (inner width: 63mm)	CTL	P.136	0	0
Cable track XL size (inner width: 80mm) *	CTXL		0	Cannot be selected *

* Only the first wiring can be selected

Cable Track

Options	* Please check the Options reference pages to confirm each option.

Туре	Option code	Reference page	Y-axis	Z-axis
Brake	В	See P.134	0	Standard equipment *
Cable exit direction (Outside)	CIO	See P.134	0	Cannot be selected
Non-motor end specification	NM	See P.135	0	0
Slider section roller specification	SR	See P.135	0	Cannot be selected

* Be sure to specify.

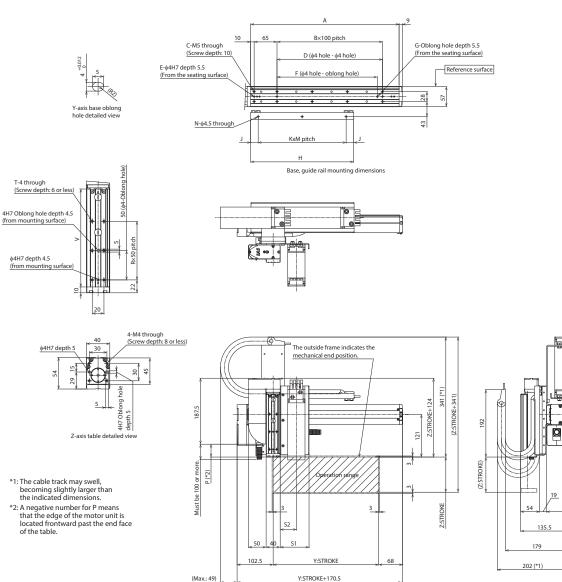
(2)

10 20

28

59

62.5


0

Dimensions

CAD drawings can be downloaded from our website.

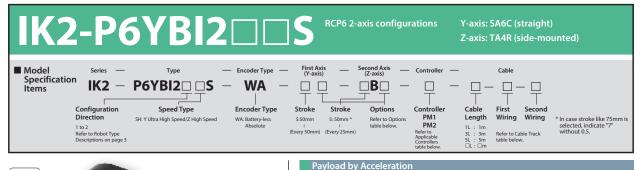
3D CAD Note 1. The configuration position in the figure is home.

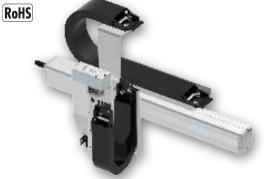
Note 2. The diagram shows the configuration direction "1" where both the first wiring and second wiring have cable tracks. Note 3. For details on the cable track and cable track moving end bracket, refer to P.136.

(*) Notes

The Y-axis cable track guide rail is to be fixed to the Y-axis mounting surface by the customer. Please note that there will be an overhang outside the Y-axis mounting surface. Also, the moving end of the Z-axis cable track is to be fixed to a plate or the like mounted on the Z-axis table by the customer.

Dimensions by Stroke


Y: Stroke	50	100	150	200	250	300	350	400	450	500	550	600	650	700	750	800
A	172	222	272	322	372	422	472	522	572	622	672	722	772	822	872	922
В	0	1	1	2	2	3	3	4	4	5	5	6	6	7	7	8
C	4	6	6	8	8	10	10	12	12	14	14	16	16	18	18	20
D	0	100	100	200	200	300	300	400	400	500	500	600	600	700	700	800
E	2	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
F	0	85	85	185	185	285	285	385	385	485	485	585	585	685	685	785
G	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Н	168	193	218	243	268	293	318	343	368	393	418	443	468	493	518	543
J	9	21.5	9	21.5	9	21.5	9	21.5	9	21.5	9	21.5	9	21.5	34	9
K	1	1	1	1	2	2	2	2	2	2	2	2	3	3	3	3
M	150	150	200	200	125	125	150	150	175	175	200	200	150	150	150	175
N	2	2	2	2	3	3	3	3	3	3	3	3	4	4	4	4
Z: Stroke	50	75	100	125	150											
P (*2)	-13.5	11.5	36.5	61.5	86.5											
R	1	2	2	3	3											
Т	4	6	6	8	8											
V	117	142	167	192	217											


Cable track size	CT	CTM	CTL	CTXL			
Q	23	35	50	68			
S1	82	94	107	-			
S2 46 52.5 59 -							
* Dimensions Q, S1 and S2 change depending on							

 Dimensions Q, ST and SZ change depending on the size of the cable track.

SH type: Y ultra high speed/Z high speed						
Z-axis stroke (mm)						

deceleration (G)	(Every 25mm)
0.1	1
0.3	1
0.5	1

* When both Y and Z axes have the same acceleration/deceleration.

When there is significant vibration, decrease the speed and acceleration/deceleration as required.

The photograph above shows the configuration direction "1" where both the first wiring and second wiring have cable tracks. Please refer to P.3 for other configuration directions.

Stroke									
	Z-axis stroke (mm)	50	75	100	125	150			
	50	0	0	0	0	0			
	100	0	0	0	0	0			
	150	0	0	0	0	0			
	200	0	0	0	0	0			
	250	0	0	0	0	0			
(mm)	300	0	0	0	0	0			
<u> </u>	350	0	0	0	0	0			
stroke	400	0	0	0	0	0			
str	450	0	0	0	0	0			
Y-axis	500	0	0	0	0	0			
1	550	0	0	0	0	0			
	600	0	0	0	0	0			
	650	0	0	0	0	0			
	700	0	0	0	0	0			
	750	0	0	0	0	0			
	800	0	0	0	0	0			

Applicable Controllers

Controllers are sold separately.

Please refer to each controller page.

Тур	e A	xis configuration	Applicable controllers	Reference page
			PCON-CFB/CGFB	P-149
			PCON-CYB/PLB/POB	Please contact IAI
PM1	L '	Y-axis : SA6C	MCON-C/CG	P-153
		Z-axis : TA4R	MCON-LC/LCG	P-155
			MSEL	P-139
PM2	2		RCON-PC	P-159

(Unit: kg)

* Operation is possible with the high output setting specification. When connecting to the MCON controller, "HIGH OUTPUT SETTING SPECIFICATION" must be selected. Please contact IAI regarding use with the high-output setting disabled.

Cable Length

Type	Cable code	Length
Type	cubic couc	
	1L	1m
Standard type	3L	3m
Stanuaru type	5L	5m
		Specified length (15m max.)

Note 1. All-axis standard cable is used.

Note 2. The length of the second axis cable is from the exit of the cable track.

A separate robot cable is included for wiring inside the cable track. Note 3. The standard lengths are 1m, 3m and 5m, but other lengths can be specified in 1m increments up to 15m.

Specification

specifications			
ltem	Y-axis	Z-axis	
Axis configuration	RCP6-SA6C	RCP6-TA4R	
Stroke			
	50 ~ 800mm (Every 50mm)	50 ~ 150mm (Every 25mm)	
Max speed *	800mm/s	350mm/s	
Motor size	42 Stepper motor	35 Stepper motor	
Ball screw lead	20mm	10mm	
Drive system	Ball screw Φ10mm rolled C10	Ball screw Ø8mm rolled C10	
Positioning repeatability	±0.01mm		
Base material	Aluminum		
Ambient operating temperature, humidity	0~40°C, 85% RH or less (non-condensing)		

* The maximum speed may not be reached if the travel distance is short or acceleration is low. Maximum speed may change depending on the stroke.

For details, refer to the Maximum Speed by Stroke table on P.137.

Cable Track

Туре	Model	Reference page	First wiring (Y-axis side)	Second wiring (Z-axis side)
Without cable track (cable only)	N		-	-
Cable track S size (inner width: 38mm)	СТ		0	0
Cable track M size (inner width: 50mm)	СТМ	See	0	0
Cable track L size (inner width: 63mm)	CTL	P.136	0	0
Cable track XL size (inner width: 80mm) *	CTXL		0	Cannot be selected *

* Only the first wiring can be selected

Options * Please che	eck the Options r	eference page	is to confirm each	h option.
Туре	Option code	Reference page	Y-axis	Z-axis
Brake *	В	See P.134	0	Standard equipment *
Cable exit direction (Top)	CJT	See P.134	0	
Cable exit direction (Right)	CJR	See P.134	0	Cannot be
Cable exit direction (Left)	CJL	See P.134	Ó	selected
Cable exit direction (Bottom)	CIR	See D 13/	0	

See P.135

See P.135

0

Cannot be

selected

NM

SR

Non-motor end specification

Slider section roller specification

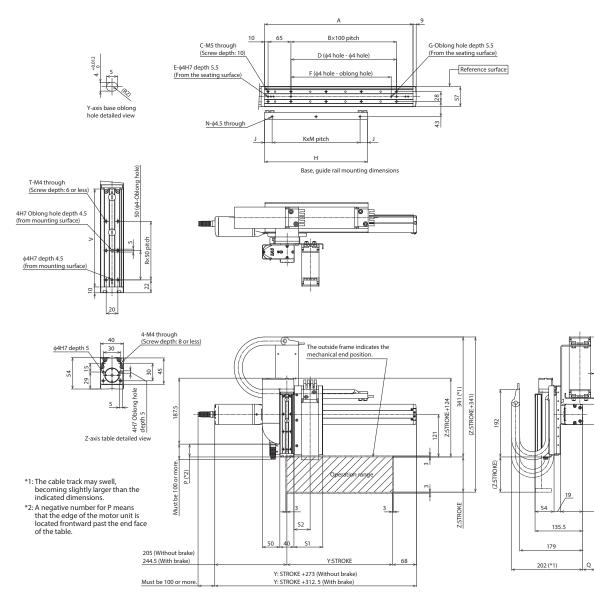
* Be sure to specify. * Brake option for Y-axis increases the length of the motor unit. Please contact IAI for more information.

(2)

50

62.5

82


2

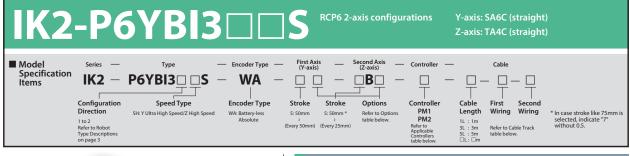
Dimensions

Note 1. The configuration position in the figure is home.

Note 2. The diagram shows the configuration direction "1" where both the first wiring and second wiring have cable tracks. Note 3. For details on the cable track and cable track moving end bracket, refer to P.136.

(*) Notes

The Y-axis cable track guide rail is to be fixed to the Y-axis mounting surface by the customer. Please note that there will be an overhang outside the Y-axis mounting surface. Also, the moving end of the Z-axis cable track is to be fixed to a plate or the like mounted on the Z-axis table by the customer.


Dimensions by Stroke

Y: Stroke	50	100	150	200	250	300	350	400	450	500	550	600	650	700	750	800
A	172	222	272	322	372	422	472	522	572	622	672	722	772	822	872	922
В	0	1	1	2	2	3	3	4	4	5	5	6	6	7	7	8
C	4	6	6	8	8	10	10	12	12	14	14	16	16	18	18	20
D	0	100	100	200	200	300	300	400	400	500	500	600	600	700	700	800
E	2	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
F	0	85	85	185	185	285	285	385	385	485	485	585	585	685	685	785
G	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Н	168	193	218	243	268	293	318	343	368	393	418	443	468	493	518	543
J	9	21.5	9	21.5	9	21.5	9	21.5	9	21.5	9	21.5	9	21.5	34	9
K	1	1	1	1	2	2	2	2	2	2	2	2	3	3	3	3
M	150	150	200	200	125	125	150	150	175	175	200	200	150	150	150	175
N	2	2	2	2	3	3	3	3	3	3	3	3	4	4	4	4
Z: Stroke	50	75	100	125	150											
P (*2)	-13.5	11.5	36.5	61.5	86.5											
R	1	2	2	3	3											
Т	4	6	6	8	8											
V	117	142	167	192	217											

Cable track size	СТ	CTM	CTL	CTXL	
Q	23	35	50	68	
S1	82	94	107	-	
S2 46 52.5 59 -					
* Dimensions Q, S1 and S2 change depending on					

* Dimensions Q, S I and SZ change depending or the size of the cable track.

Payload by Acceleration					
SH type: Y ultra high s	(Unit: kg)				
Z-axis stroke (mm) deceleration (G)	50~150 (Every 25mm)				
0.1	1				
0.3	1				
0.5	1				

* When both Y and Z axes have the same acceleration/deceleration.

When there is significant vibration, decrease the speed and acceleration/deceleration as required.

The photograph above shows the configuration direction "1" where both the first wiring and second wiring have cable tracks. Please refer to P.3 for other configuration directions.

S	Stroke							
	Z-axis stroke (mm)	50	75	100	125	150		
	50	0	0	0	0	0		
	100	0	0	0	0	0		
	150	0	0	0	0	0		
	200	0	0	0	0	0		
	250	0	0	0	0	0		
(um	300	0	0	0	0	0		
<u></u>	350	0	0	0	0	0		
stroke	400	0	0	0	0	0		
str	450	0	0	0	0	0		
Y-axis	500	0	0	0	0	0		
,÷	550	0	0	0	0	0		
	600	0	0	0	0	0		
	650	0	0	0	0	0		
	700	0	0	0	0	0		
	750	0	0	0	0	0		
	800	0	0	0	0	0		

Applicable Controllers

Controllers are sold separately.

Please refer to each controller page.

Type	Axis configuration	Applicable controllers	Reference page
		PCON-CFB/CGFB	P-149
		PCON-CYB/PLB/POB	Please contact IAI
PM1	Y-axis : SA6C	MCON-C/CG	P-153
	Z-axis : TA4C	MCON-LC/LCG	P-155
		MSEL	P-139
PM2		RCON-PC	P-159

* Operation is possible with the high output setting specification. When connecting to the MCON controller, "HIGH OUTPUT SETTING SPECIFICATION" must be selected. Please contact IAI regarding use with the high-output setting disabled.

Cable Length

Type	Cable code	Length
Type	cubic couc	
	1L	1m
Standard type	3L	3m
Stanuaru type	5L	5m
		Specified length (15m max.)

Note 1. All-axis standard cable is used.

Note 2. The length of the second axis cable is from the exit of the cable track.

A separate robot cable is included for wiring inside the cable track. Note 3. The standard lengths are 1m, 3m and 5m, but other lengths can be specified in 1m increments up to 15m.

Specifications

specifications				
ltem	Y-axis	Z-axis		
Axis configuration	RCP6-SA6C	RCP6-TA4C		
Stroke	50 ~ 800mm (Every 50mm)	50 ~ 150mm (Every 25mm)		
Max speed *	800mm/s	350mm/s		
Motor size	42 Stepper motor	35 Stepper motor		
Ball screw lead	20mm	10mm		
Drive system	Ball screw Φ10mm rolled C10	Ball screw Φ8mm rolled C10		
Positioning repeatability	±0.01mm			
Base material	Aluminum			
Ambient operating temperature, humidity	0~40°C, 85% RH or less (non-condensing)			

* The maximum speed may not be reached if the travel distance is short or acceleration is low. Maximum speed may change depending on the stroke.

For details, refer to the Maximum Speed by Stroke table on P.137.

Cable Track

Туре	Model	Reference page	First wiring (Y-axis side)	Second wiring (Z-axis side)
Without cable track (cable only)	N		-	-
Cable track S size (inner width: 38mm)	СТ		0	0
Cable track M size (inner width: 50mm)	СТМ	See	0	0
Cable track L size (inner width: 63mm)	CTL	P.136	0	0
Cable track XL size (inner width: 80mm) *	CTXL		0	Cannot be selected *

* Only the first wiring can be selected

Options * Please che	Options * Please check the Options reference pages to confirm each option.						
Туре	Option code	Reference page	Y-axis	Z-axis			
Brake *	В	See P.134	0	Standard equipment *			
Cable exit direction (Top)	CJT	See P.134	0				
Cable exit direction (Right)	CJR	See P.134	0	Cannot be			
Cable exit direction (Left)	CJL	See P.134	0	selected			
Cable exit direction (Bottom)	CJB	See P.134	0				
Non-motor end specification	NM	See P.135	0	0			
Slider section roller specification	SR	See P 135	0	Cannot be			

SR

See P.135

0

selected

* Be sure to specify. * Brake option for Y-axis increases the length of the motor unit. Please contact IAI for more information.

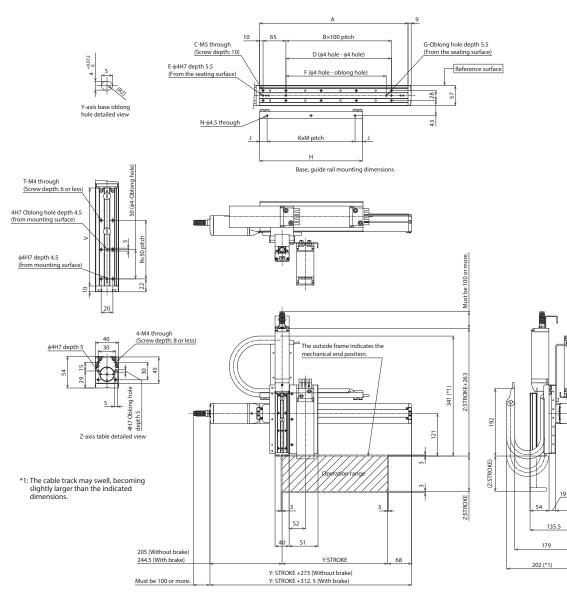
Slider section roller specification

50

62.5

0

82


9

Dimensions

CAD drawings can be downloaded from our website. WWW.intelligentactuator.com

3D CAD Note 1. The configuration position in the figure is home.

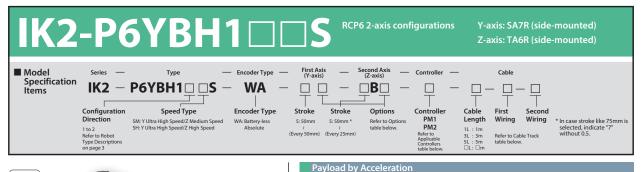
Note 2. The diagram shows the configuration direction "1" where both the first wiring and second wiring have cable tracks. Note 3. For details on the cable track and cable track moving end bracket, refer to P.136.

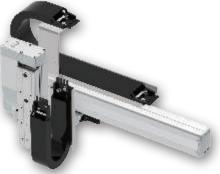
(*) Notes

The Y-axis cable track guide rail is to be fixed to the Y-axis mounting surface by the customer. Please note that there will be an overhang outside the Y-axis mounting surface. Also, the moving end of the Z-axis cable track is to be fixed to a plate or the like mounted on the Z-axis table by the customer.

Dimensions by Stroke

Y: Stroke	50	100	150	200	250	300	350	400	450	500	550	600	650	700	750	800
A	172	222	272	322	372	422	472	522	572	622	672	722	772	822	872	922
В	0	1	1	2	2	3	3	4	4	5	5	6	6	7	7	8
C	4	6	6	8	8	10	10	12	12	14	14	16	16	18	18	20
D	0	100	100	200	200	300	300	400	400	500	500	600	600	700	700	800
E	2	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
F	0	85	85	185	185	285	285	385	385	485	485	585	585	685	685	785
G	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Н	168	193	218	243	268	293	318	343	368	393	418	443	468	493	518	543
J	9	21.5	9	21.5	9	21.5	9	21.5	9	21.5	9	21.5	9	21.5	34	9
K	1	1	1	1	2	2	2	2	2	2	2	2	3	3	3	3
M	150	150	200	200	125	125	150	150	175	175	200	200	150	150	150	175
N	2	2	2	2	3	3	3	3	3	3	3	3	4	4	4	4
Z: Stroke	50	75	100	125	150											
R	1	2	2	3	3											
Т	4	6	6	8	8											
V	117	142	167	192	217]										


Cable track size	CT	CTM	CTL	CTXL			
Q	23	35	50	68			
S1	82	94	107	-			
S2	46	52.5	59	-			
* Dimensions Q, S1 and S2 change depending on							


 Dimensions Q, S1 and S2 change depending on the size of the cable track.

RoHS

The photograph above shows the configuration direction "1" where both the first wiring and second wiring have cable tracks. Please refer to P.3 for other configuration directions.

Z-axis stroke (mm) deceleration (G)	50~200 (Every 25mm)	
0.1	3	
0.3	2.5	
0.5	2.5	

Z-axis stroke (mm) deceleration/ deceleration (G)	
0.1	1.5
0.3	1.5
0.5	1.5

When both Y and Z axes have the same acceleration/deceleration.

When there is significant vibration, decrease the speed and acceleration/deceleration as required.

S	troke							
Z-axi	s stroke (mm)	50	75	100	125	150	175	200
	50	0	0	0	0	0	0	0
	100	0	0	0	0	0	0	0
	150	0	0	0	0	0	0	0
	200	0	0	0	0	0	0	0
	250	0	0	0	0	0	0	0
(mm)	300	0	0	0	0	0	0	0
	350	0	0	0	0	0	0	0
stroke	400	0	0	0	0	0	0	0
sti	450	0	0	0	0	0	0	0
Y-axis	500	0	0	0	0	0	0	0
×	550	0	0	0	0	0	0	0
	600	0	0	0	0	0	0	0
	650	0	0	0	0	0	0	0
	700	0	0	0	0	0	0	0
	750	0	0	0	0	0	0	0
	800	0	0	0	0	0	0	0

Applicable Controllers

Controllers are sold separately.

Please refer to each controller page.

Type	Axis configuration	Applicable controllers	Reference page
		PCON-CFB/CGFB	P-149
		PCON-CYB/PLB/POB	Please contact IAI
PM1	Y-axis : SA7R	MCON-C/CG	P-153
	Z-axis : TA6R	MCON-LC/LCG	P-155
		MSEL	P-139
PM2		RCON-PC	P-159

* Operation is possible with the high output setting specification. When connecting to the MCON controller, "HIGH OUTPUT SETTING SPECIFICATION" must be selected. Please contact IAI regarding use with the high-output setting disabled.

Cable Length

Туре	Cable code	Length
	1L	1m
Standard tuna	3L	3m
Standard type	5L	5m
		Specified length (15m max.)

Note 1. All-axis standard cable is used.

Note 2. The length of the second axis cable is from the exit of the cable track.

A separate robot cable is included for wiring inside the cable track. Note 3. The standard lengths are 1m, 3m and 5m, but other lengths can be specified in 1m increments up to 15m.

510	ecifi	ons

Specificatio	ons				
ltem		Y-axis	Z-axis		
Axis configuration	n	RCP6-SA7R	RCP6-TA6R		
Stroke		50 ~ 800mm (Every 50mm)	50 ~ 200mm (Every 25mm)		
Manual * SM		640mm/s	280mm/s		
Max speed *	SH	0401111/5	440mm/s		
Motor size		56 Stepper motor	42 Stepper motor		
Ball screw	SM	24mm	6mm		
lead	SH	24000	12mm		
Drive system		Ball screw Φ12mm rolled C10	Ball screw Φ10mm rolled C10		
Positioning repea	tability	±0.01mm			
Base material		Aluminum			
Ambient operating temperature, humidity		0~40°C, 85% RH or less (non-condensing)			

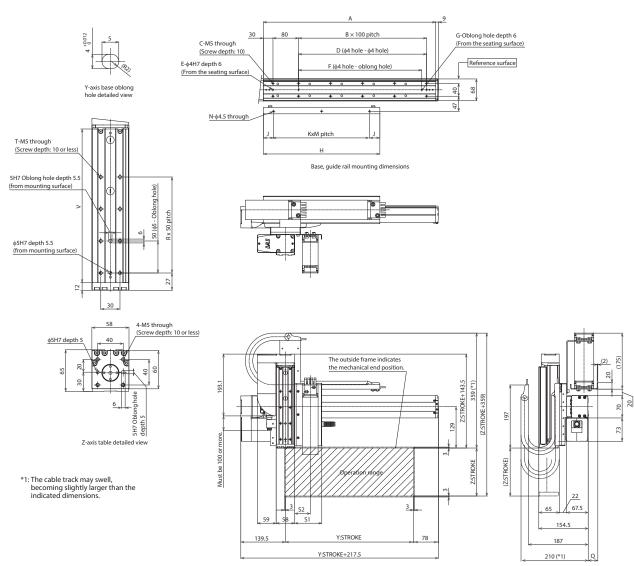
* The maximum speed may not be reached if the travel distance is short or acceleration is low.

Maximum speed may change depending on the stroke. For details, refer to the Maximum Speed by Stroke table on P.137.

Cable Track

Туре	Model	Reference page	First wiring (Y-axis side)	Second wiring (Z-axis side)
Without cable track (cable only)	N		-	-
Cable track S size (inner width: 38mm)	СТ		0	0
Cable track M size (inner width: 50mm)	СТМ	See	0	0
Cable track L size (inner width: 63mm)	CTL	P.136	0	0
Cable track XL size (inner width: 80mm) *	CTXL		0	Cannot be selected *

* Only the first wiring can be selected


Options * Please check the Options reference pages to confirm each option.													
Туре	Option code	Reference page	Y-axis	Z-axis									
Brake	В	See P.134	0	Standard equipment *									
Cable exit direction (Outside)	CIO	See P.134	0	Cannot be selected									
Non-motor end specification	NM	See P.135	0	0									
Slider section roller specification	SR	See P.135	0	Cannot be selected									

* Be sure to specify.

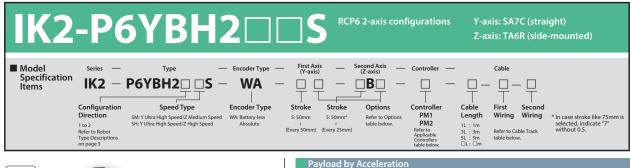
Note 1. The configuration position in the figure is home. Note 2. The diagram shows the configuration direction "1" where both the first wiring and second wiring have cable tracks.

Note 2. The diagram shows the computation direction 1 where both the first wring and second wring have cable tracks. Note 3. For details on the cable track and cable track moving end bracket, refer to P.136.

(*) Notes

The Y-axis cable track guide rail is to be fixed to the Y-axis mounting surface by the customer. Please note that there will be an overhang outside the Y-axis mounting surface. Also, the moving end of the Z-axis cable track is to be fixed to a plate or the like mounted on the Z-axis table by the customer.

Dimensions by Stroke


Y: Stroke	50	100	150	200	250	300	350	400	450	500	550	600	650	700	750	800
A	188	238	288	338	388	438	488	538	588	638	688	738	788	838	888	938
В	0	1	1	2	2	3	3	4	4	5	5	6	6	7	7	8
C	4	6	6	8	8	10	10	12	12	14	14	16	16	18	18	20
D	0	0	100	200	200	300	300	400	400	500	500	600	600	700	700	800
E	2	2	3	3	3	3	3	3	3	3	3	3	3	3	3	3
F	0	85	85	185	185	285	285	385	385	485	485	585	585	685	685	785
G	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Н	189	214	239	264	289	314	339	364	389	414	439	464	489	514	539	564
J	19.5	32	19.5	32	19.5	32	19.5	32	19.5	32	19.5	32	19.5	32	44.5	19.5
K	1	1	1	1	1	1	2	2	2	2	2	2	3	3	3	3
M	150	150	200	200	250	250	150	150	175	175	200	200	150	150	150	175
N	2	2	2	2	2	2	3	3	3	3	3	3	4	4	4	4
Z: Stroke	50	75	100	125	150	175	200									
R	1	2	2	3	3	4	4									
Т	4	6	6	8	8	10	10									
V	140	165	190	215	240	265	290									

Cable track size	CT	CTM	CTL	CTXL
Q	18	30	45	63
S1	84.5	96.5	109.5	-
S2	48.5	55	61.5	-
* Dimensions Q, S1 a	and S2 o	hange	depend	ing on

* Dimensions Q, S1 and S2 change depending or the size of the cable track.

The photograph above shows the configuration direction "1" where both the first wiring and second wiring have cable tracks. Please refer to P.3 for other configuration directions.

SM type: Y ultra high speed/Z medium speed (Unit: kg)										
Z-axis stroke (mm) deceleration (G)	50~200 (Every 25mm)									
0.1	3									
0.3	2.5									
0.5	2.5									

SH type: Y ultra high speed/Z high speed

Z-axis stroke (mm) deceleration (G)	
0.1	1.5
0.3	1.5
0.5	1.5

When both Y and Z axes have the same acceleration/deceleration.

When there is significant vibration, decrease the speed and acceleration/deceleration as required.

S	troke							
Z-axi	s stroke (mm)	m) 50 75		100	125	150	175	200
	50	0	0	0	0	0	0	0
	100	0	0	0	0	0	0	0
	150	0	0	0	0	0	0	0
	200	0	0	0	0	0	0	0
	250	0	0	0	0	0	0	0
(mm)	300	0	0	0	0	0	0	0
<u></u>	350	0	0	0	0	0	0	0
stroke (400	0	0	0	0	0	0	0
str	450	0	0	0	0	0	0	0
Y-axis	500	0	0	0	0	0	0	0
7	550	0	0	0	0	0	0	0
	600	0	0	0	0	0	0	0
	650	0	0	0	0	0	0	0
	700	0	0	0	0	0	0	0
	750	0	0	0	0	0	0	0
	800	0	0	0	0	0	0	0

Applicable Controllers

Controllers are sold separately. Please refer to each controller page.

Type	Axis configuration	Applicable controllers	Reference page	
		PCON-CFB/CGFB	P-149	
		PCON-CYB/PLB/POB	Please contact IAI	
PM1	Y-axis : SA7C	MCON-C/CG	P-153	
	Z-axis : TA6R	MCON-LC/LCG	P-155	
		MSEL	P-139	
PM2		RCON-PC	P-159	
	PM1	PM1 Y-axis : SA7C Z-axis : TA6R	PM1 Y-axis : SA7C MCON-CFB/CGFB PM1 Y-axis : SA7C MCON-CYB/PLB/POB Z-axis : TA6R MCON-LC/LCG MSEL	

* Operation is possible with the high output setting specification. When connecting to the MCON controller, "HIGH OUTPUT SETTING SPECIFICATION" must be selected. Please contact IAI regarding use with the high-output setting disabled.

Second wiring

(Z-axis side)

0

Cannot be

selected *

0

Cable Length										
Туре	Cable code	Length								
	1L	1m								
Standard type	3L	3m								
Stanuaru type	5L	5m								
		Specified length (15m max.)								

Note 1. All-axis standard cable is used. Note 2. The length of the second axis cable is from the exit of the cable track.

A separate robot cable is included for wiring inside the cable track. Note 3. The standard lengths are 1m, 3m and 5m, but other lengths can be specified in 1m increments up to 15m.

Specifications										
ltem		Y-axis	Z-axis							
Axis configuratio	n	RCP6-SA7C	RCP6-TA6R							
Stroke		50 ~ 800mm (Every 50mm)	50 ~ 200mm (Every 25mm)							
May good *	SM	640mm/s	280mm/s							
Max speed *	SH	640mm/s	440mm/s							
Motor size		56 Stepper motor	42□ Stepper motor							
Ball screw	SM	24mm	бmm							
lead	SH	24000	12mm							
Drive system		Ball screw Φ12mm rolled C10	Ball screw Φ10mm rolled C10							
Positioning repea	atability	±0.01mm								
Base material		Aluminum								
Ambient operating temperature, humidity		0~40°C, 85% RH or less (non-condensing)								

* The maximum speed may not be reached if the travel distance is short or acceleration is low.

Maximum speed may change depending on the stroke.

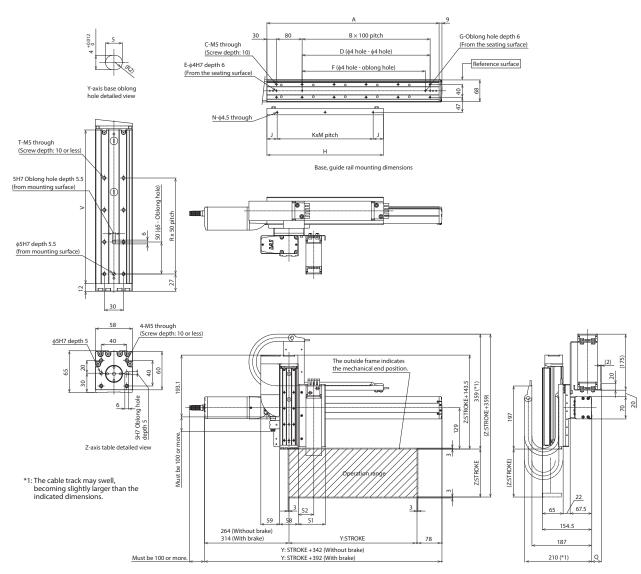
For details, refer to the Maximum Speed by Stroke table on P.137.

Cable Track Reference First wiring Type Model (Y-axis side) page Without cable track (cable only) Ν Cable track S size (inner width: 38mm) СТ 0 Cable track M size (inner width: 50mm) СТМ See 0 Cable track L size (inner width: 63mm) P.136 CTL

Cable track XL size (inner width: 80mm) * CTXL

* Only the first wiring can be selected

Туре	Option code	Reference page	Y-axis	Z-axis								
Brake *	В	See P.134	0	Standard equipment *								
Cable exit direction (Top)	CJT	See P.134	0									
Cable exit direction (Right)	CJR	See P.134	0	Cannot be								
Cable exit direction (Left)	CJL	See P.134	0	selected								
Cable exit direction (Bottom)	CJB	See P.134	0									
Non-motor end specification	NM	See P.135	0	0								
Slider section roller specification	SR	See P.135	0	Cannot be selected								


* Be sure to specify. * Brake option for Y-axis increases the length of the motor unit.

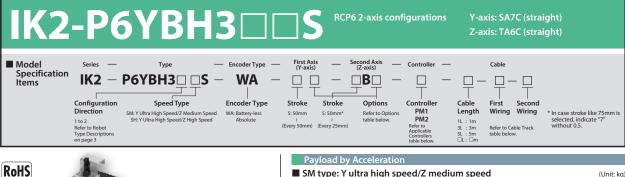
Please contact IAI for more information.

Note 1. The configuration position in the figure is home. Note 2. The diagram shows the configuration direction "1" where both the first wiring and second wiring have cable tracks.

Note 2. The diagram shows the configuration direction 1 where both the first wiring and second wiring have cable tracks. Note 3. For details on the cable track and cable track moving end bracket, refer to P.136.

(*) Notes

The Y-axis cable track guide rail is to be fixed to the Y-axis mounting surface by the customer. Please note that there will be an overhang outside the Y-axis mounting surface. Also, the moving end of the Z-axis cable track is to be fixed to a plate or the like mounted on the Z-axis table by the customer.


Dimensions by Stroke

Y: Stroke	50	100	150	200	250	300	350	400	450	500	550	600	650	700	750	800
A	188	238	288	338	388	438	488	538	588	638	688	738	788	838	888	938
В	0	1	1	2	2	3	3	4	4	5	5	6	6	7	7	8
C	4	6	6	8	8	10	10	12	12	14	14	16	16	18	18	20
D	0	0	100	200	200	300	300	400	400	500	500	600	600	700	700	800
E	2	2	3	3	3	3	3	3	3	3	3	3	3	3	3	3
F	0	85	85	185	185	285	285	385	385	485	485	585	585	685	685	785
G	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Н	189	214	239	264	289	314	339	364	389	414	439	464	489	514	539	564
J	19.5	32	19.5	32	19.5	32	19.5	32	19.5	32	19.5	32	19.5	32	44.5	19.5
K	1	1	1	1	1	1	2	2	2	2	2	2	3	3	3	3
M	150	150	200	200	250	250	150	150	175	175	200	200	150	150	150	175
N	2	2	2	2	2	2	3	3	3	3	3	3	4	4	4	4
								1								
Z: Stroke	50	75	100	125	150	175	200									
R	1	2	2	3	3	4	4									
Т	4	6	6	8	8	10	10									
V	140	165	190	215	240	265	290									

Cable track size	CT	CTM	CTL	CTXL
Q	18	30	45	63
S1	84.5	96.5	109.5	-
S2	48.5	55	61.5	-
* Dimensions Q, S1 a	and S2 o	hange	depend	ing on

^{*} Dimensions Q, S1 and S2 change depending of the size of the cable track.

The photograph above shows the configuration direction "1" where both the first wiring and second wiring have cable tracks. Please refer to P.3 for other configuration directions.

SM type: Y ultra high	speed/Z medium speed	(Unit: kg)
Z-axis stroke (mm) deceleration (G)	50~200 (Every 25mm)	
0.1	3	
0.3	2.5	
0.5	2.5	

SH type: Y ultra high speed/Z high speed

Z-axis stroke (mm) deceleration (G)	50~200 (Every 25mm)
0.1	1.5
0.3	1.5
0.5	1.5

When both Y and Z axes have the same acceleration/deceleration.

When there is significant vibration, decrease the speed and acceleration/deceleration as required.

S	troke							
Z-axi	s stroke (mm)	50	75	100	125	150	175	200
	50	0	0	0	0	0	0	0
	100	0	0	0	0	0	0	0
	150	0	0	0	0	0	0	0
	200	0	0	0	0	0	0	0
	250	0	0	0	0	0	0	0
Ê	300	0	0	0	0	0	0	0
Ē	350	0	0	0	0	0	0	0
stroke (mm)	400	0	0	0	0	0	0	0
	450	0	0	0	0	0	0	0
Y-axis	500	0	0	0	0	0	0	0
×	550	0	0	0	0	0	0	0
	600	0	0	0	0	0	0	0
	650	0	0	0	0	0	0	0
	700	0	0	0	0	0	0	0
	750	0	0	0	0	0	0	0
	800	0	0	0	0	0	0	0

Applicable Controllers

Controllers are sold separately.

Please refer to each controller page		Please	reier	ιο	each	controller	page
--------------------------------------	--	--------	-------	----	------	------------	------

Type	Axis configuration	Applicable controllers	Reference page
		PCON-CFB/CGFB	P-149
		PCON-CYB/PLB/POB	Please contact IAI
PM1	Y-axis : SA7C	MCON-C/CG	P-153
	Z-axis : TA6C	MCON-LC/LCG	P-155
		MSEL	P-139
PM2		RCON-PC	P-159

* Operation is possible with the high output setting specification. When connecting to the MCON controller, "HIGH OUTPUT SETTING SPECIFICATION" must be selected. Please contact IAI regarding use with the high-output setting disabled.

Cable Leng	th	
Туре	Cable code	Length
	1L	1m
Standard type	3L	3m
Standard type	5L	5m
		Specified length (15m max.)

Note 1 All-axis standard cable is used

Note 2. The length of the second axis cable is from the exit of the cable track.

A separate robot cable is included for wiring inside the cable track. Note 3. The standard lengths are 1m, 3m and 5m, but other lengths can be specified in 1m increments up to 15m.

Specifications

specificatio	0115				
ltem		Y-axis	Z-axis		
Axis configuratio	n	RCP6-SA7C	RCP6-TA6C		
Stroke		50 ~ 800mm (Every 50mm)	50 ~ 200mm (Every 25mm)		
Max speed * SM		640mm/s	280mm/s		
Max speed	SH	0401111/5	440mm/s		
Motor size		56 Stepper motor	42 Stepper motor		
Ball screw	SM	24mm	6mm		
lead	SH	24000	12mm		
Drive system		Ball screw Φ12mm rolled C10	Ball screw Φ10mm rolled C10		
Positioning repea	atability	±0.01mm	^		
Base material		Aluminum			
Ambient operatir temperature, hur		0~40°C, 85% RH or less (non	-condensing)		

* The maximum speed may not be reached if the travel distance is short or acceleration is low.

Maximum speed may change depending on the stroke.

For details, refer to the Maximum Speed by Stroke table on P.137.

Second wiring Reference First wiring Type Model (Z-axis side) (Y-axis side) page Without cable track (cable only) Ν Cable track S size (inner width: 38mm) СТ Cable track M size (inner width: 50mm) стм See Cable track L size (inner width: 63mm) P.136 0 0 CTL Cannot be Cable track XL size (inner width: 80mm) * CTXL 0 selected *

* Only the first wiring can be selected

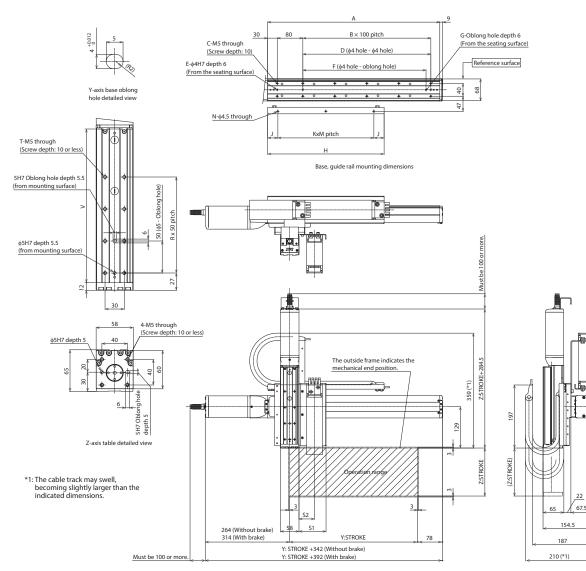
Cable Track

Options * Please check the Options reference pages to confirm each option.

Туре	Option code	Reference page	Y-axis	Z-axis
Brake *	В	See P.134	0	Standard equipment *
Cable exit direction (Top)	CJT	See P.134	0	
Cable exit direction (Right)	CJR	See P.134	0	Cannot be
Cable exit direction (Left)	CJL	See P.134	0	selected
Cable exit direction (Bottom)	CJB	See P.134	0	
Non-motor end specification	NM	See P.135	0	0
Slider section roller specification	SR	See P.135	0	Cannot be selected

* Be sure to specify. * Brake option for Y-axis increases the length of the motor unit. Please contact IAI for more information.

20


<u>ا</u>ر ا

Dimensions

CAD drawings can be downloaded from our website. www.intelligentactuator.com

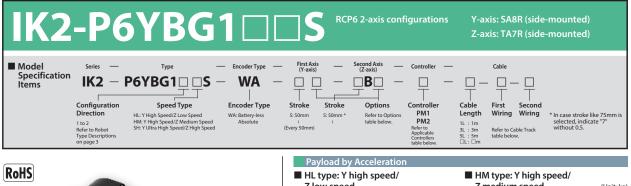
3D CAD Note 1. The configuration position in the figure is home. Note 2. The diagram shows the configuration direction "1" where both the first wiring and second wiring have cable tracks.

Note 3. For details on the cable track and cable track moving end bracket, refer to P.136.

(*) Notes

The Y-axis cable track guide rail is to be fixed to the Y-axis mounting surface by the customer. Please note that there will be an overhang outside the Y-axis mounting surface. Also, the moving end of the Z-axis cable track is to be fixed to a plate or the like mounted on the Z-axis table by the customer.

Dimensions by Stroke


Y: Stroke	50	100	150	200	250	300	350	400	450	500	550	600	650	700	750	800
A	188	238	288	338	388	438	488	538	588	638	688	738	788	838	888	938
В	0	1	1	2	2	3	3	4	4	5	5	6	6	7	7	8
C	4	6	6	8	8	10	10	12	12	14	14	16	16	18	18	20
D	0	0	100	200	200	300	300	400	400	500	500	600	600	700	700	800
E	2	2	3	3	3	3	3	3	3	3	3	3	3	3	3	3
F	0	85	85	185	185	285	285	385	385	485	485	585	585	685	685	785
G	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Н	189	214	239	264	289	314	339	364	389	414	439	464	489	514	539	564
J	19.5	32	19.5	32	19.5	32	19.5	32	19.5	32	19.5	32	19.5	32	44.5	19.5
K	1	1	1	1	1	1	2	2	2	2	2	2	3	3	3	3
M	150	150	200	200	250	250	150	150	175	175	200	200	150	150	150	175
N	2	2	2	2	2	2	3	3	3	3	3	3	4	4	4	4
								1								
Z: Stroke	50	75	100	125	150	175	200									
R	1	2	2	3	3	4	4									
Т	4	6	6	8	8	10	10									
V	140	165	190	215	240	265	290									

Cable track size	СТ	CTM	CTL	CTXL
Q	18	30	45	63
S1	84.5	96.5	109.5	-
S2	48.5	55	61.5	-
* Dimensions Q, S1 a	and S2 d	hange	depend	ing on

* Dimensions Q, 51 and 52 change depending o the size of the cable track.

0.3

HL type: Y hi Z low speed	gh speed/		
Z-axis stroke (mm) Acceleration/ deceleration (G)		250	300
0.1	8	3	
0.3	e	5	
0.5	`	, 	
	tra high spe	-	
SH type: Y ul	tra high spe l	-	300
SH type: Y ul Z high speed Z-axis stroke (mm) Acceleration/	tra high spe 50~200	ed/	300

Z medium sp	Unit: kg)			
Z-axis stroke (mm) Acceleration/ deceleration (G)		250	300	
0.1	4			
0.3	3			
0.5	:	3		

The photograph above shows the configuration direction "1" where both the first wiring and second wiring have cable tracks. Please refer to P.3 for other configuration directions.

* When both Y and Z axes have the same acceleration/deceleration. When there is significant vibration, decrease the speed and acceleration/deceleration as required.

2.5

S	Stroke											
Z-ax	is stroke (mm)	50	75	100	125	150	175	200	250	300		
	50	0	0	0	0	0	0	0	0	0		
	100	0	0	0	0	0	0	0	0	0		
	150	0	0	0	0	0	0	0	0	0		
	200	0	0	0	0	0	0	0	0	0		
	250	0	0	0	0	0	0	0	0	0		
	300	0	0	0	0	0	0	0	0	0		
	350	0	0	0	0	0	0	0	0	0		
	400	0	0	0	0	0	0	0	0	0		
stroke (mm)	450	0	0	0	0	0	0	0	0	0		
e L	500	0	0	0	0	0	0	0	0	0		
, Š	550	0	0	0	0	0	0	0	0	0		
str	600	0	0	0	0	0	0	0	0	0		
Y-axis	650	0	0	0	0	0	0	0	0	0		
	700	0	0	0	0	0	0	0	0	0		
1	750	0	0	0	0	0	0	0	0	0		
	800	0	0	0	0	0	0	0	0	0		
	850	0	0	0	0	0	0	0	0	0		
	900	0	0	0	0	0	0	0	0	0		
	950	0	0	0	0	0	0	0	0	0		
	1000	0	0	0	0	0	0	0	0	0		
	1050	0	0	0	0	0	0	0	0	0		
	1100	0	0	0	0	0	0	0	0	0		

Applicable Controllers

Controllers are sold separately. Please refer to each controller page.

Type	Axis configuration	Applicable controllers	Reference page		
	Y-axis :	PCON-CFB/CGFB	P-149		
	SA8R	MSEL-PCF/PGF	P-139		
	Z-axis : TA7R	PCON-CB/CGB	P-149		
PM1		Z-axis : PCON-CYB/PLB/POB			
		MCON-C/CG	P-153		
		MCON-LC/LCG	P-155		
		MSEL	P-139		
PM2	Y-axis : SA8R	RCON-PFC	P-159		
F IVIZ	Z-axis : TA7R	RCON-PC	F-135		

* Operation is possible with the high output setting specification. When connecting to the MCON controller, "HIGH OUTPUT SETTING SPECIFICATION" must be selected.

Please contact IAI regarding use with the high-output setting disabled.

Cable Length

Strok

Туре	Cable code	Length			
	1L	1m			
Standard type	3L	3m			
Stanuaru type	5L	5m			
		Specified length (15m max.)			

Note 1. All-axis standard cable is used.

Note 2. The length of the second axis cable is from the exit of the cable track. A separate robot cable is included for wiring inside the cable track.

Note 3. The standard lengths are 1m, 3m and 5m, but other lengths can be specified in 1m increments up to 15m.

Specifications

ltem		Y-axis	Z-axis			
Axis configuration		RCP6-SA8R	RCP6-TA7R			
Stroke		50 ~ 1100mm (Every 50mm)	50 ~ 200 (Every 25mm), 250, 300mm			
	HL	400mm/s	140mm/s			
Max speed *	HM	40011111/5	280mm/s			
	SH	650mm/s	420mm/s			
Motor size		56 High thrust stepper motor	56 Stepper motor			
Ball screw	HL	20mm	4mm			
lead	HM	2011111	8mm			
leau	SH	30mm	16mm			
Drive system		Ball screw Φ16mm rolled C10	Ball screw Φ12mm rolled C10			
Positioning rep	eatability	±0.01mm				
Base material		Aluminum				
Ambient operating temperature, humidity		0~40°C, 85% RH or less (non-condensing)				

* The maximum speed may not be reached if the travel distance is short or acceleration is low.

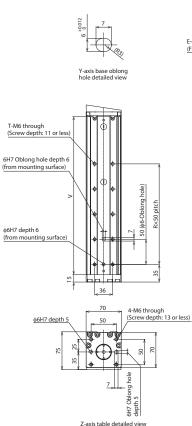
Maximum speed may change depending on the stroke. For details, refer to the Maximum Speed by Stroke table on P.137.

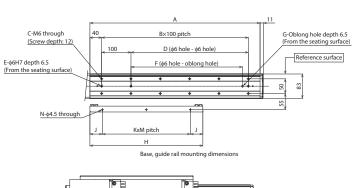
Cable Track

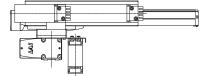
Туре	Model	Reference page	First wiring (Y-axis side)	Second wiring (Z-axis side)
Without cable track (cable only)	N		-	-
Cable track S size (inner width: 38mm)	СТ	1	0	0
Cable track M size (inner width: 50mm)	СТМ	See	0	0
Cable track L size (inner width: 63mm)	CTL	P.136	0	0
Cable track XL size (inner width: 80mm) *	CTXL		0	Cannot be selected *

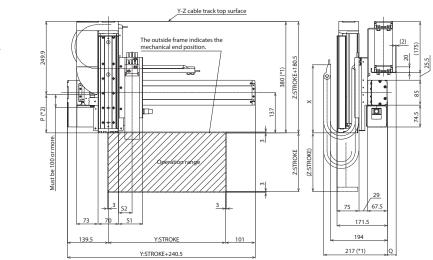
* Only the first wiring can be selected

Options * Please check the Options reference pages to confirm each option.


Туре	Option code	Reference page	Y-axis	Z-axis
Brake	В	See P.134	0	Standard equipment *
Cable exit direction (Outside)	CIO	See P.134	0	Cannot be selected
Non-motor end specification	NM	See P.135	0	0
Slider section roller specification	SR	See P.135	0	Cannot be selected


* Be sure to specify.


CAD drawings can be downloaded from our website. WWW.intelligentactuator.com


Note 1. The configuration position in the figure is home.

Note 2. The diagram shows the configuration direction "1" where both the first wiring and second wiring have cable tracks. Note 3. For details on the cable track and cable track moving end bracket, refer to P.136.

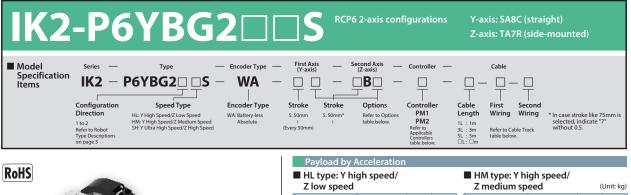
(*) Notes

*1: The cable track may swell, becoming slightly larger than the indicated dimensions.

*2: A negative number for P means that the edge of the motor unit is located frontward past the end face of the table.

The Y-axis cable track guide rail is to be fixed to the Y-axis mounting surface by the customer. Please note that there will be an overhang outside the Y-axis mounting surface. Also, the moving end of the Z-axis cable track is to be fixed to a plate or the like mounted on the Z-axis table by the customer.

Dimensions by Stroke


Y: Stroke	50	100	150	200	250	300	350	400	450	500	550	600	650	700	750	800	850	900	950	1000	1050	1100
A	230	280	330	380	430	480	530	580	630	680	730	780	830	880	930	980	1030	1080	1130	1180	1230	1280
В	1	2	2	3	3	4	4	5	5	6	6	7	7	8	8	9	9	10	10	11	11	12
C	4	6	6	8	8	10	10	12	12	14	14	16	16	18	18	20	20	22	22	24	24	26
D	0	100	100	200	200	300	300	400	400	500	500	600	600	700	700	800	800	900	900	1000	1000	1100
E	2	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
F	0	0	80	180	180	280	280	380	380	480	480	580	580	680	680	780	780	880	880	980	980	1080
G	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Н	210	235	260	285	310	335	360	385	410	435	460	485	510	535	560	585	610	635	660	685	710	735
J	30	42.5	30	42.5	30	42.5	30	42.5	30	42.5	30	42.5	30	42.5	55	30	42.5	55	30	42.5	55	17.5
К	1	1	1	1	2	2	2	2	2	2	2	2	3	3	3	3	3	3	3	3	3	4
M	150	150	200	200	125	125	150	150	175	175	200	200	150	150	150	175	175	175	200	200	200	175
N	2	2	2	2	3	3	3	3	3	3	3	3	4	4	4	4	4	4	4	4	4	5

Z: Stroke	50	75	100	125	150	175	200	250	300
P (*2)	-19.4	5.6	30.6	55.6	80.6	105.6	130.6	180.6	230.6
R	1	2	2	3	3	4	4	5	6
Т	4	6	6	8	8	10	10	12	14
V	164	189	214	239	264	289	314	364	414
Х	188			232					

00		Cable	СТ	СТМ	CTL	СТХІ					
30		track size	CI	CTIVI	CIL	CIAL					
2		Q	18	30	45	63					
5		S1	82	94	107	-					
00		S2	46	52.5	59	-					
	* Dimensions O S1 and S2 change										

^e Dimensions Q, S1 and S2 change depending on the size of the cable track.

0.3

Payload by A	cceleration					
HL type: Y hig Z low speed	gh speed/					
Z-axis stroke (mm) Acceleration/ deceleration (G)	50~200 (Every 25mm)	250	300	Aco		
0.1	8					
0.3	6					
SH type: Y ult Z high speed	tra high spe	ed/				
Z-axis stroke (mm) Acceleration/ deceleration (G)	50~200 (Every 25mm)	250	300			
0.1	3	3				

Z medium sp		(Unit: kg)		
Z-axis stroke (mm) Acceleration/ deceleration (G)	50~200 (Every 25mm)	250	300		
0.1	4	1			
0.3	3				
0.5		3			

The photograph above shows the configuration direction "1" where both the first wiring and second wiring have cable tracks. Please refer to P.3 for other configuration directions.

* When both Y and Z axes have the same acceleration/deceleration. When there is significant vibration, decrease the speed and acceleration/deceleration as required.

2.5

Z-axis stroke (mm) 50 75 100 125 150 175 200 250 300 50 100 0 0 0 0 0 0 0 0 0 150 0 0 Ō 200 250 300 350 400 450 (mu 500 0 0 0 0 0 0 0 0 Y-axis stroke 550 0 0 600 Ō Ō Ō 650 Õ Õ Õ Õ 0 0 0 700 750 800 850 900 950 0 0 0 0 0 0 0 Ō 1000 1050 Õ Õ Õ Õ 1100

Applicable Controllers

Controllers are sold separately. Please refer to each controller page.

Туре	Axis configuration	Applicable controllers	Reference page		
	Y-axis :	PCON-CFB/CGFB	P-149		
	SA8C	MSEL-PCF/PGF	P-139		
	Z-axis : TA7R	PCON-CB/CGB	P-149		
PM1		PCON-CYB/PLB/POB	Please contact IAI		
		P-153			
		MCON-LC/LCG	P-155		
		MSEL	P-139		
PM2	Y-axis : SA8C RCON-PFC		P-159		
PIVIZ	Z-axis : TA7R	RCON-PC	r-159		

* Operation is possible with the high output setting specification. When connecting to the MCON controller, "HIGH OUTPUT SETTING SPECIFICATION" must be selected.

Please contact IAI regarding use with the high-output setting disabled.

Cable Length

Туре	Cable code	Length
	1L	1m
Standard type	3L	3m
Stanuaru type	5L	5m
		Specified length (15m max.)

Note 1. All-axis standard cable is used.

Note 2. The length of the second axis cable is from the exit of the cable track. A separate robot cable is included for wiring inside the cable track.

Note 3. The standard lengths are 1m, 3m and 5m, but other lengths can be specified in 1m increments up to 15m.

Chacifications

Specifica	itions						
ltem		Y-axis	Z-axis				
Axis configura	tion	RCP6-SA8C	RCP6-TA7R				
Stroke		50 ~ 1100mm (Every 50mm)	50 ~ 200 (Every 25mm), 250, 300mm				
	HL	400mm/s	140mm/s				
Max speed *	HM	400mm/s	280mm/s				
	SH	650mm/s	420mm/s				
Motor size		56 High thrust stepper motor	56 Stepper motor				
Ball screw	HL	20mm	4mm				
lead	HM	2011111	8mm				
leau	SH	30mm	16mm				
Drive system		Ball screw Φ16mm rolled C10	Ball screw Φ12mm rolled C10				
Positioning rep	eatability	±0.01mm					
Base material		Aluminum					
Ambient operating temperature, humidity		0~40°C, 85% RH or less (non-condensing)					

* The maximum speed may not be reached if the travel distance is short or acceleration is low.

Maximum speed may change depending on the stroke. For details, refer to the Maximum Speed by Stroke table on P.137.

Cable Track

Туре	Model	Reference page	First wiring (Y-axis side)	Second wiring (Z-axis side)
Without cable track (cable only)	N		-	-
Cable track S size (inner width: 38mm)	СТ	1	0	0
Cable track M size (inner width: 50mm)	СТМ	See	0	0
Cable track L size (inner width: 63mm)	CTL	P.136	0	0
Cable track XL size (inner width: 80mm) *	CTXL		0	Cannot be selected *

* Only the first wiring can be selected

Options * Please check the Options reference pages to confirm each option.

Туре	Option code	Reference page	Y-axis	Z-axis
Brake *	В	See P.134	0	Standard equipment *
Cable exit direction (Top)	CJT	See P.134	0	
Cable exit direction (Right)	CJR	See P.134	0	Cannot be
Cable exit direction (Left)	CJL	See P.134	0	selected
Cable exit direction (Bottom)	CJB	See P.134	0	
Non-motor end specification	NM	See P.135	0	0
Slider section roller specification	SR	See P.135	0	Cannot be selected


* Be sure to specify.

* Brake option for Y-axis increases the length of the motor unit. Please contact IAI for more information.

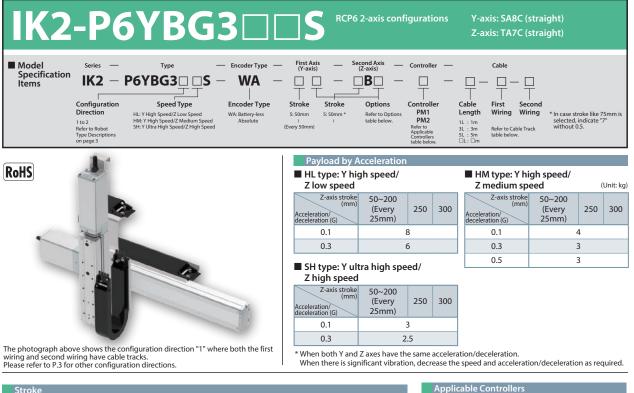
Note 1. The configuration position in the figure is home.

Note 2. The diagram shows the configuration direction "1" where both the first wiring and second wiring have cable tracks. Note 3. For details on the cable track and cable track moving end bracket, refer to P.136.

(*) Notes

The Y-axis cable track guide rail is to be fixed to the Y-axis mounting surface by the customer. Please note that there will be an overhang outside the Y-axis mounting surface. Also, the moving end of the Z-axis cable track is to be fixed to a plate or the like mounted on the Z-axis table by the customer.

Dimensions by Stroke


Y: Stroke	50	100	150	200	250	300	350	400	450	500	550	600	650	700	750	800	850	900	950	1000	1050	1100
A	230	280	330	380	430	480	530	580	630	680	730	780	830	880	930	980	1030	1080	1130	1180	1230	1280
В	1	2	2	3	3	4	4	5	5	6	6	7	7	8	8	9	9	10	10	11	11	12
C	4	6	6	8	8	10	10	12	12	14	14	16	16	18	18	20	20	22	22	24	24	26
D	0	100	100	200	200	300	300	400	400	500	500	600	600	700	700	800	800	900	900	1000	1000	1100
E	2	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
F	0	0	80	180	180	280	280	380	380	480	480	580	580	680	680	780	780	880	880	980	980	1080
G	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Н	210	235	260	285	310	335	360	385	410	435	460	485	510	535	560	585	610	635	660	685	710	735
J	30	42.5	30	42.5	30	42.5	30	42.5	30	42.5	30	42.5	30	42.5	55	30	42.5	55	30	42.5	55	17.5
К	1	1	1	1	2	2	2	2	2	2	2	2	3	3	3	3	3	3	3	3	3	4
M	150	150	200	200	125	125	150	150	175	175	200	200	150	150	150	175	175	175	200	200	200	175
N	2	2	2	2	3	3	3	3	3	3	3	3	4	4	4	4	4	4	4	4	4	5

Z: Stroke	50	75	100	125	150	175	200	250	300
P (*2)	-19.4	5.6	30.6	55.6	80.6	105.6	130.6	180.6	230.6
R	1	2	2	3	3	4	4	5	6
Т	4	6	6	8	8	10	10	12	14
V	164	189	214	239	264	289	314	364	414
Х		188				23	32		

00 80		Cable track size	СТ	СТМ	CTL	CTXL		
2		Q	18	30	45	63		
5		S1	82	94	107	-		
00		S2	46	52.5	59	-		
	* Dimensions Q, S1 and S2 chang							

* Dimensions Q, S1 and S2 change depending on the size of the cable track.

-	поке									
Z-ax	is stroke (mm)	50	75	100	125	150	175	200	250	300
	50	0	0	0	0	0	0	0	0	0
	100	0	0	0	0	0	0	0	0	0
	150	0	0	0	0	0	0	0	0	0
	200	0	0	0	0	0	0	0	0	0
	250	0	0	0	0	0	0	0	0	0
	300	0	0	0	0	0	0	0	0	0
	350	0	0	0	0	0	0	0	0	0
	400	0	0	0	0	0	0	0	0	0
(mm)	450	0	0	0	0	0	0	0	0	0
	500	0	0	0	0	0	0	0	0	0
stroke	550	0	0	0	0	0	0	0	0	0
	600	0	0	0	0	0	0	0	0	0
Y-axis	650	0	0	0	0	0	0	0	0	0
Y-a	700	0	0	0	0	0	0	0	0	0
⁻	750	0	0	0	0	0	0	0	0	0
	800	0	0	0	0	0	0	0	0	0
	850	0	0	0	0	0	0	0	0	0
	900	0	0	0	0	0	0	0	0	0
	950	0	0	0	0	0	0	0	0	0
	1000	0	0	0	0	0	0	0	0	0
	1050	0	0	0	0	0	0	0	0	0
	1100	0	0	0	0	0	0	0	0	0

Applicable Controllers

Controllers are sold separately.

Please refer to each controller page.

Type	Axis configuration	Applicable controllers	Reference page		
	Y-axis :	PCON-CFB/CGFB	P-149		
	SA8C	MSEL-PCF/PGF	P-139		
	M1 Z-axis :	PCON-CB/CGB	P-149		
PM1		PCON-CYB/PLB/POB	Please contact IAI		
	TA7C	TA7C MCON-C/CG			
		MCON-LC/LCG	P-153		
		MSEL	P-139		
PM2	Y-axis : SA8C	RCON-PFC	P-159		
PIVIZ	Z-axis : TA7C	RCON-PC			

Operation is possible with the high output setting specification. When connecting to the MCON controller, "HIGH OUTPUT SETTING SPECIFICATION" must be selected

Please contact IAI regarding use with the high-output setting disabled.

Cable Length

Type	Cable code	Length			
	1L	1m			
Characterial transm	3L	3m			
Standard type	5L	5m			
		Specified length (15m max.)			

Note 1. All-axis standard cable is used. Note 2. The length of the second axis cable is from the exit of the cable track.

A separate robot cable is included for wiring inside the cable track. Note 3. The standard lengths are 1m, 3m and 5m, but other lengths can be specified in 1m increments up to 15m.

Specifications

specifica						
ltem		Y-axis	Z-axis			
Axis configura	tion	RCP6-SA8C	RCP6-TA7C			
Stroke		50 ~ 1100mm (Every 50mm)	50 ~ 200 (Every 25mm), 250, 300mm			
	HL	400mm/s	140mm/s			
Max speed *	HM	400mm/s	280mm/s			
	SH	650mm/s	420mm/s			
Motor size		56 High thrust stepper motor	56 Stepper motor			
Ball screw	HL	20mm	4mm			
	HM	20mm	8mm			
lead	SH	30mm	16mm			
Drive system		Ball screw Φ16mm rolled C10	Ball screw Φ12mm rolled C10			
Positioning rep	eatability	±0.01mm				
Base material		Aluminum				
Ambient operating temperature, humidity		0~40°C, 85% RH or less (non-condensing)				

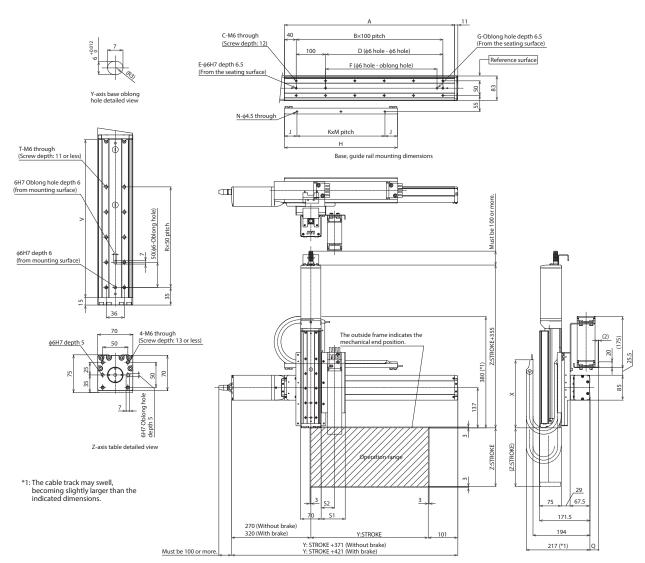
* The maximum speed may not be reached if the travel distance is short or acceleration is low. Maximum speed may change depending on the stroke.

For details, refer to the Maximum Speed by Stroke table on P.137.

Cable Track

Туре	Model	Reference page	First wiring (Y-axis side)	Second wiring (Z-axis side)
Without cable track (cable only)	N		-	-
Cable track S size (inner width: 38mm)	СТ		0	0
Cable track M size (inner width: 50mm)	СТМ	See	0	0
Cable track L size (inner width: 63mm)	CTL	P.136	0	0
Cable track XL size (inner width: 80mm) *	CTXL		0	Cannot be selected *

* Only the first wiring can be selected


Options * Please check the Options reference pages to confirm each option.

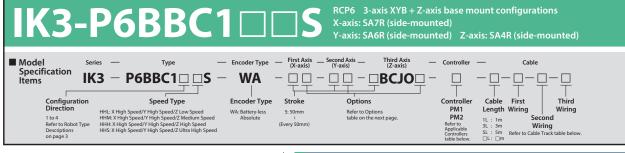
Туре	Option code	Reference page	Y-axis	Z-axis
Brake *	В	See P.134	0	Standard equipment *
Cable exit direction (Top)	CJT	See P.134	0	
Cable exit direction (Right)	CJR	See P.134	0	Cannot be
Cable exit direction (Left)	CJL	See P.134	0	selected
Cable exit direction (Bottom)	CJB	See P.134	0	
Non-motor end specification	NM	See P.135	0	0
Slider section roller specification	SR	See P.135	0	Cannot be selected

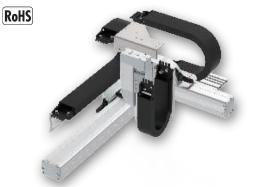
* Be sure to specify. * Brake option for Y-axis increases the length of the motor unit. Please contact IAI for more information.

CAD drawings can be downloaded from our website. WWW.intelligentactuator.com Note 1. The configuration position in the figure is home.

Note 2. The diagram shows the configuration direction "1" where both the first wiring and second wiring have cable tracks. Note 3. For details on the cable track and cable track moving end bracket, refer to P.136.

(*) Notes


The Y-axis cable track guide rail is to be fixed to the Y-axis mounting surface by the customer. Please note that there will be an overhang outside the Y-axis mounting surface. Also, the moving end of the Z-axis cable track is to be fixed to a plate or the like mounted on the Z-axis table by the customer.


Dimensions by Stroke

	V Charles 50, 100, 150, 200, 250, 200, 250, 400, 450, 500, 550, 600, 650, 700, 750, 000, 050, 000, 050, 1000, 1050, 1100																					
Y: Stroke	50	100	150	200	250	300	350	400	450	500	550	600	650	700	750	800	850	900	950	1000	1050	1100
A	230	280	330	380	430	480	530	580	630	680	730	780	830	880	930	980	1030	1080	1130	1180	1230	1280
В	1	2	2	3	3	4	4	5	5	6	6	7	7	8	8	9	9	10	10	11	11	12
C	4	6	6	8	8	10	10	12	12	14	14	16	16	18	18	20	20	22	22	24	24	26
D	0	100	100	200	200	300	300	400	400	500	500	600	600	700	700	800	800	900	900	1000	1000	1100
E	2	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
F	0	0	80	180	180	280	280	380	380	480	480	580	580	680	680	780	780	880	880	980	980	1080
G	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
н	210	235	260	285	310	335	360	385	410	435	460	485	510	535	560	585	610	635	660	685	710	735
J	30	42.5	30	42.5	30	42.5	30	42.5	30	42.5	30	42.5	30	42.5	55	30	42.5	55	30	42.5	55	17.5
K	1	1	1	1	2	2	2	2	2	2	2	2	3	3	3	3	3	3	3	3	3	4
M	150	150	200	200	125	125	150	150	175	175	200	200	150	150	150	175	175	175	200	200	200	175
N	2	2	2	2	3	3	3	3	3	3	3	3	4	4	4	4	4	4	4	4	4	5
Z: Stroke	50	75	100	125	150	175	200	250	300													
R	1	2	2	3	3	4	4	5	6													
Т	4	6	6	8	8	10	10	12	14													
V	164	189	214	239	264	289	314	364	414													
Х		188 232																				

	Cable track size	СТ	СТМ	CTL	CTXL
	Q	18	30	45	63
	S1	82	94	107	-
	S2	46	52.5	59	-
1					

* Dimensions Q, S1 and S2 change depending on the size of the cable track.

Payload by Ad	celeration									
HHL type: X high s	peed/Y high spe	ed/Z low speed	HHM type: X high speed/Y high speed/Z medium speed (Unit: kg							
Y-axis (mm) Acceleration/ deceleration (G)	50~200	250~400 (Every 50mm)		Y-axis (mm) Acceleration/ deceleration (G)						
0.1	3 –			0.1	:	2				
0.3	0.3 3 -			0.3	2	1				
HHH type: X high s	peed/Y high spee	ed/Z high speed		HHS type: X high spe	ed/Y high speed/Z	ultra high speed				
Y-axis (mm) Acceleration/ deceleration (G)						400 50mm)				
0.1	1			0.1	.5					
0.3	1			0.3	0.5					
0.5		l		0.5 0.5						

The photograph above shows the configuration direction "1" where all axes have cable tracks. Please refer to P.3 for other configuration directions.

* When X, Y and Z axes all have the same acceleration/deceleration. When there is significant vibration, decrease the speed and acceleration/deceleration as required.

S	troke												
Y-a	Y-axis stroke (mm) 50					100			150			200	
Z-a	xis stroke (mm)	50	100	150	50	100	150	50	100	150	50	100	150
	50	0	0	0	0	0	0	0	0	0	0	0	0
	100	0	0	0	0	0	0	0	0	0	0	0	0
	150	0	0	0	0	0	0	0	0	0	0	0	0
	200	0	0	0	0	0	0	0	0	0	0	0	0
	250	0	0	0	0	0	0	0	0	0	0	0	0
(mm)	300	0	0	0	0	0	0	0	0	0	0	0	0
E	350	0	0	0	0	0	0	0	0	0	0	0	0
stroke	400	0	0	0	0	0	0	0	0	0	0	0	0
str	450	0	0	0	0	0	0	0	0	0	0	0	0
X-axis	500	0	0	0	0	0	0	0	0	0	0	0	0
×	550	0	0	0	0	0	0	0	0	0	0	0	0
	600	0	0	0	0	0	0	0	0	0	0	0	0
	650	0	0	0	0	0	0	0	0	0	0	0	0
	700	0	0	0	0	0	0	0	0	0	0	0	0
	750	0	0	0	0	0	0	0	0	0	0	0	0
	800	0	0	0	0	0	0	0	0	0	0	0	0

Y-a	axis stroke (mm)		250 *			300 *			350 *		400 *			
Z-a	axis stroke (mm)	50	100	150	50	100	150	50	100	150	50	100	150	
	50	0	0	0	0	0	0	0	0	0	0	0	0	
	100	0	0	0	0	0	0	0	0	0	0	0	0	
	150	0	0	0	0	0	0	0	0	0	0	0	0	
	200	0	0	0	0	0	0	0	0	0	0	0	0	
	250	0	0	0	0	0	0	0	0	0	0	0	0	
	300	0	0	0	0	0	0	0	0	0	0	0	0	
(mm)	350	0	0	0	0	0	0	0	0	0	0	0	0	
stroke	400	0	0	0	0	0	0	0	0	0	0	0	0	
s str	450	0	0	0	0	0	0	0	0	0	0	0	0	
-axis	500	0	0	0	0	0	0	0	0	0	0	0	0	
×	550	0	0	0	0	0	0	0	0	0	0	0	0	
	600	0	0	0	0 0		0	0	0	0	0	0	0	
	650	0	0	0	0	0	0	0	0	0	0	0	0	
	700	0	0	0	0	0	0	0	0	0	0	0	0	
	750	0	0	0	0	0	0	0	0	0	0	0	0	
	800	0	0	0	0	0	0	0	0	0	0	0	0	

* When the speed type "HHL" is selected, the maximum Y-axis stroke will be 200mm. (250mm or more cannot be selected.)

IK3 Cartesian Robot

Cable Length

Туре	Cable code	Length
	1L	1m
Standard	3L	3m
type	5L	5m
		Specified length (15m max.)

Note 1. All-axis standard cable is used.
 Note 2. The length of the second and third axis cable is from the exit of the cable track. A separate robot cable is included for wiring inside the cable track.
 Note 3. The standard lengths are 1m, 3m and 5m, but other lengths can be specified in 1m increments up to 15m.

Cable Track

Туре	Mode
Without cable track (cable only)	N
Cable track S size (inner width: 38mm)	СТ
Cable track M size (inner width: 50mm)	СТМ
Cable track L size (inner width: 63mm)	CTL
Cable track XL size (inner width: 80mm)	СТХІ

Model	Reference page	First wiring (X-axis lateral)	Second wiring (Y-axis lateral)	Third wiring (Z-axis lateral)	
N		0	0	0	
СТ		0	0	0	
СТМ	See P.136	0	0	0	
CTL	See P.150	0	0	Cannot be selected *1	
CTXL		0	Cannot be	selected *2	

*1 Only the first and second wiring can be selected *2 Only the first wiring can be selected

Applicable Controllers

Controllers are sold separately. Please refer to each controller page.

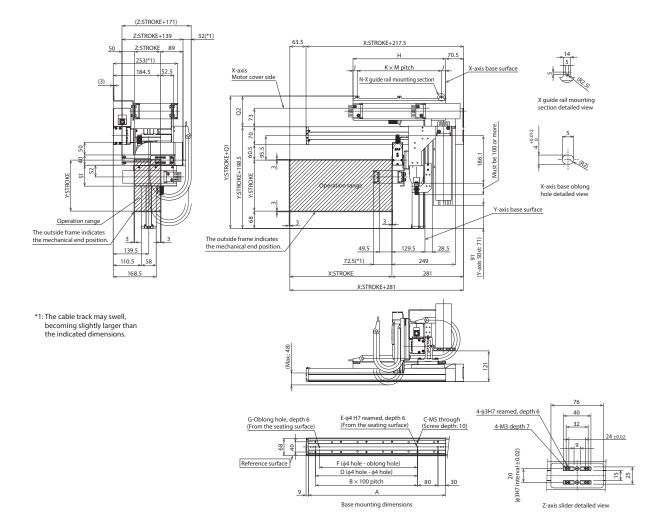
Type	Axis configuration	Applicable controllers	Reference page		
		PCON-CB/CGB	P-149		
	X-axis : SA7R	PCON-CYB/PLB/POB	Please contact IAI		
PM1	Y-axis : SA6R	MCON-C/CG	P-153		
		MCON-LC/LCG	F-135		
	Z-axis : SA4R	MSEL	P-139		
PM2		RCON-PC	P-159		

* Operation is possible with the high output setting specification. When connecting to the MCON controller, "HIGH OUTPUT SETTING SPECIFICATION" must be selected. Please contact IAI regarding use with the high-output setting disabled.

Specification	ons					
ltem		X-axis	Y-axis	Z-axis		
Axis configuration	on	RCP6-SA7R	RCP6-SA6R	RCP6-SA4R		
Stroke (Every 50mm)		50~800mm	50~400mm *1	50~150mm		
	HHL			150mm/s		
Max. speed *2	HHM	420mm/s	560mm/s	305mm/s		
wax. speed "2	HHH	4201111/5	50011111/5	525mm/s		
	HHS			560mm/s		
Motor size		56 Stepper motor	42 Stepper motor	35 Stepper motor		
	HHL			2.5mm		
Ball screw	HHM	16mm	12mm	5mm		
lead	HHH	IOIIIII	12000	10mm		
	HHS			16mm		
Drive system		Ball screw ø12mm rolled C10	Ball screw \u00f610mm rolled C10	Ball screw ø8mm rolled C10		
Positioning repea	atability	±0.01mm				
Base material		Aluminum				
Ambient operat temperature, hu		0~40°C, 85% RH or less	(non-condensing)			

Options * Please check the Options reference pages to confirm each option.

Туре	Option code	Reference page	X-axis	Y-axis	Z-axis		
Brake	В	See P.134	0	0	Standard equipment *		
Cable exit direction (Outside)	OLO	See P.134		Cannot be selected			
Non-motor end specification	NM	See P.135	0	0	0		
Slider section roller specification	SR	See P.135	0	0	0		


*1 When the speed type "HHL" is selected, the maximum Y-axis stroke will be 200 mm. *2 The maximum speed may not be reached if the travel distance is short or acceleration is low. Maximum speed may change depending on the stroke. For details, refer to the Maximum Speed by Stroke table on P.137.

CAD drawings can be downloaded from our website. www.intelligentactuator.com

Note 1. The configuration position in the figure is home. Note 2. The diagram shows first, second and third wirings all with cable tracks. Note 3. For details on the cable track and cable track moving end bracket, refer to P.136.

(*)	Notes
-----	-------

The X-axis cable track guide rail is to be fixed to the surface on which the X-axis is installed by the customer. Also, the moving end of the Z-axis cable track is to be fixed to a plate or the like mounted on the Z-axis slider by the customer.

Dimensions by Stroke

X: Stroke	50	100	150	200	250	300	350	400	450	500	550	600	650	700	750	800
A	188	238	288	338	388	438	488	538	588	638	688	738	788	838	888	938
В	0	1	1	2	2	3	3	4	4	5	5	6	6	7	7	8
C	4	6	6	8	8	10	10	12	12	14	14	16	16	18	18	20
D	0	0	100	200	200	300	300	400	400	500	500	600	600	700	700	800
E	2	2	3	3	3	3	3	3	3	3	3	3	3	3	3	3
F	0	85	85	185	185	285	285	385	385	485	485	585	585	685	685	785
G	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Н	188	213	238	263	288	313	338	363	388	413	438	463	488	513	538	563
J	16.5	16.5	14	16.5	16.5	16.5	14	16.5	14	16	15	66.5	44	56.5	69	16
К	1	1	1	2	2	2	2	2	2	3	3	3	2	2	2	3
M	155	180	210	115	127.5	140	155	165	180	127	136	110	200	200	200	177
N	2	2	2	3	3	3	3	3	3	4	4	4	3	3	3	4


Cable track size	CT	CTM	CTL	CTXL
Q1	306	319	332	349
Q2	107.5	120.5	133.5	150.5
S1	82	94	-	-
52	46	52.5	-	-

* Dimensions Q1, Q2, S1 and S2 change depending on the size of the cable track.

Model Serie Specification Items	71	Encoder Type	 First Axis (X-axis) Image: Constraint of the second sec	Second AxisThird Axis 	— Controller	— ca		— Options — 🔲
Configuration Direction 1 to 4 Refer to Robot Type Descriptions on page 3	Speed Type HHL: X High Speed/Y High Speed/Z Low Speed HHM: X High Speed/Y High Speed/Z Medium Speed HHH: X High Speed/Y High Speed/Z High Speed HH: X High Speed/Y High Speed/Z Ultra High Speed	Encoder Type WA: Battery-less Absolute	Stroke 5: 50mm (Every 50mm)	Options Refer to Options table (1) on the next page.	Controller PM1 PM2 Refer to Applicable Controllers table below.	Cable First Length Wiring 1L : 1m 3L : 3m 5L : 5m Refer to C LL : 0m	Third Wiring Second Wiring Cable Track table below	Options Refer to Options table (2) on the next page.

Payload by Ac	celeration					
📕 HHL type: X high s	peed/Y high spe	ed/Z low speed		HHM type: X high speed/	/ high speed/Z mediu	m speed (Unit: kg)
Y-axis (mm) Acceleration/ deceleration (G)	50~200	250~400 (Every 50mm)		Y-axis (mm) cceleration/ eceleration (G)	50~200 (Every 50mm)	250~400 (Every 50mm)
0.1	3	-		0.1	1	2
0.3 3 –				0.3	2	1
0.3	3	-		0.5	2	1
0.3 HHH type: X high s		ed/Z high speed		HHS type: X high spe	_	' ultra high speed
	peed/Y high spect	ed/Z high speed 400 50mm)	Ac		ed/Y high speed/Z	400
HHH type: X high sp Y-axis (mm) Acceleration/	peed/Y high spect	400	Ac	HHS type: X high spect Y-axis (mm)	ed/Y high speed/Z	400 50mm)
HHH type: X high s Y-axis (mm) Acceleration/ deceleration (G)	peed/Y high spect	400	Ac	HHS type: X high spectrum Y-axis (mm) cceleration/ eceleration (G)	ed/Y high speed/Z 50~ (Every :	400 50mm)

* When X, Y and Z axes all have the same acceleration/deceleration. When there is significant vibration, decrease the speed and acceleration/deceleration as required.

The photograph above shows the configuration direction "1" where all axes have cable tracks. Please refer to P.3 for other configuration directions.

S	troke												
Y-a	xis stroke (mm)		50			100			150			200	
Z-a	xis stroke (mm)	50	100	150	50	100	150	50	100	150	50	100	150
	50	0	0	0	0	0	0	0	0	0	0	0	0
	100	0	0	0	0	0	0	0	0	0	0	0	0
	150	0	0	0	0	0	0	0	0	0	0	0	0
	200	0	0	0	0	0	0	0	0	0	0	0	0
	250	0	0	0	0	0	0	0	0	0	0	0	0
(mm)	300	0	0	0	0	0	0	0	0	0	0	0	0
E.	350	0	0	0	0	0	0	0	0	0	0	0	0
stroke	400	0	0	0	0	0	0	0	0	0	0	0	0
str	450	0	0	0	0	0	0	0	0	0	0	0	0
axis	500	0	0	0	0	0	0	0	0	0	0	0	0
×	550	0	0	0	0	0	0	0	0	0	0	0	0
	600	0	0	0	0	0	0	0	0	0	0	0	0
	650	0	0	0	0	0	0	0	0	0	0	0	0
	700	0	0	0	0	0	0	0	0	0	0	0	0
	750	0	0	0	0	0	0	0	0	0	0	0	0
	800	0	0	0	0	0	0	0	0	0	0	0	0

Y-a	xis stroke (mm)		250 *			300 *			350 *		400 *		
Z-a	xis stroke (mm)	50	100	150	50	100	150	50	100	150	50	100	150
	50	0	0	0	0	0	0	0	0	0	0	0	0
	100	0	0	0	0	0	0	0	0	0	0	0	0
	150	0	0	0	0	0	0	0	0	0	0	0	0
	200	0	0	0	0	0	0	0	0	0	0	0	0
	250	0	0	0	0	0	0	0	0	0	0	0	0
2	300	0	0	0	0	0	0	0	0	0	0	0	0
(m m)	350	0	0	0	0	0	0	0	0	0	0	0	0
stroke	400	0	0	0	0	0	0	0	0	0	0	0	0
s str	450	0	0	0	0	0	0	0	0	0	0	0	0
X-axis	500	0	0	0	0	0	0	0	0	0	0	0	0
×	550	0	0	0	0	0	0	0	0	0	0	0	0
	600	0	0	0	0	0	0	0	0	0	0	0	0
	650	0	0	0	0	0	0	0	0	0	0	0	0
	700	0	0	0	0	0	0	0	0	0	0	0	0
	750	0	0	0	0	0	0	0	0	0	0	0	0
	800	0	0	0	0	0	0	0	0	0	0	0	0

* When the speed type "HHL" is selected, the maximum Y-axis stroke will be 200mm. (250mm or more cannot be selected.)

Cable	Length	
Туре	Cable code	Length
	1L	1m
Standard	3L	3m
type	5L	5m
		Specified length (15m max.)
		1.1

Note 1. All-axis standard cable is used.
 Note 2. The length of the second and third axis cable is from the exit of the cable track. A separate robot cable is included for wiring inside the cable track.
 Note 3. The standard lengths are 1m, 3m and 5m, but other lengths can be specified in 1m increments up to 15m.

Cable Track

cubic fruck					
Туре	Model	Reference page	First wiring (X-axis lateral)	Second wiring (Y-axis lateral)	Third wiring (Z-axis lateral)
Without cable track (cable only)	N		0	0	0
Cable track S size (inner width: 38mm)	СТ		0	0	0
Cable track M size (inner width: 50mm)	СТМ	See P.136	0	0	0
Cable track L size (inner width: 63mm)	CTL	See P.130	0	0	Cannot be selected *1
Cable track XL size (inner width: 80mm)	CTXL		0	Cannot be	selected *2

*1 Only the first and second wiring can be selected *2 Only the first wiring can be selected

Applicable Controllers

Controllers are sold separately. Please refer to each controller page.

Туре	Axis configuration	Applicable controllers	Reference page
		PCON-CB/CGB	P-149
	X-axis : SA7C	PCON-CYB/PLB/POB	Please contact IAI
PM1	Y-axis: SA6R	MCON-C/CG	P-153
		MCON-LC/LCG	P-155
	Z-axis : SA4R	MSEL	P-139
PM2		RCON-PC	P-159

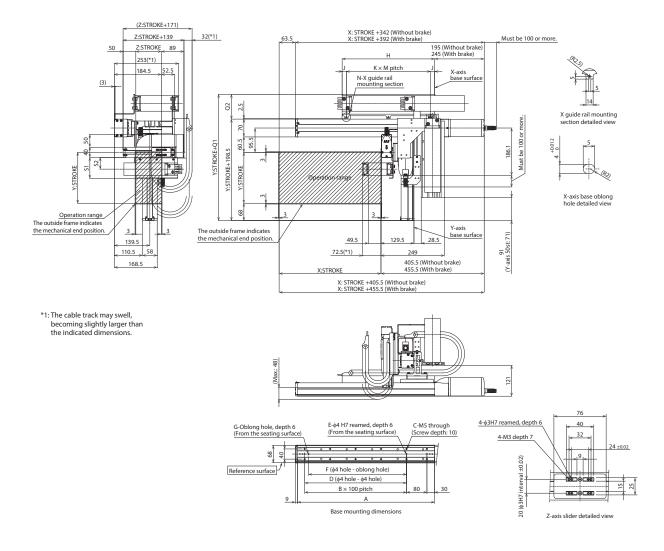
* Operation is possible with the high output setting specification. When connecting to the MCON controller, "HIGH OUTPUT SETTING SPECIFICATION" must be selected. Please contact IAI regarding use with the high-output setting disabled.

Specificati	ons								
ltem		X-axis	Y-axis	Z-axis					
Axis configuration		RCP6-SA7C	RCP6-SA6R	RCP6-SA4R					
Stroke (Every 50mm)		50~800mm	50~400mm *1	50~150mm					
	HHL			150mm/s					
Maria and #2	HHM	420	560mm/s	305mm/s					
Max. speed *2	HHH	420mm/s	560mm/s	525mm/s					
	HHS			560mm/s					
Motor size		56 Stepper motor	42 Stepper motor	35 Stepper motor					
	HHL			2.5mm					
Ball screw	HHM	16mm	12mm	5mm					
lead	HHH	TOTITI	12000	10mm					
	HHS			16mm					
Drive system		Ball screw ø12mm rolled C10	Ball screw \u00f610mm rolled C10	Ball screw ø8mm rolled C10					
Positioning repe	atability	±0.01mm							
Base material		Aluminum							
Ambient operating temperature, humidity		0~40°C, 85% RH or less (non-condensing)							

Туре	Option code	Reference page	X-axis	Y-axis	Z-axis
Brake *	В	See P.134	0	0	Standard equipment '
Cable exit direction (Top)	CJT	See P.134	0		
Cable exit direction (Right)	CJR	See P.134	0	Cann	ot be
Cable exit direction (Left)	CJL	See P.134	0	sele	cted
Cable exit direction (Bottom)	CJB	See P.134	0		
Cable exit direction (Outside)	clo	See P.134	Cannot b	e selected	Standard equipment '
Non-motor end specification	NM	See P.135	0	0	0
Slider section roller specification	SR	See P.135	0	0	0

Options (1) * Please check the Options reference pages to confirm each option.

* Be sure to specify. * Brake option for X-axis increases the length of the motor unit. Please contact IAI for more information.


Options (2) * Please check the Option	ons reference pages to o	onfirm each option.
Туре	Option code	Reference page
Foot plate	FTP	See P.134

*1 When the speed type "HHL" is selected, the maximum Y-axis stroke will be 200 mm. *2 The maximum speed may not be reached if the travel distance is short or acceleration is low. Maximum speed may change depending on the stroke.

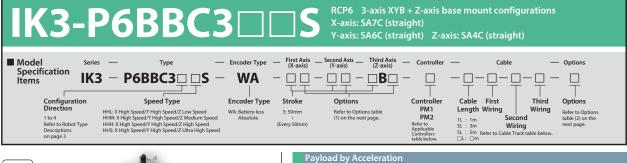
For details, refer to the Maximum Speed by Stroke table on P.137.

Note 1. The configuration position in the figure is home. Note 2. The diagram shows first, second and third wirings all with cable tracks. Note 3. For details on the cable track and cable track moving end bracket, refer to P.136.

(*) Notes

The X-axis cable track guide rail is to be fixed to the surface on which the X-axis is installed by the customer. When the foot plate option is selected, the unit will be shipped fixed on the foot plate. (See P.134) Also, the moving end of the Z-axis cable track is to be fixed to a plate or the like mounted on the Z-axis slider by the customer.

IAI


Dimensions by Stroke

X: Stroke	50	100	150	200	250	300	350	400	450	500	550	600	650	700	750	800
A	188	238	288	338	388	438	488	538	588	638	688	738	788	838	888	938
В	0	1	1	2	2	3	3	4	4	5	5	6	6	7	7	8
C	4	6	6	8	8	10	10	12	12	14	14	16	16	18	18	20
D	0	0	100	200	200	300	300	400	400	500	500	600	600	700	700	800
E	2	2	3	3	3	3	3	3	3	3	3	3	3	3	3	3
F	0	85	85	185	185	285	285	385	385	485	485	585	585	685	685	785
G	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Н	188	213	238	263	288	313	338	363	388	413	438	463	488	513	538	563
J	16.5	16.5	14	16.5	16.5	16.5	14	16.5	14	16	15	66.5	44	56.5	69	16
К	1	1	1	2	2	2	2	2	2	3	3	3	2	2	2	3
М	155	180	210	115	127.5	140	155	165	180	127	136	110	200	200	200	177
N	2	2	2	3	3	3	3	3	3	4	4	4	3	3	3	4

Cable track size	СТ	CTM	CTL	CTXL
Q1	283	296	309	326
Q2	84.5	97.5	110.5	127.5
S1	82	94	-	-
S2	46	52.5	-	-

* Dimensions Q1, Q2, S1 and S2 change depending on the size of the cable track.

IK3 Cartesian Robot

Payload by A	celeration								
📕 HHL type: X high s	peed/Y high spe	ed/Z low speed	HHM type: X high speed/Y high speed/Z medium speed (Unit: I						
Y-axis (mm) Acceleration/ deceleration (G)	50~200	250~400 (Every 50mm)		Y-axis (mm) Acceleration/ deceleration (G)	50~200	250~400 (Every 50mm)			
0.1	3	-		0.1	2				
0.3	3	-		0.3	2	1			
HHH type: X high s	beed/Y high spee	ed/Z high speed	1	HHS type: X high spee	ed/Y high speed/Z	ultra high speed			
Y-axis (mm) Acceleration/ deceleration (G)	50~	400 50mm)		Y-axis (mm) Acceleration/ deceleration (G)	50~	400 50mm)			
0.1		1		0.1	0	.5			
0.3		1		0.3	0	.5			
0.5		1		0.5	0	.5			

The photograph above shows the configuration direction "1" where all axes have cable tracks. Please refer to P.3 for other configuration directions.

* When X, Y and Z axes all have the same acceleration/deceleration. When there is significant vibration, decrease the speed and acceleration/deceleration as required.

Y-axis stroke (mm)		50		100				150		200			
Z-axis stroke (mm)	50	100	150	50	100	150	50	100	150	50	100	150	
50	0	0	0	0	0	0	0	0	0	0	0	0	
100	0	0	0	0	0	0	0	0	0	0	0	0	
150	0	0	0	0	0	0	0	0	0	0	0	0	
200	0	0	0	0	0	0	0	0	0	0	0	0	
250	0	0	0	0	0	0	0	0	0	0	0	0	
300 350	0	0	0	0	0	0	0	0	0	0	0	0	
350	0	0	0	0	0	0	0	0	0	0	0	0	
400 450	0	0	0	0	0	0	0	0	0	0	0	0	
450	0	0	0	0	0	0	0	0	0	0	0	0	
500 550	0	0	0	0	0	0	0	0	0	0	0	0	
550	0	0	0	0	0	0	0	0	0	0	0	0	
600	0	0	0	0	0	0	0	0	0	0	0	0	
650	0	0	0	0	0	0	0	0	0	0	0	0	
700	0	0	0	0	0	0	0	0	0	0	0	0	
750	0	0	0	0	0	0	0	0	0	0	0	0	
800	0	0	0	0	0	0	0	0	0	0	0	0	

Y-axis stroke (mm)		250 *				300 *			350 *		400 *		
Z-a	axis stroke (mm)	50	100	150	50	100	150	50	100	150	50	100	150
	50	0	0	0	0	0	0	0	0	0	0	0	0
	100	0	0	0	0	0	0	0	0	0	0	0	0
	150	0	0	0	0	0	0	0	0	0	0	0	0
	200	0	0	0	0	0	0	0	0	0	0	0	0
	250	0	0	0	0	0	0	0	0	0	0	0	0
	300	0	0	0	0	0	0	0	0	0	0	0	0
(mm)	350	0	0	0	0	0	0	0	0	0	0	0	0
stroke	400	0	0	0	0	0	0	0	0	0	0	0	0
s sti	450	0	0	0	0	0	0	0	0	0	0	0	0
-axis	500	0	0	0	0	0	0	0	0	0	0	0	0
×	550	0	0	0	0	0	0	0	0	0	0	0	0
	600	0	0	0	0	0	0	0	0	0	0	0	0
	650	0	0	0	0	0	0	0	0	0	0	0	0
	700	0	0	0	0	0	0	0	0	0	0	0	0
	750	0	0	0	0	0	0	0	0	0	0	0	0
	800	0	0	0	0	0	0	0	0	0	0	0	0

* When the speed type "HHL" is selected, the maximum Y-axis stroke will be 200mm. (250mm or more cannot be selected.)

IK3 Cartesian Robot

Cable Length

Type	Cable code	Length
	1L	1m
Standard	3L	3m
type	5L	5m
		Specified length (15m max.)

Note 1. All-axis standard cable is used.
 Note 2. The length of the second and third axis cable is from the exit of the cable track. A separate robot cable is included for wiring inside the cable track.
 Note 3. The standard lengths are 1m, 3m and 5m, but other lengths can be specified in 1m increments up to 15m.

Cable Track Price List

Туре	Mod
Without cable track (cable only)	N
Cable track S size (inner width: 38mm)	CT
Cable track M size (inner width: 50mm)	СТІ
Cable track L size (inner width: 63mm)	ст
Cable track XL size (inner width: 80mm)	CT)
*1 Only the first and second wiring can be	colocto

*1 Only the first and second wiring can be selected *2 Only the first wiring can be selected

Model	Reference page	First wiring (X-axis lateral)	Second wiring (Y-axis lateral)	Third wiring (Z-axis lateral)
N		0	0	0
СТ		0	0	0
СТМ	See P.136	0	0	0
CTL	See P.150	0	0	Cannot be selected *1
CTXL		0	Cannot be	selected *2

Applicable Controllers

Controllers are sold separately. Please refer to each controller page.

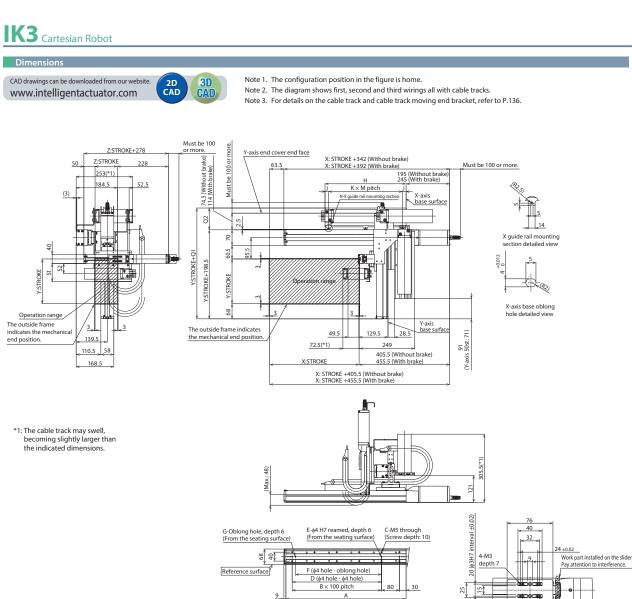
Type	Axis configuration	Applicable controllers	Reference page
		PCON-CB/CGB	P-149
	X-axis : SA7C	PCON-CYB/PLB/POB	Please contact IAI
PM1	Y-axis : SA6C	MCON-C/CG	P-153
		MCON-LC/LCG	P-155
	Z-axis : SA4C	MSEL	P-139
PM2		RCON-PC	P-159

* Operation is possible with the high output setting specification. When connecting to the MCON controller, "HIGH OUTPUT SETTING SPECIFICATION" must be selected. Please contact IAI regarding use with the high-output setting disabled.

Specificati	ons				
ltem		X-axis	Y-axis	Z-axis	
Axis configuration	on	RCP6-SA7C	RCP6-SA6C	RCP6-SA4C	
Stroke (Every 50	mm)	50~800mm	50~400mm *1	50~150mm	
	HHL			150mm/s	
Mar	HHM	120	560mm/s	305mm/s	
Max. speed *2	HHH	420mm/s	560mm/s	525mm/s	
	HHS			560mm/s	
Motor size		56 Stepper motor	42 Stepper motor	35 Stepper motor	
	HHL			2.5mm	
Ball screw	HHM	16mm	12mm	5mm	
lead	HHH	IOIIIII	12000	10mm	
	HHS			16mm	
Drive system		Ball screw ø12mm rolled C10	Ball screw \u00f610mm rolled C10	Ball screw ø8mm rolled C10	
Positioning repe	atability	±0.01mm			
Base material		Aluminum			
Ambient operat temperature, hu		0~40°C, 85% RH or less	s (non-condensing)		

Туре	Option code	Reference page	X-axis	Y-axis	Z-axis
Brake *	В	See P.134	0	0	Standard equipment
Cable exit direction (Top)	CJT	See P.134	0		
Cable exit direction (Right)	CJR	See P.134	0	Cann	ot be
Cable exit direction (Left)	CJL	See P.134	0	sele	cted
Cable exit direction (Bottom)	CJB	See P.134	0		
Non-motor end specification	NM	See P.135	0	0	0
Slider section roller specification	SR	See P.135	0	0	0

* Outside as standard. Be sure to specify. * Brake option for X- and/or Y-axes increases the length of the motor unit(s). Please contact IAI for more information.


I

Options (2) * Please check the Optio	ns reference pages to co	onfirm each option.
Туре	Option code	Reference page
Foot plate	FTP	See P.134

*1 When the speed type "HHL" is selected, the maximum Y-axis stroke will be 200 mm.

*2 The maximum speed may not be reached if the travel distance is short or acceleration is low. Maximum speed may change depending on the stroke.

For details, refer to the Maximum Speed by Stroke table on P.137.

Base mounting dimensions

(49) 4-\partial H7 reamed, depth 6

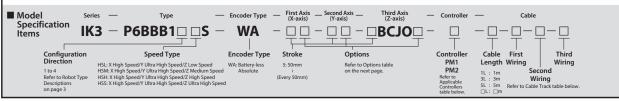
Z-axis slider detailed view

(*) Notes

The X-axis cable track guide rail is to be fixed to the surface on which the X-axis is installed by the customer. When the foot plate option is selected, the unit will be shipped fixed on the foot plate. (See P.134) Also, the moving end of the Z-axis cable track is to be fixed to a plate or the like mounted on the Z-axis slider by the customer.

Dimensions by Stroke

X: Stroke	50	100	150	200	250	300	350	400	450	500	550	600	650	700	750	800
A	188	238	288	338	388	438	488	538	588	638	688	738	788	838	888	938
В	0	1	1	2	2	3	3	4	4	5	5	6	6	7	7	8
C	4	6	6	8	8	10	10	12	12	14	14	16	16	18	18	20
D	0	0	100	200	200	300	300	400	400	500	500	600	600	700	700	800
E	2	2	3	3	3	3	3	3	3	3	3	3	3	3	3	3
F	0	85	85	185	185	285	285	385	385	485	485	585	585	685	685	785
G	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Н	188	213	238	263	288	313	338	363	388	413	438	463	488	513	538	563
J	16.5	16.5	14	16.5	16.5	16.5	14	16.5	14	16	15	66.5	44	56.5	69	16
К	1	1	1	2	2	2	2	2	2	3	3	3	2	2	2	3
М	155	180	210	115	127.5	140	155	165	180	127	136	110	200	200	200	177
N	2	2	2	3	3	3	3	3	3	4	4	4	3	3	3	4


Cable track size	CT	CTM	CTL	CTXL
Q1	283	296	309	326
Q2	84.5	97.5	110.5	127.5
S1	82	94	-	-
S2	46	52.5	-	-

* Dimensions Q1, Q2, S1 and S2 change depending on the size of the cable track.

IK3-P6BBB1

RCP6 3-axis XYB + Z-axis base mount configurations X-axis: SA8R (side-mounted) Y-axis: SA7R (side-mounted) Z-axis: SA6R (side-mounted)

Payload by Ac	celeration				
HSL type: X high spee	ed/Y ultra high sp	eed/Z low speed	HSM type: X high speed/Y	ultra high speed/Z mediu	Im speed (Unit: kg)
Y-axis (mm) Acceleration/ deceleration (G)	50~250	300~400 (Every 50mm)	Y-axis (mm) Acceleration/ deceleration (G)	50~250	300~400 (Every 50mm)
0.1	4	-	0.1		2
0.3	4	-	0.3	2	1
0.5	4	-	0.5	2	1
0.5 HSH type: X high spee		 eed/Z high speed	0.5 HSS type: X high speed		1 /Z ultra high speed
	ed/Y ultra high sp	400		d/Y ultra high speed	1 /Z ultra high speed 400 50mm)
HSH type: X high spee Y-axis (mm) Acceleration/	ed/Y ultra high sp 50~	400	HSS type: X high speed Y-axis (mm)	d/Y ultra high speed	400
HSH type: X high spee Y-axis (mm) Acceleration/ deceleration (G)	ed/Y ultra high sp 50~	400	HSS type: X high speed Y-axis (mm) Acceleration/ deceleration (G)	d/Y ultra high speed 50~ (Every 0	400 50mm)

The photograph above shows the configuration direction "1" where all axes have cable tracks. Please refer to P.3 for other configuration directions.

vibration, decrease the speed and acceleration/deceleration as required.

(-axis stroke (mm)		5	50			10				15	50	
Z-axis stroke (mm)	50	100	150	200	50	100	150	200	50	100	150	200
50	0	0	0	0	0	0	0	0	0	0	0	0
100	0	0	0	0	0	0	0	0	0	0	0	0
150	0	0	0	0	0	0	0	0	0	0	0	0
200	0	0	0	0	0	0	0	0	0	0	0	0
250	0	0	0	0	0	0	0	0	0	0	0	0
300	0	0	0	0	0	0	0	0	0	0	0	0
350	0	0	0	0	0	0	0	0	0	0	0	0
400	0	0	0	0	0	0	0	0	0	0	0	0
450	0	0	0	0	0	0	0	0	0	0	0	0
500	0	0	0	0	0	0	0	0	0	0	0	0
550	0	0	0	0	0	0	0	0	0	0	0	0
600	0	0	0	0	0	0	0	0	0	0	0	0
450 500 550 600 650 700	0	0	0	0	0	0	0	0	0	0	0	0
700	0	0	0	0	0	0	0	0	0	0	0	0
750	0	0	0	0	0	0	0	0	0	0	0	0
800	0	0	0	0	0	0	0	0	0	0	0	0
850	0	0	0	0	0	0	0	0	0	0	0	0
900	0	0	0	0	0	0	0	0	0	0	0	0
950	0	0	0	0	0	0	0	0	0	0	0	0
1000	Ō	Ō	Ō	Ō	Ō	Ō	Ō	Ō	Ō	Ō	Ō	Ō
		0	0	0	0	0	0	0	0	0	0	0
1050	0	0	0	0	0	0	0	0	0	0	0	0
1050	0											0
1050	0	0	00				0			0		
1050 1100 axis stroke (mm) axis stroke (mm)	0 0 50	2 100	00 150	0 200	0 50	0 25 100	0 50 150	0 200	0 50	0 30 100	0 * 150	200
1050 1100 axis stroke (mm) axis stroke (mm) 50	0 0 50 0	0 20 100 0	00 00 0	0 200 0	0 50 0	0 25 100 0	0 50 150 0	0 200 0	0 50 0	0 30 100 0	0* 0* 0	200
1050 1100 axis stroke (mm) axis stroke (mm)	0 0 50 0	20 100 0	00 150 0	0 200 0 0	50 0	0 25 100 0 0	0 50 150 0 0	0 200 0 0	50 0	0 30 100 0	0* 150 0 0	200
1050 1100 axis stroke (mm) axis stroke (mm) 50 100 150	0 0 50 0 0	20 100 0 0	00 00 0 0 0	0 200 0 0	50 0 0	0 25 100 0 0	0 50 150 0 0	0 200 0 0	50 0 0	0 30 100 0 0	0* 150 0 0 0	200 0 0
1050 1100 axis stroke (mm) axis stroke (mm) 50 100	0 0 50 0	20 100 0	00 150 0	0 200 0 0	50 0	0 25 100 0 0	0 50 150 0 0	0 200 0 0	50 0	0 30 100 0	0* 150 0 0	200 0
1050 1100 axis stroke (mm) axis stroke (mm) 50 100 150	0 0 50 0 0 0 0 0	20 100 0 0	00 150 0 0 0 0 0 0 0	200 0 0 0 0 0	50 0 0 0 0	0 100 0 0 0 0 0 0	0 50 0 0 0 0 0	200 0 0 0 0 0	50 0 0 0 0	0 30 0 0 0 0 0	0* 150 0 0 0 0 0 0	200 0 0 0 0
1050 1100 axis stroke (mm) 50 100 150 200 250 300	0 0 50 0 0 0 0 0 0	2 100 0 0 0 0 0 0	00 150 0 0 0 0 0 0 0 0 0 0	200 0 0 0 0 0 0 0	50 0 0 0 0 0	0 100 0 0 0 0 0 0 0 0 0 0	0 150 0 0 0 0 0 0	200 0 0 0 0 0 0 0 0 0	50 0 0 0 0 0	30 100 0 0 0 0 0 0	0* 150 0 0 0 0 0 0 0 0	200 0 0 0 0 0
1050 1100 axis stroke (mm) 50 100 150 200 250 300 350	0 0 50 0 0 0 0 0 0 0 0	2 100 0 0 0 0 0 0 0	00 150 0 0 0 0 0 0 0	200 0 0 0 0 0 0 0 0	50 0 0 0 0 0 0	0 100 0 0 0 0 0 0 0 0 0	0 150 0 0 0 0 0 0 0 0 0	200 0 0 0 0 0 0 0 0 0	50 0 0 0 0 0	0 30 0 0 0 0 0 0 0 0 0 0 0 0 0	0* 150 0 0 0 0 0 0 0 0 0	200 0 0 0 0 0 0 0 0
1050 1100 axis stroke (mm) 50 100 150 200 250 300	50 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 100 0 0 0 0 0 0 0 0 0 0	00 150 0 0 0 0 0 0 0 0 0 0 0 0 0	200 0 0 0 0 0 0 0 0 0 0	50 0 0 0 0 0 0 0 0 0	0 100 0 0 0 0 0 0 0 0 0 0 0 0	0 150 0 0 0 0 0 0 0 0 0 0 0 0 0	200 0 0 0 0 0 0 0 0 0 0 0	50 0 0 0 0 0 0 0 0	30 100 0 0 0 0 0 0 0 0 0	0* 150 0 0 0 0 0 0 0 0 0 0 0 0 0	200 0 0 0 0 0 0 0 0 0 0
1050 1100 axis stroke (mm) axis stroke (mm) 50 100 150 200 250 300 350 400 450	50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 100 0 0 0 0 0 0 0 0 0 0 0 0	00 150 0 0 0 0 0 0 0 0 0 0 0 0 0	200 0 0 0 0 0 0 0 0 0 0 0 0 0	0 50 0 0 0 0 0 0 0 0 0 0	0 100 0 0 0 0 0 0 0 0 0 0 0 0	0 150 0 0 0 0 0 0 0 0 0 0 0 0 0	200 0 0 0 0 0 0 0 0 0 0 0 0	50 0 0 0 0 0 0 0 0 0 0 0	0 30 00 0 0 0 0 0 0 0 0 0 0 0	0* 150 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
1050 1100 axis stroke (mm) axis stroke (mm) 50 100 150 200 250 300 350 400 450 500	50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 100 0 0 0 0 0 0 0 0 0 0 0 0	00 150 0 0 0 0 0 0 0 0 0 0 0 0 0	200 0 0 0 0 0 0 0 0 0 0 0 0	50 0 0 0 0 0 0 0 0 0 0 0 0	0 100 0 0 0 0 0 0 0 0 0 0 0 0	0 150 0 0 0 0 0 0 0 0 0 0 0 0 0	200 0 0 0 0 0 0 0 0 0 0 0 0	50 0 0 0 0 0 0 0 0 0 0 0 0	0 30 0 0 0 0 0 0 0 0 0 0 0 0 0	0* 150 0 0 0 0 0 0 0 0 0 0 0 0 0	
1050 1100 axis stroke (mm) axis stroke (mm) 50 100 150 200 250 300 350 400 450	0 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00 150 0 0 0 0 0 0 0 0 0 0 0 0 0		0 50 0 0 0 0 0 0 0 0 0 0 0 0 0	0 100 0 0 0 0 0 0 0 0 0 0 0 0	0 150 0 0 0 0 0 0 0 0 0 0 0 0 0	200 0 0 0 0 0 0 0 0 0 0 0 0	0 50 0 0 0 0 0 0 0 0 0 0 0 0 0	0 30 0 0 0 0 0 0 0 0 0 0 0 0 0	0* 150 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
1050 1100 axis stroke (mm) axis stroke (mm) 50 100 150 250 300 350 450 550 550 600	0 0 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 100 0 0 0 0 0 0 0 0 0 0 0 0	00 150 0 0 0 0 0 0 0 0 0 0 0 0 0	200 0 0 0 0 0 0 0 0 0 0 0 0	0 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 100 0 0 0 0 0 0 0 0 0 0 0 0	0 50 0 0 0 0 0 0 0 0 0 0 0 0 0	200 0 0 0 0 0 0 0 0 0 0 0 0	0 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 30 0 0 0 0 0 0 0 0 0 0 0 0 0	0* 150 0 0 0 0 0 0 0 0 0 0 0 0 0	
1050 1100 axis stroke (mm) axis stroke (mm) 50 100 150 250 300 350 400 450 550 600 650	0 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00 150 0 0 0 0 0 0 0 0 0 0 0 0 0	0 200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 100 0 0 0 0 0 0 0 0 0 0 0 0	0 150 0 0 0 0 0 0 0 0 0 0 0 0 0	200 0 0 0 0 0 0 0 0 0 0 0 0	0 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 30 0 0 0 0 0 0 0 0 0 0 0 0 0	0* 150 0 0 0 0 0 0 0 0 0 0 0 0 0	
1050 1100 axis stroke (mm) axis stroke (mm) 50 100 150 250 300 350 400 450 550 550 600	0 0 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 100 0 0 0 0 0 0 0 0 0 0 0 0	00 150 0 0 0 0 0 0 0 0 0 0 0 0 0	200 0 0 0 0 0 0 0 0 0 0 0 0	0 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 100 0 0 0 0 0 0 0 0 0 0 0 0	0 50 0 0 0 0 0 0 0 0 0 0 0 0 0	200 0 0 0 0 0 0 0 0 0 0 0 0	0 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 30 0 0 0 0 0 0 0 0 0 0 0 0 0	0* 150 0 0 0 0 0 0 0 0 0 0 0 0 0	
1050 1100 axis stroke (mm) axis stroke (mm) 50 100 150 250 300 350 400 450 550 600 650	0 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		00 150 0 0 0 0 0 0 0 0 0 0 0 0 0		0 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 28 100 0 0 0 0 0 0 0 0 0 0 0 0	0 50 0 0 0 0 0 0 0 0 0 0 0 0 0		0 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 30 0 0 0 0 0 0 0 0 0 0 0 0 0	0* 150 0 0 0 0 0 0 0 0 0 0 0 0 0	
1050 1100 axis stroke (mm) axis stroke (mm) 50 100 150 200 250 300 350 400 450 550 600 650 700	0 50 0 0 0 0 0 0 0 0 0 0 0 0 0		00 150 0 0 0 0 0 0 0 0 0 0 0 0 0	0 200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 100 0 0 0 0 0 0 0 0 0 0 0 0	0 50 0 0 0 0 0 0 0 0 0 0 0 0 0	200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 30 0 0 0 0 0 0 0 0 0 0 0 0 0	0* 150 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
1050 1100 axis stroke (mm) axis stroke (mm) 50 100 150 250 300 350 400 450 550 550 550 550 550 7700 750	0 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		00 150 0 0 0 0 0 0 0 0 0 0 0 0 0		0 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 28 100 0 0 0 0 0 0 0 0 0 0 0 0	0 50 0 0 0 0 0 0 0 0 0 0 0 0 0		0 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 30 0 0 0 0 0 0 0 0 0 0 0 0 0	0* 150 0 0 0 0 0 0 0 0 0 0 0 0 0	
1050 1100 axis stroke (mm) axis stroke (mm) 50 100 150 250 300 350 400 450 450 650 550 600 650 750 750 800	0 50 0 0 0 0 0 0 0 0 0 0 0 0 0		00 150 0 0 0 0 0 0 0 0 0 0 0 0 0	0 200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 100 0 0 0 0 0 0 0 0 0 0 0 0	0 50 0 0 0 0 0 0 0 0 0 0 0 0 0	200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 30 0 0 0 0 0 0 0 0 0 0 0 0 0	0* 150 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
1050 1100 axis stroke (mm) axis stroke (mm) 50 200 250 300 350 400 450 550 600 650 700 750 800 850	0 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		00 150 0 0 0 0 0 0 0 0 0 0 0 0 0		0 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 29 100 0 0 0 0 0 0 0 0 0 0 0 0	0 50 0 0 0 0 0 0 0 0 0 0 0 0 0		0 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 30 100 0 0 0 0 0 0 0 0 0 0 0 0	0* 150 0 0 0 0 0 0 0 0 0 0 0 0 0	
1050 1100 axis stroke (mm) axis stroke (mm) 50 100 150 250 350 450 550 550 550 600 650 650 770 750 800 850 900	0 50 0 0 0 0 0 0 0 0 0 0 0 0 0	2 100 0 0 0 0 0 0 0 0 0 0 0 0	00 150 0 0 0 0 0 0 0 0 0 0 0 0 0		0 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 28 100 0 0 0 0 0 0 0 0 0 0 0 0	0 50 150 0 0 0 0 0 0 0 0 0 0 0 0 0		0 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 30 100 0 0 0 0 0 0 0 0 0 0 0 0	0* 150 0 0 0 0 0 0 0 0 0 0 0 0 0	
1050 1100 -axis stroke (mm) -axis stroke (mm) -axis stroke (mm) 100 150 250 350 400 450 550 600 650 750 800 850 900 950	0 50 0 0 0 0 0 0 0 0 0 0 0 0 0		00 150 0 0 0 0 0 0 0 0 0 0 0 0 0		0 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 29 100 0 0 0 0 0 0 0 0 0 0 0 0	0 50 0 0 0 0 0 0 0 0 0 0 0 0 0		0 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0* 150 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	

* When the speed type "HSL" is selected, the maximum Y-axis stroke will be 250mm. (300mm or more cannot be selected.)

Y-a	xis stroke (mm)		35	0 *			40	0 *	
Z-a	xis stroke (mm)	50	100	150	200	50	100	150	200
	50	0	0	0	0	0	0	0	0
	100	0	0	0	0	0	0	0	0
	150	0	0	0	0	0	0	0	0
	200	0	0	0	0	0	0	0	0
	250	0	0	0	0	0	0	0	0
	300	0	0	0	0	0	0	0	0
	350	0	0	0	0	0	0	0	0
	400	0	0	0	0	0	0	0	0
Ê	450	0	0	0	0	0	0	0	0
stroke (mm)	500	0	0	0	0	0	0	0	0
Ne l	550	0	0	0	0	0	0	0	0
sti	600	0	0	0	0	0	0	0	0
X-axis	650	0	0	0	0	0	0	0	0
×	700	0	0	0	0	0	0	0	0
	750	0	0	0	0	0	0	0	0
	800	0	0	0	0	0	0	0	0
	850	0	0	0	0	0	0	0	0
	900	0	0	0	0	0	0	0	0
	950	0	0	0	0	0	0	0	0
	1000	0	0	0	0	0	0	0	0
	1050	0	0	0	0	0	0	0	0
	1100	0	0	0	0	0	0	0	0

* When the speed type "HSL" is selected, the maximum Y-axis stroke will be 250mm. (300mm or more cannot be selected.)

Cable	Length	
Type	Cable code	Length
	1L	1m
Standard	3L	3m
type	5L	5m
		Specified length (15m max.)

Cable Track

Туре	Model	Reference page	First wiring (X-axis lateral)	Second wiring (Y-axis lateral)	Third wiring (Z-axis lateral)			
Without cable track (cable only)	N		0	0	0			
Cable track S size (inner width: 38mm)	СТ	See P.136	0	0	0			
Cable track M size (inner width: 50mm)	СТМ		0	0	0			
Cable track L size (inner width: 63mm)	CTL	P.130	0	0	Cannot be selected *1			
Cable track XL size (inner width: 80mm)	CTXL	1	0	Cannot be selected *2				
*1 Only the first and second wiring can be	selected	*2 Only the first wiring can be selected						

Note 1. All-axis standard cable is used. Note 2. The length of the second and third axis cable is from the exit of the cable track. A separate robot cable is included for wiring inside the cable track. Note 3. The standard lengths are 1m, 3m and 5m, but other lengths can be specified in 1m increments up to 15m.

1 Only the first and second wiring can be selected	*2 Only the first wiring can be sel
--	-------------------------------------

Applicable Controllers

Controllers are sold separately.Please refer to each controller page.

Туре	Axis configuration	Applicable controllers	Reference page
	X-axis : SA8R	PCON-CFB/CGFB	P-149
	A-dXIS : SMOR	MSEL-PCF/PGF	P-139
		PCON-CB/CGB	P-149
PM1	Y-axis : SA7R	PCON-CYB/PLB/POB	Please contact IAI
	Z-axis : SA6R	MCON-C/CG	D 152
	Z-axis : SAOR	MCON-LC/LCG	P-153
		MSEL	P-139
	X-axis : SA8R	RCON-PCF	
PM2	Y-axis : SA7R Z-axis : SA6R	RCON-PC	P-159

* Operation is possible with the high output setting specification. When connecting to the MCON controller, "HIGH OUTPUT SETTING SPECIFICATION" must be selected. Please contact IAI regarding use with the high-output setting disabled.

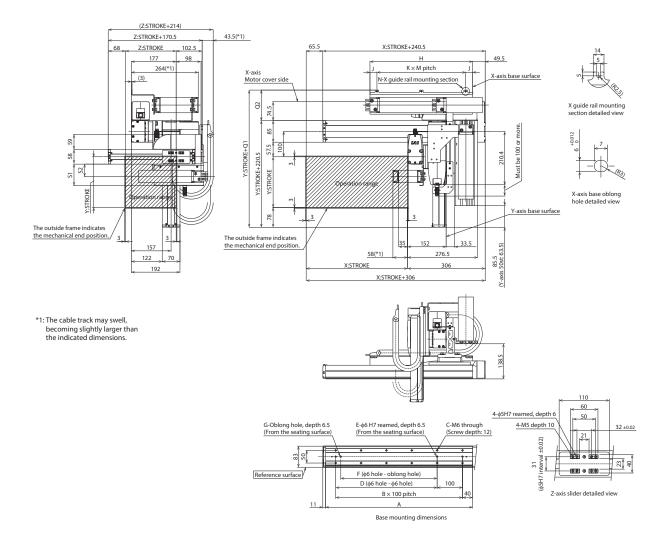
Specificati	ons			
ltem		X-axis	Y-axis	Z-axis
Axis configuration	on	RCP6-SA8R	RCP6-SA7R	RCP6-SA6R
Stroke (Every 50	mm)	50~1100mm	50~400mm *1	50~200mm
	HSL			170mm/s
Max. speed *2 HSM HSS		300mm/s	640mm/s	340mm/s
		300mm/s	640mm/s	680mm/s
				800mm/s
Motor size		56 High thrust stepper motor	56 Stepper motor	42 Stepper motor
	HSL			3mm
Ball screw	HSM	20mm	24mm	6mm
lead	HSH	ZUMM	24mm	12mm
	HSS			20mm
Drive system		Ball screw ø16mm rolled C10	Ball screw ø12mm rolled C10	Ball screw ϕ 10mm rolled C10
Positioning repe	atability	±0.01mm		·
Base material		Aluminum		
Ambient operat temperature, hu	5	0~40°C, 85% RH or less	(non-condensing)	

Options * Please check the Options reference pages to confirm each option.

Туре	Option code	Reference page	X-axis	Y-axis	Z-axis	
Brake	в	See P.134	0	0	Standard equipment	
Cable exit direction (Outside)	CJO See P.134 Cannot be selected		Standard equipment			
Non-motor end specification	NM	See P.135	0	0	0	
Slider section roller specification	SR	See P.135	0	0	0	

Be sure to specify.

*1 When the speed type "HSL" is selected, the maximum Y-axis stroke will be 250mm.


*2 The maximum speed may not be reached if the travel distance is short or acceleration is low. Maximum speed may change depending on the stroke. For details, refer to the Maximum Speed by Stroke table on P.137.

Dimensions

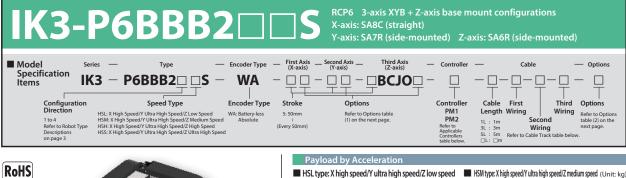
CAD drawings can be downloaded from our website. www.intelligentactuator.com

Note 1. The configuration position in the figure is home. Note 2. The diagram shows first, second and third wirings all with cable tracks. Note 3. For details on the cable track and cable track moving end bracket, refer to P.136.

(*)	Notes	
-----	-------	--

The X-axis cable track guide rail is to be fixed to the surface on which the X-axis is installed by the customer. Also, the moving end of the Z-axis cable track is to be fixed to a plate or the like mounted on the Z-axis slider by the customer.

Dimensions by Stroke


X: !	Stroke	50	100	150	200	250	300	350	400	450	500	550	600	650	700	750	800	850	900	950	1000	1050	1100	Cable	ст	
	А	230	280	330	380	430	480	530	580	630	680	730	780	830	880	930	980	1030	1080	1130	1180	1230	1280	track size	C	
	В	1	2	2	3	3	4	4	5	5	6	6	7	7	8	8	9	9	10	10	11	11	12	Q1	328	Г
	С	4	6	6	8	8	10	10	12	12	14	14	16	16	18	18	20	20	22	22	24	24	26	Q2	107.5	Γ
	D	0	100	100	200	200	300	300	400	400	500	500	600	600	700	700	800	800	900	900	1000	1000	1100	S1	84.5	Γ
	E	2	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	S2	48.5	
	F	0	0	80	180	180	280	280	380	380	480	480	580	580	680	680	780	780	880	880	980	980	1080	* Dimen	sions (C
	G	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	change		
	Н	230	255	280	305	330	355	380	405	430	455	480	505	530	555	580	605	630	655	680	705	730	755	of the		
	J	30	27.5	27.5	27.5	27.5	27.5	27.5	27.5	27.5	27.5	22.5	27.5	77.5	52.5	65	77.5	52.5	27.5	77.5	22.5	55	27.5	orthe	cable t	
	К	1	1	1	2	2	2	2	2	2	2	3	3	3	3	3	3	3	3	3	4	4	4			
	М	170	200	225	125	137.5	150	162.5	175	187.5	200	145	150	125	150	150	150	175	200	175	165	155	175			
	N	2	2	2	3	3	3	3	3	3	3	4	4	4	4	4	4	4	4	4	5	5	5			
	N	2	2	2	3	3	3	3	3	3	3	4	4	4	4	4	4	4	4	4	5	5	5			

	Cable track size	СТ	СТМ	CTL	CTXL
1	Q1	328	341	354	371
1	Q2	107.5	120.5	133.5	150.5
]	S1	84.5	96.5	-	-
]	S2	48.5	55	-	-

Dimensions Q1, Q2, S1 and S2 change depending on the size of the cable track.

IK3 Cartesian Robot

Payload by Ac	celeration							
HSL type: X high spe	ed/Y ultra high sp	eed/Z low speed	HSM type: X high speed/Y ultra high speed/Z medium speed (Unit: kg)					
Y-axis (mm) Acceleration/ deceleration (G)	50~250	300~400 (Every 50mm)	Accelera		50~250 (Every 50mm)	300~400 (Every 50mm)		
0.1	4	-		0.1		2		
0.3	4	-		0.3	2	1		
0.5	4	-		0.5	2	1		
HSH type: X high spe	ed/Y ultra high sp	eed/Z high speed	HSS	type: X high speed	l/Y ultra high speed	/Z ultra high speed		
Y-axis (mm) Acceleration/ deceleration (G)	50~ (Every	Y-axis (mm) ition/ ition (G)	50~	400 50mm)				
			0.1		0.5			
0.1				0.1	0	.5		
		 		0.1 0.3		.5		
0.1		 			0			

vibration, decrease the speed and acceleration/deceleration as required.

The photograph above shows the configuration direction "1" where all axes have cable tracks. Please refer to P.3 for other configuration directions.

Y-axi	is stroke (mm)		5	60			1	00			1:	50	
	is stroke (mm)	50	100	150	200	50	100	150	200	50	100	150	200
_	50	0	0	0	0	0	0	0	0	0	0	0	0
	100	Ō	Ō	Ō	Ō	Ō	Ō	Ō	Ō	Ō	Ō	Ō	Ō
- 17	150	0	0	0	0	0	0	0	0	0	0	0	0
	200	0	0	0	0	0	0	0	0	0	0	0	0
	250	0	0	0	0	0	0	0	0	0	0	0	0
	300	0	0	0	0	0	0	0	0	0	0	0	0
	350	0	0	0	0	0	0	0	0	0	0	0	0
_	400	0	0	0	0	0	0	0	0	0	0	0	0
	450	0	0	0	0	0	0	0	0	0	0	0	0
μ	500	0	0	0	0	0	0	0	0	0	0	0	0
	550	0	0	0	0	0	0	0	0	0	0	0	0
2	600	0	0	0	0	0	0	0	0	0	0	0	0
	650	0	0	0	0	0	0	0	0	0	0	0	0
	700	0	0	0	0	0	0	0	0	0	0	0	С
١ſ	750	0	0	0	0	0	0	0	0	0	0	0	0
	800	0	0	0	0	0	0	0	0	0	0	0	0
	850	0	0	0	0	0	0	0	0	0	0	0	0
	900	0	0	0	0	0	0	0	0	0	0	0	C
	950	0	0	0	0	0	0	0	0	0	0	0	C
	1000	0	0	0	0	0	0	0	0	0	0	0	C
	1050	0	0	0	0	0	0	0	0	0	0	0	C
	1100	0	0	0	0	0	0	0	0	0	0	0	C
	is stroke (mm)			00				50				0 *	
-ax	is stroke (mm)	50	100	150	200	50	100	150	200	50	100	150	200
	50	0	0	0	0	0	0	0	0	0	0	0	0
	100	0	0	0	0	0	0	0	0	0	0	0	C
	150	0	0	0	0	0	0	0	0	0	0	0	0
	200		0	0	0	0	0			0	0	-	0
	250	0	0	0	-	0	0	0	0	0	0	0	
	300	0	0	0	0	0	0	0	0	0	0	0	0
	350 400	0	0	0	0	0	0	0	0	0	0	0	0
-													

	350	0	0	U	U	U	U	Q	U	Q	U	0	0
	400	0	0	0	0	0	0	0	0	0	0	0	0
(mm)	450	0	0	0	0	0	0	0	0	0	0	0	0
	500	0	0	0	0	0	0	0	0	0	0	0	0
oke	550	0	0	0	0	0	0	0	0	0	0	0	0
str	600	0	0	0	0	0	0	0	0	0	0	0	0
axis :	650	0	0	0	0	0	0	0	0	0	0	0	0
	700	0	0	0	0	0	0	0	0	0	0	0	0
×	750	0	0	0	0	0	0	0	0	0	0	0	0
	800	0	0	0	0	0	0	0	0	0	0	0	0
	850	0	0	0	0	0	0	0	0	0	0	0	0
	900	0	0	0	0	0	0	0	0	0	0	0	0
	950	0	0	0	0	0	0	0	0	0	0	0	0
	1000	0	0	0	0	0	0	0	0	0	0	0	0
	1050	0	0	0	0	0	0	0	0	0	0	0	0
	1100	0	Ó	0	0	0	0	0	Ó	0	0	0	0

* When the speed type "HSL" is selected, the maximum Y-axis stroke will be 250mm. (300mm or more cannot be selected.)

Y-a	xis stroke (mm)		35	0 *		400 *				
Z-a	xis stroke (mm)	50	100	150	200	50	100	150	200	
	50	0	0	0	0	0	0	0	0	
	100	0	0	0	0	0	0	0	0	
	150	0	0	0	0	0	0	0	0	
	200	0	0	0	0	0	0	0	0	
	250	0	0	0	0	0	0	0	0	
	300	0	0	0	0	0	0	0	0	
	350	0	0	0	0	0	0	0	0	
	400	0	0	0	0	0	0	0	0	
(mm)	450	0	0	0	0	0	0	0	0	
<u>_</u>	500	0	0	0	0	0	0	0	0	
stroke	550	0			0	0	0	0	0	
stro	600	0	0 0		0	0	0	0	0	
X-axis	650	0	0	0	0	0	0	0	0	
×-2	700	0	0	0	0	0	0	0	0	
	750	0	0	0	0	0	0	0	0	
	800	0	0	0	0	0	0	0	0	
	850	0	0	0	0	0	0	0	0	
	900	0	0	0	0	0	0	0	0	
	950	0	0	0	0	0	0	0	0	
	1000	0	0	0	0	0	0	0	0	
	1050	0	0	0	0	0	0	0	0	
	1100	0	0	0	0	0	0	0	0	

* When the speed type "HSL" is selected, the maximum Y-axis stroke will be 250mm. (300mm or more cannot be selected.)

Cable	Length	
Type	Cable code	Length
	1L	1m
Standard	3L	3m
type	5L	5m
		Specified length (15m max.)

Note 1. All-axis standard cable is used. Note 2. The length of the second and third axis cable is from the exit of the cable track. A separate robot cable is included for wiring inside the cable track. Note 3. The standard lengths are 1m, 3m and 5m, but other lengths can be specified in 1m increments up to 15m.

Cable Track

Туре	Model	Reference page	First wiring (X-axis lateral)	Second wiring (Y-axis lateral)	Third wiring (Z-axis lateral)
Without cable track (cable only)	N		0	0	0
Cable track S size (inner width: 38mm)	СТ	1	0	0	0
Cable track M size (inner width: 50mm)	СТМ	See P.136	0	0	0
Cable track L size (inner width: 63mm)	CTL]	0	0	Cannot be selected *1
Cable track XL size (inner width: 80mm)	CTXL		0	Cannot be	selected *2
*1 Only the first and as an elevision a sea be	استخد ما م	*2 0-1-1	- C	an coloctor	

*1 Only the first and second wiring can be selected *2 Only the first wiring can be selected

Applicable Controllers

Cable Longth

Controllers are sold separately. Please refer to each controller page.

Type	Axis configuration	Applicable controllers	Reference page			
	X-axis : SA8C	PCON-CFB/CGFB	P-149			
	X-axis : SA&C	MSEL-PCF/PGF	P-139			
		PCON-CB/CGB				
PM1	Y-axis : SA7R	Please contact IAI				
		P-153				
	Z-axis : SA6R	MCON-LC/LCG	P-155			
		MSEL	P-139			
	X-axis : SA8C	RCON-PCF				
PM2	Y-axis : SA7R Z-axis : SA6R	RCON-PC	P-159			

* Operation is possible with the high output setting specification. When connecting to the MCON controller, "HIGH OUTPUT SETTING SPECIFICATION" must be selected. Please contact IAI regarding use with the high-output setting disabled.

Specificati	ons							
ltem		X-axis	Y-axis	Z-axis				
Axis configuration	on	RCP6-SA8C	RCP6-SA7R	RCP6-SA6R				
Stroke (Every 50	mm)	50~1100mm	50~400mm *1	50~200mm				
	HSL			170mm/s				
Max. speed *2	HSM	300mm/s	640mm/s	340mm/s				
wax. speeu 2	HSH	50011111/5	04011111/5	680mm/s				
	HSS			800mm/s				
Motor size		56 High thrust stepper motor	42 Stepper motor					
	HSL			3mm				
Ball screw	HSM	20mm	24mm	6mm				
lead	HSH	2011111	24(1)(1)	12mm				
	HSS			20mm				
Drive system		Ball screw ¢16mm rolled C10	Ball screw ø12mm rolled C10	Ball screw ¢10mm rolled C10				
Positioning repea	tability	±0.01mm						
Base material		Aluminum						
Ambient operat temperature, hu		0~40°C, 85% RH or less (non-condensing)						

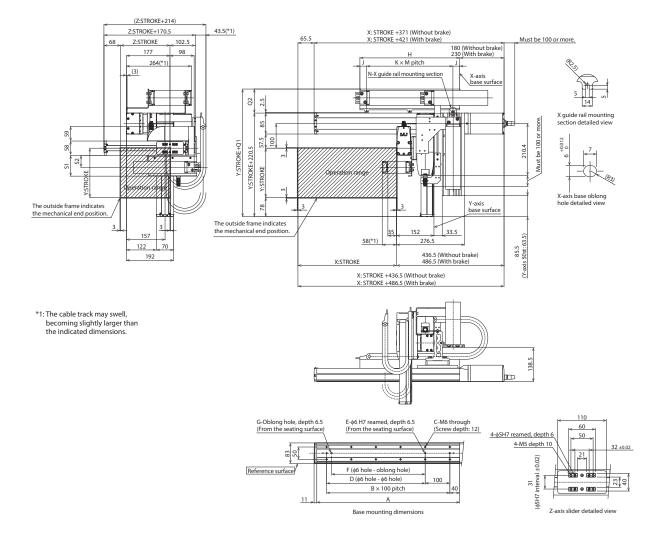
Туре	Option code	Reference page	X-axis	Y-axis	Z-axis	
Brake *	В	See P.134	-	-	Standard equipment *	
Cable exit direction (Top)	CJT	See P.134	-			
Cable exit direction (Right)	CJR	See P.134	-	Cann	not be	
Cable exit direction (Left)	CJL	See P.134	-	sele	cted	
Cable exit direction (Bottom)	CJB	See P.134	-			
Cable exit direction (Outside)	cio	See P.134	Cannot b	Standard equipment *		
Non-motor end specification	NM	See P.135	-	-	-	
Slider section roller specification	SR	See P.135	-	-	-	

* Brake option for X-axis increases the length of the motor unit. Please contact IAI for more information.

Options (2) * Please check the Options reference pages to confirm each option.										
Туре	Option code	Reference page								
Foot plate	FTP	See P.134								

*1 When the speed type "HSL" is selected, the maximum Y-axis stroke will be 250mm. *2 The maximum speed may not be reached if the travel distance is short or acceleration is low. Maximum speed may change depending on the stroke.

For details, refer to the Maximum Speed by Stroke table on P.137.



CAD drawings can be downloaded from our website. 2D CAD www.intelligentactuator.com

3D CAD

Note 1. The configuration position in the figure is home. Note 2. The diagram shows first, second and third wirings all with cable tracks. Note 3. For details on the cable track and cable track moving end bracket, refer to P.136.

(*)	Notes
-----	-------

The X-axis cable track guide rail is to be fixed to the surface on which the X-axis is installed by the customer. When the foot plate option is selected, the unit will be shipped fixed on the foot plate. (See P.134) Also, the moving end of the Z-axis cable track is to be fixed to a plate or the like mounted on the Z-axis slider by the customer.

Dimensions by Stroke

X: Stroke	50	100	150	200	250	300	350	400	450	500	550	600	650	700	750	800	850	900	950	1000	1050	1100	Cabl
A	230	280	330	380	430	480	530	580	630	680	730	780	830	880	930	980	1030	1080	1130	1180	1230	1280	track s
В	1	2	2	3	3	4	4	5	5	6	6	7	7	8	8	9	9	10	10	11	11	12	Q1
C	4	6	6	8	8	10	10	12	12	14	14	16	16	18	18	20	20	22	22	24	24	26	Q2
D	0	100	100	200	200	300	300	400	400	500	500	600	600	700	700	800	800	900	900	1000	1000	1100	S1
E	2	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	S2
F	0	0	80	180	180	280	280	380	380	480	480	580	580	680	680	780	780	880	880	980	980	1080	* Dim
G	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	cha
Н	230	255	280	305	330	355	380	405	430	455	480	505	530	555	580	605	630	655	680	705	730	755	oft
J	30	27.5	27.5	27.5	27.5	27.5	27.5	27.5	27.5	27.5	22.5	27.5	77.5	52.5	65	77.5	52.5	27.5	77.5	22.5	55	27.5	UIU
K	1	1	1	2	2	2	2	2	2	2	3	3	3	3	3	3	3	3	3	4	4	4	
М	170	200	225	125	137.5	150	162.5	175	187.5	200	145	150	125	150	150	150	175	200	175	165	155	175	
N	2	2	2	3	3	3	3	3	3	3	4	4	4	4	4	4	4	4	4	5	5	5	
		A 230 B 1 C 4 D 0 E 2 F 0 G 0 H 230 J 30 K 1	A 230 280 B 1 2 C 4 6 D 0 100 E 2 3 F 0 0 G 0 20 H 230 255 J 30 27.5 K 1 1	A 230 280 330 B 1 2 2 C 4 6 6 D 0 100 100 E 2 3 3 F 0 0 80 G 0 0 1 H 230 255 280 J 30 27.5 27.5 K 1 1 1	A 230 280 330 380 B 1 2 2 3 C 4 6 6 8 D 0 100 100 200 E 2 3 3 3 F 0 0 80 180 G 0 0 1 1 H 230 255 280 305 J 30 27.5 27.5 27.5 K 1 1 1 2	A 230 280 330 380 430 B 1 2 2 3 3 C 4 6 6 8 8 D 0 100 100 200 200 E 2 3 3 3 3 F 0 0 80 180 180 G 0 0 1 1 1 H 230 255 280 305 330 J 30 27.5 27.5 27.5 27.5 K 1 1 1 2 2	A 230 280 330 380 430 480 B 1 2 2 3 3 4 C 4 6 6 8 8 10 D 0 100 100 200 200 300 E 2 3 3 3 3 3 3 F 0 0 01 1 1 1 1 H 230 255 280 305 330 355 J 30 27.5 27.5 27.5 27.5 27.5 K 1 1 1 2 2 2 3	A 230 280 330 380 430 480 530 B 1 2 2 3 3 4 4 C 4 6 6 8 8 10 10 D 0 100 100 200 200 300 300 E 2 3 3 3 3 3 3 3 F 0 0 80 180 180 280 280 G 0 0 1 1 1 1 1 H 230 255 280 305 330 355 380 J 30 27.5 27.5 27.5 27.5 27.5 27.5	A 230 280 330 380 430 480 530 580 B 1 2 2 3 3 4 4 5 C 4 6 6 8 8 10 10 12 D 0 100 100 200 200 300 300 400 E 2 3 3 3 3 3 3 3 F 0 80 180 180 280 280 380 G 0 0 1 1 1 1 1 1 1 H 230 255 280 305 330 355 380 405 J 30 27.5 27.5 27.5 27.5 27.5 27.5 27.5 27.5 27.5 27.5 27.5 27.5 27.5 27.5 27.5 27.5 27.5 27.5 27.5 <td>A 230 280 330 380 430 480 530 580 630 B 1 2 2 3 3 4 4 5 5 C 4 6 6 8 8 10 10 12 12 D 0 100 100 200 200 300 300 400 400 E 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3</td> <td>A 230 280 330 380 430 480 530 580 630 680 B 1 2 2 3 3 4 4 5 5 6 C 4 6 6 8 8 10 12 14 D 0 100 100 200 200 300 300 400 400 500 E 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3</td> <td>A 230 280 330 380 430 480 530 580 630 680 730 B 1 2 2 3 3 4 4 5 5 6 6 C 4 6 6 8 8 10 10 12 14 14 D 0 100 100 200 200 300 300 400 500 500 500 500 50 50 56 6 6 8 10 12 14 14 14 14 14 14 14 14 14 16 16 18 10 10 12 14 14 14 16 16 16 18 10 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30</td> <td>A 230 280 330 380 430 480 530 580 630 680 730 780 B 1 2 2 3 3 4 4 5 5 6 6 7 C 4 6 6 8 8 10 12 14 16 D 0 100 100 200 200 300 300 400 400 500 500 600 E 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 <</td> <td>A 230 280 330 380 430 480 530 580 630 680 730 780 830 B 1 2 2 3 3 4 4 5 5 6 6 7 7 C 4 6 6 8 10 12 14 14 16 16 D 0 100 100 200 200 300 300 400 500 500 600 600 E 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3</td> <td>A 230 280 330 380 430 430 530 580 630 680 730 780 830 880 B 1 2 2 3 3 4 4 5 5 6 6 7 7 8 C 4 6 6 8 10 12 14 16 16 18 D 0 100 100 200 200 300 300 400 400 500 500 600 600 700 E 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3</td> <td>A 230 280 330 380 430 480 530 580 630 680 730 780 830 880 930 B 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 C 4 6 6 8 10 12 14 14 16 16 18 18 D 0 100 100 200 200 300 30 400 400 500 500 600 600 700 700 E 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3</td> <td>A 230 280 330 380 430 480 530 580 630 680 730 780 830 880 930 980 B 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 C 4 6 6 8 10 10 12 14 16 16 18 18 20 D 0 100 100 200 200 300 300 400 400 500 500 600 600 700 700 800 E 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3</td> <td>A 230 280 330 380 430 480 530 580 630 680 730 780 830 880 930 980 1030 B 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 C 4 6 6 8 10 10 12 14 14 16 18 18 20 20 D 0 100 100 200 200 300 300 400 400 500 600 600 700 700 800 800 E 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3</td> <td>A 230 280 330 380 430 480 530 630 630 730 780 830 880 930 980 1030 1080 B 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 C 4 6 6 8 10 10 12 14 16 16 18 18 20 20 22 D 0 100 100 200 200 300 400 400 500 500 600 600 700 700 800 800 900 E 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3<td>A 230 280 330 380 430 480 530 580 630 680 730 780 830 880 930 980 1030 1130 B 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 100 10 C 4 6 6 8 10 10 12 14 16 18 18 20 20 22 22 D 0 100 100 200 200 300 300 400 400 500 600 600 700 800 800 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900</td><td>A 230 280 330 380 430 480 530 580 630 670 730 830 880 930 980 1030 1180 1180 B 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 C 4 6 6 8 10 12 14 16 16 18 18 20 22 22 24 D 0 100 100 200 200 300 400 400 500 600 600 700 70 80 800 900 900 100 E 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3</td><td>A 230 280 330 380 430 480 530 580 630 680 730 780 830 880 930 980 1030 1080 1130 1130 1230 B 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 11 C 4 6 6 8 10 12 14 16 18 18 20 20 22 22 24 24 D 0 100 200 200 300 300 400 400 500 500 600 600 700 800 800 900 900 100 100 E 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3<td>A 230 280 330 380 430 480 530 580 630 680 730 780 880 930 980 1030 1030 1130 1130 1230 1230 B 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 11 12 C 4 6 8 10 12 14 14 16 18 18 20 20 22 24 24 26 D 0 100 200 200 300 300 400 500 500 600 700 700 800 800 900 900 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100</td></td></td>	A 230 280 330 380 430 480 530 580 630 B 1 2 2 3 3 4 4 5 5 C 4 6 6 8 8 10 10 12 12 D 0 100 100 200 200 300 300 400 400 E 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	A 230 280 330 380 430 480 530 580 630 680 B 1 2 2 3 3 4 4 5 5 6 C 4 6 6 8 8 10 12 14 D 0 100 100 200 200 300 300 400 400 500 E 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	A 230 280 330 380 430 480 530 580 630 680 730 B 1 2 2 3 3 4 4 5 5 6 6 C 4 6 6 8 8 10 10 12 14 14 D 0 100 100 200 200 300 300 400 500 500 500 500 50 50 56 6 6 8 10 12 14 14 14 14 14 14 14 14 14 16 16 18 10 10 12 14 14 14 16 16 16 18 10 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30	A 230 280 330 380 430 480 530 580 630 680 730 780 B 1 2 2 3 3 4 4 5 5 6 6 7 C 4 6 6 8 8 10 12 14 16 D 0 100 100 200 200 300 300 400 400 500 500 600 E 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 <	A 230 280 330 380 430 480 530 580 630 680 730 780 830 B 1 2 2 3 3 4 4 5 5 6 6 7 7 C 4 6 6 8 10 12 14 14 16 16 D 0 100 100 200 200 300 300 400 500 500 600 600 E 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	A 230 280 330 380 430 430 530 580 630 680 730 780 830 880 B 1 2 2 3 3 4 4 5 5 6 6 7 7 8 C 4 6 6 8 10 12 14 16 16 18 D 0 100 100 200 200 300 300 400 400 500 500 600 600 700 E 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	A 230 280 330 380 430 480 530 580 630 680 730 780 830 880 930 B 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 C 4 6 6 8 10 12 14 14 16 16 18 18 D 0 100 100 200 200 300 30 400 400 500 500 600 600 700 700 E 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	A 230 280 330 380 430 480 530 580 630 680 730 780 830 880 930 980 B 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 C 4 6 6 8 10 10 12 14 16 16 18 18 20 D 0 100 100 200 200 300 300 400 400 500 500 600 600 700 700 800 E 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	A 230 280 330 380 430 480 530 580 630 680 730 780 830 880 930 980 1030 B 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 C 4 6 6 8 10 10 12 14 14 16 18 18 20 20 D 0 100 100 200 200 300 300 400 400 500 600 600 700 700 800 800 E 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	A 230 280 330 380 430 480 530 630 630 730 780 830 880 930 980 1030 1080 B 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 C 4 6 6 8 10 10 12 14 16 16 18 18 20 20 22 D 0 100 100 200 200 300 400 400 500 500 600 600 700 700 800 800 900 E 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 <td>A 230 280 330 380 430 480 530 580 630 680 730 780 830 880 930 980 1030 1130 B 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 100 10 C 4 6 6 8 10 10 12 14 16 18 18 20 20 22 22 D 0 100 100 200 200 300 300 400 400 500 600 600 700 800 800 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900</td> <td>A 230 280 330 380 430 480 530 580 630 670 730 830 880 930 980 1030 1180 1180 B 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 C 4 6 6 8 10 12 14 16 16 18 18 20 22 22 24 D 0 100 100 200 200 300 400 400 500 600 600 700 70 80 800 900 900 100 E 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3</td> <td>A 230 280 330 380 430 480 530 580 630 680 730 780 830 880 930 980 1030 1080 1130 1130 1230 B 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 11 C 4 6 6 8 10 12 14 16 18 18 20 20 22 22 24 24 D 0 100 200 200 300 300 400 400 500 500 600 600 700 800 800 900 900 100 100 E 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3<td>A 230 280 330 380 430 480 530 580 630 680 730 780 880 930 980 1030 1030 1130 1130 1230 1230 B 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 11 12 C 4 6 8 10 12 14 14 16 18 18 20 20 22 24 24 26 D 0 100 200 200 300 300 400 500 500 600 700 700 800 800 900 900 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100</td></td>	A 230 280 330 380 430 480 530 580 630 680 730 780 830 880 930 980 1030 1130 B 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 100 10 C 4 6 6 8 10 10 12 14 16 18 18 20 20 22 22 D 0 100 100 200 200 300 300 400 400 500 600 600 700 800 800 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900	A 230 280 330 380 430 480 530 580 630 670 730 830 880 930 980 1030 1180 1180 B 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 C 4 6 6 8 10 12 14 16 16 18 18 20 22 22 24 D 0 100 100 200 200 300 400 400 500 600 600 700 70 80 800 900 900 100 E 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	A 230 280 330 380 430 480 530 580 630 680 730 780 830 880 930 980 1030 1080 1130 1130 1230 B 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 11 C 4 6 6 8 10 12 14 16 18 18 20 20 22 22 24 24 D 0 100 200 200 300 300 400 400 500 500 600 600 700 800 800 900 900 100 100 E 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 <td>A 230 280 330 380 430 480 530 580 630 680 730 780 880 930 980 1030 1030 1130 1130 1230 1230 B 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 11 12 C 4 6 8 10 12 14 14 16 18 18 20 20 22 24 24 26 D 0 100 200 200 300 300 400 500 500 600 700 700 800 800 900 900 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100</td>	A 230 280 330 380 430 480 530 580 630 680 730 780 880 930 980 1030 1030 1130 1130 1230 1230 B 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 11 12 C 4 6 8 10 12 14 14 16 18 18 20 20 22 24 24 26 D 0 100 200 200 300 300 400 500 500 600 700 700 800 800 900 900 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

	Cable track size	СТ	СТМ	CTL	CTXL
1	Q1	305	318	331	348
1	Q2	84.5	97.5	110.5	127.5
1	S1	84.5	96.5	-	-
1	S2	48.5	55	-	-

mensions Q1, Q2, S1 and S2 nange depending on the size f the cable track.

IK3-P6BBB3

RCP6 3-axis XYB + Z-axis base mount configurations X-axis: SA8C (straight) Y-axis: SA7C (straight) Z-axis: SA6C (straight)

Model Specification Items — Encoder Type — First Axis ____ Second Axis ____ Third Axis (X-axis) ____ (Y-axis) ____ (Z-axis) _ Controller Cable — Options Series Туре WA - 🗆 🗆 - 🗆 **B** 🗆 \mp ΓŢ Т Τ Controller PM1 PM2 Refer to Applicable Controllers table below. Cable First Length Wiring Configuration Direction Speed Type Stroke Encoder Type Options Third Options HSL: X High Speed/Y Ultra High Speed/Z Low Speed HSM: X High Speed/Y Ultra High Speed/Z Medium Speed HSH: X High Speed/Y Ultra High Speed/Z High Speed HSS: X High Speed/Y Ultra High Speed/Z Ultra High Speed WA: Battery-less Absolute Refer to Options table (1) on the next page. Wiring Refer to Options tabl (2) on the next page. 5: 50mm 1 to 4 Refer to Robot Type Descriptions on page 3 1L : 1m 3L : 3m 5L : 5m □L: □m Second (Every 50mm) Wiring Refer to Cable Track ta

Payload by Ac	celeration												
HSL type: X high spee	HSL type: X high speed/Y ultra high speed/Z low speed												
Y-axis (mm) Acceleration/ deceleration (G)	50~250	300~400 (Every 50mm)		Y-axis (mm) Acceleration/ deceleration (G)	50~250	300~400 (Every 50mm)							
0.1	4	-		0.1		2							
0.3	4	-		0.3	2	1							
0.5	4	-		0.5	2	1							
HSH type: X high spe	ed/Y ultra high sp	eed/Z high speed		HSS type: X high speed	I/Y ultra high speed	/Z ultra high speed							
Y-axis (mm) Acceleration/ deceleration (G)	50~	400 50mm)		Y-axis (mm) Acceleration/ deceleration (G)	50~	400 50mm)							
0.1			0.1 0.5			.5							
0.3			0.3 0.5			.5							
0.5				0.5	0	.5							
* When X, Y and Z av	kes all have the	same accelera	ti	on/deceleration Wh	en there is sigr	nificant							

The photograph above shows the configuration direction "1" where all axes have cable tracks. Please refer to P.3 for other configuration directions.

* When X, Y and Z axes all have the same acceleration/deceleration. When there is signifivibration, decrease the speed and acceleration/deceleration as required.

St	roke												
Y-ax	(is stroke (mm)		5	0			10	00			1	50	
	(is stroke (mm)	50	100	150	200	50	100	150	200	50	100	150	200
	50	0	0	0	0	0	0	0	0	0	0	0	0
	100	0	0	0	0	0	0	0	0	0	0	0	0
	150	0	0	0	0	0	0	0	0	0	0	0	0
	200	0	0	0	0	0	0	0	0	0	0	0	0
	250	0	0	0	0	0	0	0	0	0	0	0	0
[300	0	0	0	0	0	0	0	0	0	0	0	0
	350	0	0	0	0	0	0	0	0	0	0	0	0
2	400	0	0	0	0	0	0	0	0	0	0	0	0
Ē	450	0	0	0	0	0	0	0	0	0	0	0	0
ě	500	0	0	0	0	0	0	0	0	0	0	0	0
ð.	550	0	0	0	0	0	0	0	0	0	0	0	0
st	600	0	0	0	0	0	0	0	0	0	0	0	0
X-axis stroke (mm)	650	0	0	0	0	0	0	0	0	0	0	0	0
×-ŝ	700	0	0	0	0	0	0	0	0	0	0	0	0
	750	0	0	0	0	0	0	0	0	0	0	0	0
	800	0	0	0	0	0	0	0	0	0	0	0	0
	850 900	0	0	0	0	0	0	0	0	0	0	0	0
		0	0	0	0	0	0	0	0	0	0		0
	950	0	0	0	0	0	0	0	0	0	0	0	0
	1000	0	0	0	0	0	0	0	0	0	0	0	0
	1100	0	0	0	0	0	0	0	0	0	0	0	0
		-	-					0		0		0	
Y-a	ris stroke (mm)		20	_			-	-			_		
	kis stroke (mm)		20	00			2:	50		-	30	0 *	
	kis stroke (mm) kis stroke (mm) 50	50	20 100	_	200	50	-	-	200	50	_	0 * 150	200
	(is stroke (mm) 50	50	100	00 150	200		2: 100	50 150	200	50	30 100	0 *	200
	kis stroke (mm) 50 100	50	100	00 150 O	200	50	2! 100 ○	50 150 O	200 〇	50	30 100 ○	0 * 150 O	200
	(is stroke (mm) 50	50 O	100 O O	00 150 0	200 O	50 O	2! 100 0	50 150 O	200 O	50 O	30 100 0	0 * 150 0	200 O
	kis stroke (mm) 50 100 150	50 〇 〇	100 0 0 0	00 150 0 0	200 O O	50 0 0	2: 100 0 0 0	50 150 0 0 0	200 O O O	50 0 0	30 100 0 0	0 * 150 0 0 0	200 O O
	xis stroke (mm) 50 100 150 200	50 0 0 0 0 0 0	100 0 0 0 0 0 0 0	150 0 0 0 0 0 0 0 0	200 0 0 0 0 0 0	50 0 0 0 0 0 0	2! 100 0 0 0 0 0 0	50 150 0 0 0 0 0 0	200 0 0 0 0 0 0 0 0 0	50 0 0 0 0 0 0	30 100 0 0 0 0	00 * 150 0 0 0 0 0 0 0 0	200 0 0 0 0 0 0
	kis stroke (mm) 50 100 150 200 250	50 0 0 0 0 0 0 0	100 0 0 0 0 0 0 0 0	150 0 0 0 0 0 0 0 0 0 0 0 0	200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	50 0 0 0 0 0 0 0 0	22 100 0 0 0 0 0 0 0 0 0 0	50 150 0 0 0 0 0 0 0 0 0 0	200 0 0 0 0 0 0 0 0 0 0	50 0 0 0 0 0 0 0 0 0	30 100 0 0 0 0 0 0 0	00 * 150 0 0 0 0 0 0 0 0 0 0	200 0 0 0 0 0 0 0 0 0
Z-ax	kis stroke (mm) 50 100 150 200 250 300 350 400	50 0 0 0 0 0 0 0 0 0	100 0 0 0 0 0 0 0 0 0 0 0	00 150 0 0 0 0 0 0 0 0 0 0 0 0 0	200 0 0 0 0 0 0 0 0 0	50 0 0 0 0 0 0 0 0	2! 100 0 0 0 0 0 0 0 0 0 0 0 0	50 150 0 0 0 0 0 0 0 0 0 0 0 0 0	200 O O O O O O O O O O O O O	50 0 0 0 0 0 0 0 0 0 0	30 100 0 0 0 0 0 0 0 0 0	00 * 150 0 0 0 0 0 0 0 0 0 0	200 0 0 0 0 0 0 0 0 0 0 0
Z-ax	Stoke (mm) 50 100 150 200 250 300 350 400 450	50 0 0 0 0 0 0 0 0 0 0 0 0 0	100 0 0 0 0 0 0 0 0 0 0 0 0	00 150 0 0 0 0 0 0 0 0 0 0 0 0 0	200 0 0 0 0 0 0 0 0 0 0 0 0	50 0 0 0 0 0 0 0 0 0 0 0 0 0	2: 100 0 0 0 0 0 0 0 0 0 0 0 0	50 150 0 0 0 0 0 0 0 0 0 0 0 0 0	200 0 0 0 0 0 0 0 0 0 0 0 0	50 0 0 0 0 0 0 0 0 0 0 0 0 0	30 100 0 0 0 0 0 0 0 0 0 0 0 0	0 * 150 0 0 0 0 0 0 0 0 0 0 0 0 0	200 0 0 0 0 0 0 0 0 0 0 0 0
Z-ax	kis stroke (mm) 50 100 150 200 250 300 350 400 450 500	50 0 0 0 0 0 0 0 0 0 0 0 0 0	100 0 0 0 0 0 0 0 0 0 0 0 0		200 0 0 0 0 0 0 0 0 0 0 0 0	50 0 0 0 0 0 0 0 0 0 0 0 0 0	2: 100 0 0 0 0 0 0 0 0 0 0 0 0	50 150 0 0 0 0 0 0 0 0 0 0 0 0 0	200 0 0 0 0 0 0 0 0 0 0 0 0	50 0 0 0 0 0 0 0 0 0 0 0 0 0	30 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0* 150 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	200 0 0 0 0 0 0 0 0 0 0 0 0
Z-ax	kis stroke (mm) 50 100 150 200 250 300 350 400 400 550	50 0 0 0 0 0 0 0 0 0 0 0 0 0	100 0 0 0 0 0 0 0 0 0 0 0 0	00 150 0 0 0 0 0 0 0 0 0 0 0 0 0	200 0 0 0 0 0 0 0 0 0 0 0 0	50 0 0 0 0 0 0 0 0 0 0 0 0 0	22 100 0 0 0 0 0 0 0 0 0 0 0 0	50 150 0 0 0 0 0 0 0 0 0 0 0 0 0		50 0 0 0 0 0 0 0 0 0 0 0 0 0	30 100 0 0 0 0 0 0 0 0 0 0 0 0	0* 150 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	200 0 0 0 0 0 0 0 0 0 0 0 0
Z-ax	kis stroke (mm) 50 100 150 250 300 350 400 450 550 600	50 0 0 0 0 0 0 0 0 0 0 0 0 0			200 0 0 0 0 0 0 0 0 0 0 0 0	50 0 0 0 0 0 0 0 0 0 0 0 0 0	2: 100 0 0 0 0 0 0 0 0 0 0 0 0	50 150 0 0 0 0 0 0 0 0 0 0 0 0 0	200 0 0 0 0 0 0 0 0 0 0 0 0	50 0 0 0 0 0 0 0 0 0 0 0 0 0	30 100 0 0 0 0 0 0 0 0 0 0 0 0	0* 150 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
Z-ax	stroke (mm) 50 100 150 200 250 300 400 450 550 600 650	50 0 0 0 0 0 0 0 0 0 0 0 0 0				50 0 0 0 0 0 0 0 0 0 0 0 0 0	2: 100 0 0 0 0 0 0 0 0 0 0 0 0	50 150 0 0 0 0 0 0 0 0 0 0 0 0 0		50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	30 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0* 50 50 50 50 50 50 50 50 50 50 50 50 50	
	stroke (mm) 50 100 150 200 300 350 400 450 500 550 600 650 700	50 0 0 0 0 0 0 0 0 0 0 0 0 0				50 0 0 0 0 0 0 0 0 0 0 0 0 0	22 100 0 0 0 0 0 0 0 0 0 0 0 0	50 150 0 0 0 0 0 0 0 0 0 0 0 0 0	200 0 0 0 0 0 0 0 0 0 0 0 0	50 0 0 0 0 0 0 0 0 0 0 0 0 0	30 100 0 0 0 0 0 0 0 0 0 0 0 0	0* 150 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
Z-ax	stroke (mm) 50 100 150 200 300 350 400 450 500 550 600 650 700 750	50 0 0 0 0 0 0 0 0 0 0 0 0 0				50 0 0 0 0 0 0 0 0 0 0 0 0 0	2: 100 0 0 0 0 0 0 0 0 0 0 0 0	50 50 0 0 0 0 0 0 0 0 0 0 0 0 0		50 0 0 0 0 0 0 0 0 0 0 0 0 0	30 100 0 0 0 0 0 0 0 0 0 0 0 0	0* 150 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
Z-ax	Stroke (mm) 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800	50 0 0 0 0 0 0 0 0 0 0 0 0 0		200 150 0 0 0 0 0 0 0 0 0 0 0 0 0		50 0 0 0 0 0 0 0 0 0 0 0 0 0	2: 100 0 0 0 0 0 0 0 0 0 0 0 0	50 150 0 0 0 0 0 0 0 0 0 0 0 0 0	200 0 0 0 0 0 0 0 0 0 0 0 0	50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	30 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0* 50 50 50 50 50 50 50 50 50 50 50 50 50	
Z-ax	stroke (mm) 50 100 150 200 300 350 400 450 500 550 600 650 700 750 800 850	50 0 0 0 0 0 0 0 0 0 0 0 0 0				50 0 0 0 0 0 0 0 0 0 0 0 0 0	2: 100 0 0 0 0 0 0 0 0 0 0 0 0	50 50 0 0 0 0 0 0 0 0 0 0 0 0 0		50 0 0 0 0 0 0 0 0 0 0 0 0 0	30 100 0 0 0 0 0 0 0 0 0 0 0 0	0* 150 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
Z-ax	stroke (mm) 50 100 150 200 350 350 400 450 550 600 650 700 750 800 850 900	50 0 0 0 0 0 0 0 0 0 0 0 0 0				50 0 0 0 0 0 0 0 0 0 0 0 0 0	2: 100 0 0 0 0 0 0 0 0 0 0 0 0	50 50 0 0 0 0 0 0 0 0 0 0 0 0 0		50 0 0 0 0 0 0 0 0 0 0 0 0 0	30 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0* 50 50 50 50 50 50 50 50 50 50 50 50 50	
Z-ax	stroke (mm) 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950	50 0 0 0 0 0 0 0 0 0 0 0 0 0				50 0 0 0 0 0 0 0 0 0 0 0 0 0	2: 100 0 0 0 0 0 0 0 0 0 0 0 0	50 150 0 0 0 0 0 0 0 0 0 0 0 0 0		50 0 0 0 0 0 0 0 0 0 0 0 0 0	30 100 0 0 0 0 0 0 0 0 0 0 0 0	0* 50 50 50 50 50 50 50 50 50 50 50 50 50	
Z-ax	stroke (mm) 50 100 150 200 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000	50 0 0 0 0 0 0 0 0 0 0 0 0 0				50 0 0 0 0 0 0 0 0 0 0 0 0 0	2: 100 0 0 0 0 0 0 0 0 0 0 0 0	50 50 0 0 0 0 0 0 0 0 0 0 0 0 0		50 0 0 0 0 0 0 0 0 0 0 0 0 0	30 100 0 0 0 0 0 0 0 0 0 0 0 0	0* 150 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
Z-ax	stroke (mm) 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950	50 0 0 0 0 0 0 0 0 0 0 0 0 0				50 0 0 0 0 0 0 0 0 0 0 0 0 0	2: 100 0 0 0 0 0 0 0 0 0 0 0 0	50 150 0 0 0 0 0 0 0 0 0 0 0 0 0		50 0 0 0 0 0 0 0 0 0 0 0 0 0	30 100 0 0 0 0 0 0 0 0 0 0 0 0	0* 50 50 50 50 50 50 50 50 50 50 50 50 50	

* When the speed type "HSL" is selected, the maximum Y-axis stroke will be 250mm. (300mm or more cannot be selected.)

Y-a	xis stroke (mm)		35	0*			40	0 *	
Z-a	xis stroke (mm)	50	100	150	200	50	100	150	200
	50	0	0	0	0	0	0	0	0
	100	0	0	0	0	0	0	0	0
	150	0	0	0	0	0	0	0	0
	200	0	0	0	0	0	0	0	0
	250	0	0	0	0	0	0	0	0
	300	0	0	0	0	0	0	0	0
	350	0	0	0	0	0	0	0	0
	400	0	0	0	0	0	0	0	0
(mm)	450	0	0	0	0	0	0	0	0
<u></u>	500	0	0	0	0	0	0	0	0
stroke	550	0	0	0	0	0	0	0	0
str	600	0	0	0	0	0	0	0	0
X-axis	650	0	0	0	0	0	0	0	0
×	700	0	0	0	0	0	0	0	0
	750	0	0	0	0	0	0	0	0
	800	0	0	0	0	0	0	0	0
	850	0	0	0	0	0	0	0	0
	900	0	0	0	0	0	0	0	0
	950	0	0	0	0	0	0	0	0
	1000	0	0	0	0	0	0	0	0
	1050	0	0	0	0	0	0	0	0
	1100	0	0	0	0	0	0	0	0

* When the speed type "HSL" is selected, the maximum Y-axis stroke will be 250mm. (300mm or more cannot be selected.)

Cable Track

Cable Length

Type	Cable code	Length
	1L	1m
Standard	3L	3m
type	5L	5m
		Specified length (15m max.)

Note 1. All-axis standard cable is used. Note 2. The length of the second and third axis cable is from the exit of the cable track. A separate robot cable is included for wiring inside the cable track. Note 3. The standard lengths are 1m, 3m and 5m, but other lengths can be specified in 1m increments up to 15m.

Туре	Model	Reference page	First wiring (X-axis lateral)	Second wiring (Y-axis lateral)	Third wiring (Z-axis lateral)
Without cable track (cable only)	N		0	0	0
Cable track S size (inner width: 38mm)	СТ		0	0	0
Cable track M size (inner width: 50mm)	СТМ	See P.136	0	0	0
Cable track L size (inner width: 63mm)	CTL		0	0	Cannot be selected *1
Cable track XL size (inner width: 80mm)	CTXL		0	Cannot be	selected *2
*1 Only the first and second wiring can be	selected	*2 Only the	e first wiring can l	pe selected	

Applicable Controllers

Controllers are sold separately.Please refer to each controller page.

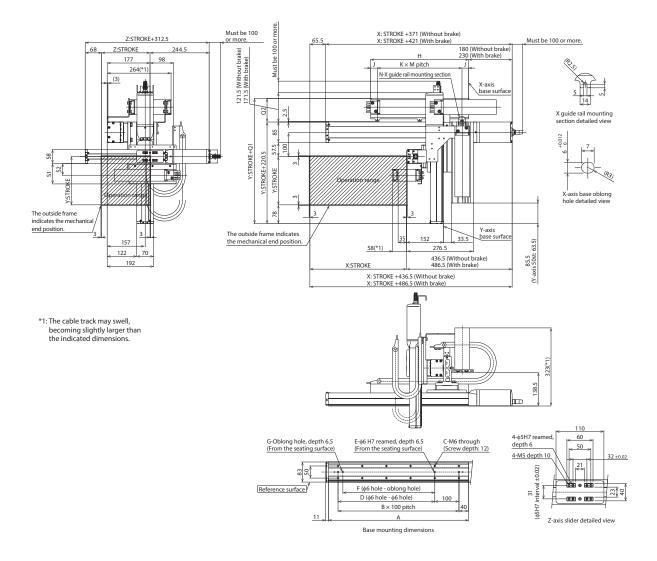
Туре	Axis configuration	Applicable controllers	Reference page
	X-axis : SA8C	PCON-CFB/CGFB	P-149
	A-dXIS: SHOC	MSEL-PCF/PGF	P-139
		PCON-CB/CGB	P-149
PM1	Y-axis : SA7C	PCON-CYB/PLB/POB	Please contact IAI
	Z-axis : SA6C	MCON-C/CG	P-153
	Z-axis: SAOC	MCON-LC/LCG	P-155
		MSEL	P-139
	X-axis : SA8C	RCON-PCF	
PM2	Y-axis : SA7C Z-axis : SA6C	RCON-PC	P-159

* Operation is possible with the high output setting specification. When connecting to the MCON controller, "HIGH OUTPUT SETTING SPECIFICATION" must be selected. Please contact IAI regarding use with the high-output setting disabled.

Specificati	ons			
ltem		X-axis	Y-axis	Z-axis
Axis configuration	on	RCP6-SA8C	RCP6-SA7C	RCP6-SA6C
Stroke (Every 50	mm)	50~1100mm	50~400mm *1	50~200mm
	HSL			170mm/s
Max. speed *2	HSM	300mm/s	640mm/s	340mm/s
wax. speeu 2	HSH	50011111/5	0401111/5	680mm/s
	HSS			800mm/s
Motor size		56 High thrust stepper motor	56 Stepper motor	42 Stepper motor
	HSL			3mm
Ball screw	HSM	20mm	24mm	6mm
lead	HSH	2011111	24000	12mm
	HSS			20mm
Drive system		Ball screw ø16mm rolled C10	Ball screw ø12mm rolled C10	Ball screw \u00f610mm rolled C10
Positioning repe	atability	±0.01mm		
Base material		Aluminum		
Ambient operat temperature, hu	5	0~40°C, 85% RH or les	s (non-condensing)	

Options (1) * Please check the	ne Options	reference pa	ges to conf	irm each o	ption.
Туре	Option code	Reference page	X-axis	Y-axis	Z-axis
Brake *	В	See P.134	0	0	Standard equipment *
Cable exit direction (Top)	CJT	See P.134	0		
Cable exit direction (Right)	CJR	See P.134	0	Cann	ot be
Cable exit direction (Left)	CJL	See P.134	0	sele	cted
Cable exit direction (Bottom)	CJB	See P.134	0		
Non-motor end specification	NM	See P.135	0	0	0
Slider section roller specification	SR	See P.135	0	0	0

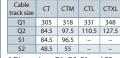
* Outside as standard. Be sure to specify.


* Brake option for X- and/or Y-axes increases the length of the motor unit(s). Please contact IAI for more information.

Options (2) * Please check the Option:	s reference pages to cor	firm each option.
Туре	Option code	Reference page
Foot plate	FTP	See P 134

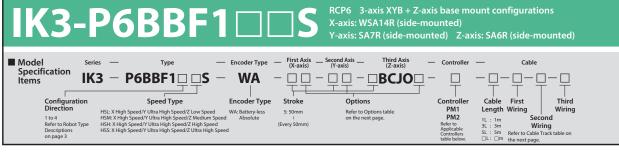
*1 When the speed type "HSL" is selected, the maximum Y-axis stroke will be 250mm. *2 The maximum speed may not be reached if the travel distance is short or acceleration is low. Maximum speed may change depending on the stroke. For details, refer to the Maximum Speed by Stroke table on P.137.

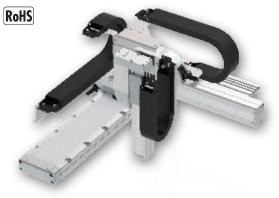
Note 1. The configuration position in the figure is home. Note 2. The diagram shows first, second and third wirings all with cable tracks. Note 3. For details on the cable track and cable track moving end bracket, refer to P.136.



(*) Notes

The X-axis cable track guide rail is to be fixed to the surface on which the X-axis is installed by the customer. When the foot plate option is selected, the unit will be shipped fixed on the foot plate. (See P.134) Also, the moving end of the Z-axis cable track is to be fixed to a plate or the like mounted on the Z-axis slider by the customer.


Dimensions by Stroke


X: Stroke	50	100	150	200	250	300	350	400	450	500	550	600	650	700	750	800	850	900	950	1000	1050	1100	Cable	CT	СТМ
А	230	280	330	380	430	480	530	580	630	680	730	780	830	880	930	980	1030	1080	1130	1180	1230	1280	track size	C	CTM
В	1	2	2	3	3	4	4	5	5	6	6	7	7	8	8	9	9	10	10	11	11	12	Q1	305	318
С	4	6	6	8	8	10	10	12	12	14	14	16	16	18	18	20	20	22	22	24	24	26	Q2	84.5	97.5
D	0	100	100	200	200	300	300	400	400	500	500	600	600	700	700	800	800	900	900	1000	1000	1100	S1	84.5	96.5
E	2	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	S2	48.5	55
F	0	0	80	180	180	280	280	380	380	480	480	580	580	680	680	780	780	880	880	980	980	1080	* Dimen	sions (01 02
G	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	chang		
Н	230	255	280	305	330	355	380	405	430	455	480	505	530	555	580	605	630	655	680	705	730	755	of the		
J	30	27.5	27.5	27.5	27.5	27.5	27.5	27.5	27.5	27.5	22.5	27.5	77.5	52.5	65	77.5	52.5	27.5	77.5	22.5	55	27.5	of the	Capie (IdCK.
К	1	1	1	2	2	2	2	2	2	2	3	3	3	3	3	3	3	3	3	4	4	4			
М	170	200	225	125	137.5	150	162.5	175	187.5	200	145	150	125	150	150	150	175	200	175	165	155	175			
N	2	2	2	3	3	3	3	3	3	3	4	4	4	4	4	4	4	4	4	5	5	5			

2, S1 and S2 g on the size

Payload by Ac	celeration				
HSL type: X high spee	ed/Y ultra high speed/Z low speed	HSM type: X high speed/Y ul	ltra high speed/Z medium speed (Unit: ke		
Y-axis (mm) Acceleration/ deceleration (G)	50~400 (Every 50mm)	Y-axis (mm) Acceleration/ deceleration (G)	50~400 (Every 50mm)		
0.1	4	0.1	2		
		0.3	2		
		0.5			
		0.5	2		
HSH type: X high spee	ed/Y ultra high speed/Z high speed	0.5	2 /Y ultra high speed/Z ultra high spe		
HSH type: X high spee Y-axis (mm) Acceleration/ deceleration (G)	51 51	0.5			
Y-axis (mm) Acceleration/	50~400	0.5 HSS type: X high speed Y-axis (mm) Acceleration/	/Y ultra high speed/Z ultra high spe 50~400		
Y-axis (mm) Acceleration/ deceleration (G)	50~400	0.5 HSS type: X high speed. Y-axis (mm) Acceleration/ deceleration (G)	/Y ultra high speed/Z ultra high spe 50~400 (Every 50mm)		

The photograph above shows the configuration direction "1" where all axes have cable tracks. Please refer to P.3 for other configuration directions.

When X, Y and Z axes all have the same acceleration/deceleration. When there is significant vibration, decrease the speed and acceleration/deceleration as required.

S	troke												
Y-a	axis stroke (mm)		5	0			1(00			1:	50	
Z-a	axis stroke (mm)	50	100	150	200	50	100	150	200	50	100	150	200
	50	0	0	0	0	0	0	0	0	0	0	0	0
	100	0	0	0	0	0	0	0	0	0	0	0	0
	150	0	0	0	0	0	0	0	0	0	0	0	0
	200	0	0	0	0	0	0	0	0	0	0	0	0
	250	0	0	0	0	0	0	0	0	0	0	0	0
2	300	0	0	0	0	0	0	0	0	0	0	0	0
(mm)	350	0	0	0	0	0	0	0	0	0	0	0	0
stroke	400	0	0	0	0	0	0	0	0	0	0	0	0
sstr	450	0	0	0	0	0	0	0	0	0	0	0	0
X-axis	500	0	0	0	0	0	0	0	0	0	0	0	0
×	550	0	0	0	0	0	0	0	0	0	0	0	0
	600	0	0	0	0	0	0	0	0	0	0	0	0
	650	0	0	0	0	0	0	0	0	0	0	0	0
	700	0	0	0	0	0	0	0	0	0	0	0	0
	750	0	0	0	0	0	0	0	0	0	0	0	0
	800	0	0	0	0	0	0	0	0	0	0	0	0

Y-a	xis stroke (mm)		20	00			2	50			3(00	
Z-a	xis stroke (mm)	50	100	150	200	50	100	150	200	50	100	150	200
	50	0	0	0	0	0	0	0	0	0	0	0	0
	100	0	0	0	0	0	0	0	0	0	0	0	0
	150	0	0	0	0	0	0	0	0	0	0	0	0
	200	0	0	0	0	0	0	0	0	0	0	0	0
	250	0	0	0	0	0	0	0	0	0	0	0	0
	300	0	0	0	0	0	0	0	0	0	0	0	0
(mm)	350	0	0	0	0	0	0	0	0	0	0	0	0
stroke	400	0	0	0	0	0	0	0	0	0	0	0	0
s str	450	0	0	0	0	0	0	0	0	0	0	0	0
X-axis	500	0	0	0	0	0	0	0	0	0	0	0	0
×	550	0	0	0	0	0	0	0	0	0	0	0	0
	600	0	0	0	0	0	0	0	0	0	0	0	0
	650	0	0	0	0	0	0	0	0	0	0	0	0
	700	0	0	0	0	0	0	0	0	0	0	0	0
	750	0	0	0	0	0	0	0	0	0	0	0	0
	800	0	0	0	0	0	0	0	0	0	0	0	0

Y-a	xis stroke (mm)		3	50			40	00	
Z-a	ixis stroke (mm)	50	100	150	200	50	100	150	200
	50	0	0	0	0	0	0	0	0
	100	0	0	0	0	0	0	0	0
	150	0	0	0	0	0	0	0	0
	200	0	0	0	0	0	0	0	0
	250	0	0	0	0	0	0	0	0
2	300	0	0	0	0	0	0	0	0
stroke (mm)	350	0	0	0	0	0	0	0	0
oke	400	0	0	0	0	0	0	0	0
s str	450	0	0	0	0	0	0	0	0
X-axis	500	0	0	0	0	0	0	0	0
×	550	0	0	0	0	0	0	0	0
	600	0	0	0	0	0	0	0	0
	650	0	0	0	0	0	0	0	0
	700	0	0	0	0	0	0	0	0
	750	0	0	0	0	0	0	0	0
	800	0	0	0	0	0	0	0	0

Cable Track

Cable	Length	
Туре	Cable code	Length
	1L	1m
Standard	3L	3m
type	5L	5m
		Specified length (15m max.)

Туре	Cable code	Length				Reference	First wiring	Second wiring	Third wiring
	1L	1m		Type Mod		page	(X-axis lateral)	(Y-axis lateral)	(Z-axis lateral)
Standard	3L	3m				page	(A-datis lateral)	(1-axis lateral)	
type	5L	5m		Without cable track (cable only)	N		0	0	0
		Specified length (15m max.)		Cable track S size (inner width: 38mm)	СТ		0	0	0
Note 1. Al	l-axis standard cab	le is used.	Cable track M size (inner width: 50mm) CTM			See P.136	0	0	0
		cond and third axis cable is from the exi	t	Cable track L size (inner width: 63mm)	h: 63mm) CTL		0	0	Cannot be selected *1
	the cable track. A sing inside the cab	separate robot cable is included for	Cable track XL size (inner width: 80mm)	CTXL		0	Cannot be	selected *2	
Note 3. Th	e standard length	s are 1m, 3m and 5m, but other lengths m increments up to 15m.		*1 Only the first and second wiring can be	*2 Only the first wiring can be selected				

Applicable Controllers

Controllers are sold separately. Please refer to each controller page.

Туре	Axis configuration	Applicable controllers	Reference page
		PCON-CB/CGB	P-149
	X-axis : WSA14R	PCON-CYB/PLB/POB	Please contact IAI
PM1	Y-axis : SA7R	MCON-C/CG	P-153
		MCON-LC/LCG	P-155
	Z-axis : SA6R	MSEL	P-139
PM2		RCON-PC	P-159

* Operation is possible with the high output setting specification. When connecting to the MCON controller, "HIGH OUTPUT SETTING SPECIFICATION" must be selected. Please contact IAI regarding use with the high-output setting disabled.

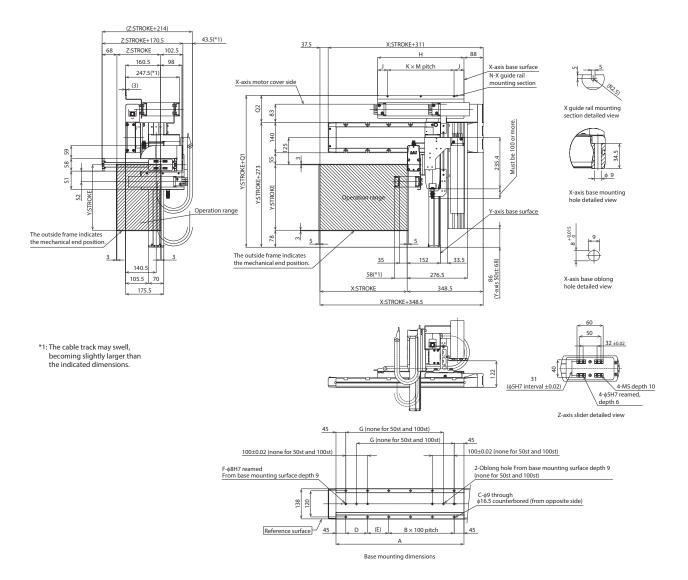
Specifications

opeenreat								
ltem		X-axis	Y-axis	Z-axis				
Axis configurat	ion	RCP6-WSA14R	RCP6-SA7R	RCP6-SA6R				
Stroke (Every 5	0mm)	50~800mm	50~400mm	50~200mm				
	HSL			170mm/s				
Max speed *	HSM	280mm/s	640mm/s	340mm/s				
Max. speed *	HSH	280mm/s	640mm/s	680mm/s				
	HSS]		800mm/s				
Motor size		56 Stepper motor	56 Stepper motor	42 Stepper motor				
	HSL			3mm				
Ball screw	HSM	16mm	24mm	6mm				
lead	HSH		24000	12mm				
	HSS	1		20mm				
Drive system		Ball screw ø12mm rolled C10	Ball screw ø12mm rolled C10	Ball screw \u00f610mm rolled C10				
Positioning repe	atability	±0.01mm						
Base material		Aluminum						
Ambient opera temperature, h	5	0~40°C, 85% RH or less (non-condensing)						

			Deference			
Options	* Please check the	options rei	renence page	5 (0 (0)	ii cucii opt	

code	page	X-axis	Y-axis	Z-axis
В	See P.134	0	0	Standard equipment *
CIO	See P.134			Standard equipment *
NM	See P.135	0	0	0
SR	See P.135	0	0	0
	B CJO NM	B See P.134 CJO See P.134 NM See P.135	B See P.134 O CJO See P.134 Cann sele	B See P.134 O O CJO See P.134 Cannot be selected NM See P.135 O O

* Be sure to specify.


* The maximum speed may not be reached if the travel distance is short or acceleration is low.

Maximum speed may change depending on the stroke. For details, refer to the Maximum Speed by Stroke table on P.137.

CAD drawings can be downloaded from our website 2D CAD 3D CAD www.intelligentactuator.com

Note 1. The configuration position in the figure is home. Note 2. The diagram shows first, second and third wirings all with cable tracks. Note 3. For details on the cable track and cable track moving end bracket, refer to P.136.

(*) Notes

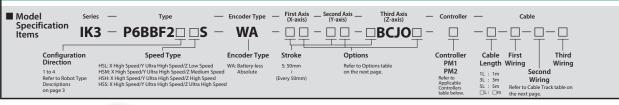
The X-axis cable track guide rail is to be fixed to the surface on which the X-axis is installed by the customer. Also, the moving end of the Z-axis cable track is to be fixed to a plate or the like mounted on the Z-axis slider by the customer.

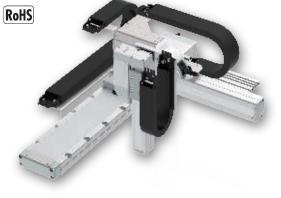
Dimensions by Stroke

X: Stroke	50	100	150	200	250	300	350	400	450	500	550	600	650	700	750	800
A	237	287	337	387	437	487	537	587	637	687	737	787	837	887	937	987
В	0	0	1	1	2	2	3	3	4	4	5	5	6	6	7	7
С	4	4	8	8	10	10	12	12	14	14	16	16	18	18	20	20
D	-	-	100	100	100	100	100	100	100	100	100	100	100	100	100	100
E	147	197	47	97	47	97	47	97	47	97	47	97	47	97	47	97
F	2	2	4	4	4	4	4	4	4	4	4	4	4	4	4	4
G	-	-	198	248	298	348	398	448	498	548	598	648	698	748	798	848
Н	221	246	271	296	321	346	371	396	421	446	471	496	521	546	571	596
J	45.5	45.5	45.5	45.5	45.5	45.5	45.5	45.5	45.5	43	48	45.5	43	43	45.5	43
К	1	1	2	2	2	2	2	2	3	3	3	3	3	4	4	4
М	130	155	90	102.5	115	127.5	140	152.5	110	120	125	135	145	115	120	127.5
N	2	2	3	3	3	3	3	3	4	4	4	4	4	5	5	5
Cable track size	CT	CTM	CTL	CTXL												
Q1	383.5	396.5	409.5	426.5												
Q2	110.5	123.5	136.5	153.5												
S1	84.5	96.5	-	-												

-

-* Dimensions Q1, Q2, S1 and S2 change depending on the size of the cable track.


48.5 55


S2

IK3-P6BBF2

RCP6 3-axis XYB + Z-axis base mount configurations X-axis: WSA14C (straight) Y-axis: SA7R (side-mounted) Z-axis: SA6R (side-mounted)

HSL type: X high spee	ed/Y ultra high speed/Z low speed	HSM type: X high speed/Y u	tra high speed/Z medium speed (Unit: I
Y-axis (mm) Acceleration/ deceleration (G)	50~400 (Every 50mm)	Y-axis (mm) Acceleration/ deceleration (G)	50~400 (Every 50mm)
0.1	4	0.1	2
· · · · · · · · · · · · · · · · · · ·		0.3	2
		0.5	2
HSH type: X high spee	d/Y ultra high speed/Z high speed	0.5	2 Y ultra high speed/Z ultra high spe
HSH type: X high spee Y-axis (mm) Acceleration/ deceleration (G)	d/Y ultra high speed/Z high speed 50~400 (Every 50mm)	0.5	
Y-axis (mm) Acceleration/	50~400	0.5 HSS type: X high speed, Y-axis (mm) Acceleration/	– Y ultra high speed/Z ultra high spe 50~400
Y-axis (mm) Acceleration/ deceleration (G)	50~400	0.5 HSS type: X high speed Y-axis (mm) Acceleration/ deceleration (G)	Y ultra high speed/Z ultra high spe 50~400 (Every 50mm)

The photograph above shows the configuration direction "1" where all axes have cable tracks. Please refer to P.3 for other configuration directions.

When there is significant vibration, decrease the speed and acceleration/deceleration as required.

S	troke												
Y-a	xis stroke (mm)		5	0			1(00			1:	50	
Z-a	xis stroke (mm)	50	100	150	200	50	100	150	200	50	100	150	200
	50	0	0	0	0	0	0	0	0	0	0	0	0
	100	0	0	0	0	0	0	0	0	0	0	0	0
	150	0	0	0	0	0	0	0	0	0	0	0	0
	200	0	0	0	0	0	0	0	0	0	0	0	0
	250	0	0	0	0	0	0	0	0	0	0	0	0
2	300	0	0	0	0	0	0	0	0	0	0	0	0
(mm)	350	0	0	0	0	0	0	0	0	0	0	0	0
stroke	400	0	0	0	0	0	0	0	0	0	0	0	0
s str	450	0	0	0	0	0	0	0	0	0	0	0	0
X-axis	500	0	0	0	0	0	0	0	0	0	0	0	0
×	550	0	0	0	0	0	0	0	0	0	0	0	0
	600	0	0	0	0	0	0	0	0	0	0	0	0
	650	0	0	0	0	0	0	0	0	0	0	0	0
	700	0	0	0	0	0	0	0	0	0	0	0	0
	750	0	0	0	0	0	0	0	0	0	0	0	0
	800	0	0	0	0	0	0	0	0	0	0	0	0

Y-a	xis stroke (mm)		20	00			2	50			3(00	
Z-a	xis stroke (mm)	50	100	150	200	50	100	150	200	50	100	150	200
	50	0	0	0	0	0	0	0	0	0	0	0	0
	100	0	0	0	0	0	0	0	0	0	0	0	0
	150	0	0	0	0	0	0	0	0	0	0	0	0
	200	0	0	0	0	0	0	0	0	0	0	0	0
	250	0	0	0	0	0	0	0	0	0	0	0	0
	300	0	0	0	0	0	0	0	0	0	0	0	0
(mm)	350	0	0	0	0	0	0	0	0	0	0	0	0
stroke	400	0	0	0	0	0	0	0	0	0	0	0	0
s str	450	0	0	0	0	0	0	0	0	0	0	0	0
X-axis	500	0	0	0	0	0	0	0	0	0	0	0	0
×	550	0	0	0	0	0	0	0	0	0	0	0	0
	600	0	0	0	0	0	0	0	0	0	0	0	0
	650	0	0	0	0	0	0	0	0	0	0	0	0
	700	0	0	0	0	0	0	0	0	0	0	0	0
	750	0	0	0	0	0	0	0	0	0	0	0	0
	800	0	0	0	0	0	0	0	0	0	0	0	0

Y-a	xis stroke (mm)		3	50		400						
Z-a	xis stroke (mm)	50	100	150	200	50	100	150	200			
	50	0	0	0	0	0	0	0	0			
	100	0	0	0	0	0	0	0	0			
	150	0	0	0	0	0	0	0	0			
	200	0	0	0	0	0	0	0	0			
	250	0	0	0	0	0	0	0	0			
Ê	300	0	0	0	0	0	0	0	0			
stroke (mm)	350	0	0	0	0	0	0	0	0			
oke	400	0	0	0	0	0	0	0	0			
s str	450	0	0	0	0	0	0	0	0			
X-axis	500	0	0	0	0	0	0	0	0			
×	550	0	0	0	0	0	0	0	0			
	600	0	0	0	0	0	0	0	0			
	650	0	0	0	0	0	0	0	0			
	700	0	0	0	0	0	0	0	0			
	750	0	0	0	0	0	0	0	0			
	800	0	0	0	0	0	0	0	0			

Cable Track

Cable	Cable Length												
Туре	Cable code	Length											
	1L	1m											
Standard	3L	3m											
type	5L	5m											
		Specified length (15m max.)											

Туре	Model	Reference page	First wiring (X-axis lateral)	Second wiring (Y-axis lateral)	Third wiring (Z-axis lateral)
Without cable track (cable only)	N		0	0	0
Cable track S size (inner width: 38mm)	СТ	1	0	0	0
Cable track M size (inner width: 50mm)	СТМ	See P.136	0	0	0
Cable track L size (inner width: 63mm)	CTL		0	0	Cannot be selected *1
Cable track XL size (inner width: 80mm)	CTXL		0	Cannot be	selected *2
*1 Only the first and second wiring can be	coloctod	*2 Only the	first wiring can b	a coloctod	

Note 1. All-axis standard cable is used. Note 2. The length of the second and third axis cable is from the exit of the cable track. A separate robot cable is included for wiring inside the cable track. Note 3. The standard lengths are 1m, 3m and 5m, but other lengths can be specified in 1m increments up to 15m.

*1 Only the first and second wiring can be selected *2 Only the first wiring can be selected

Applicable Controllers

Controllers are sold separately.Please refer to each controller page.

Type	Axis configuration	Applicable controllers	Reference page
		PCON-CB/CGB	P-149
	X-axis : WSA14C	PCON-CYB/PLB/POB	Please contact IAI
PM1	Y-axis : SA7R	MCON-C/CG	P-153
		MCON-LC/LCG	P-155
	Z-axis : SA6R	MSEL	P-139
PM2		RCON-PC	P-159

* Operation is possible with the high output setting specification. When connecting to the MCON controller, "HIGH OUTPUT SETTING SPECIFICATION" must be selected. Please contact IAI regarding use with the high-output setting disabled.

Specifications

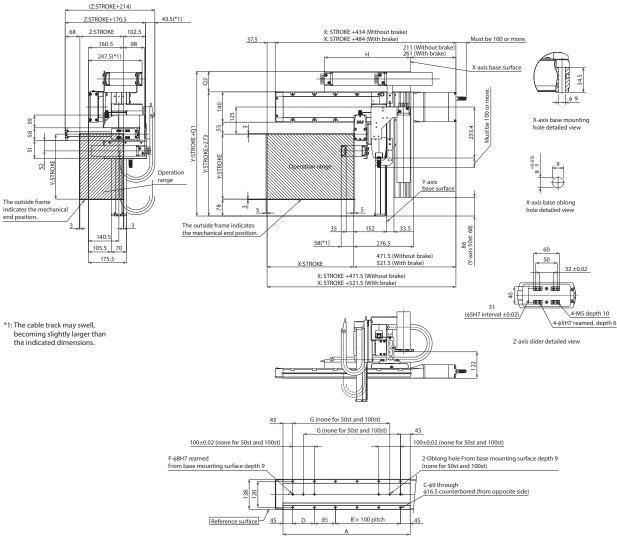
Item		X-axis	Y-axis	Z-axis				
Axis configuration	on	RCP6-WSA14C	RCP6-SA7R	RCP6-SA6R				
Stroke (Every 50	mm)	50~800mm	50~400mm	50~200mm				
	HSL			170mm/s				
May speed *	HSM	280mm/s	640mm/s	340mm/s				
Max. speed *	HSH	280mm/s	640mm/s	680mm/s				
	HSS			800mm/s				
Motor size		56 Stepper motor	56 Stepper motor	42 Stepper motor				
	HSL			3mm				
Ball screw	HSM	16mm	24mm	6mm				
lead	HSH	IOIIIII	24000	12mm				
	HSS			20mm				
Drive system		Ball screw ø12mm rolled C10	Ball screw ø12mm rolled C10	Ball screw ∳10mm rolled C10				
Positioning repea	atability	±0.01mm						
Base material		Aluminum						
Ambient operat temperature, hu		0~40°C, 85% RH or less (non-condensing)						

Туре	Option code	Reference page	X-axis	Y-axis	Z-axis
Brake *	В	See P.134	0	0	Standard equipment
Cable exit direction (Top)	CJT	See P.134	0		
Cable exit direction (Right)	CJR	See P.134	0	Cann	ot be
Cable exit direction (Left)	CJL	See P.134	0	selected	
Cable exit direction (Bottom)	CJB	See P.134	0		
Cable exit direction (Outside)	cio	See P.134	Cann sele	ot be cted	Standard equipment
Non-motor end specification	NM	See P.135	0	0	0
Slider section roller specification	SR	See P.135	0	0	0

* Be sure to specify. * Brake option for X-axis increases the length of the motor unit. Please contact IAI for more information.

Options * Please check the Options reference pages to co

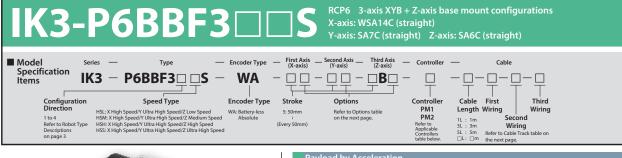
* The maximum speed may not be reached if the travel distance is short or acceleration is low.

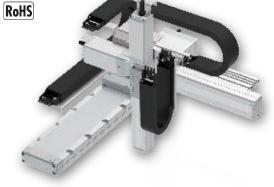

Maximum speed may change depending on the stroke.

For details, refer to the Maximum Speed by Stroke table on P.137.

Dimensions

Note 1. The configuration position in the figure is home. Note 2. The diagram shows first, second and third wirings all with cable tracks. Note 3. For details on the cable track and cable track moving end bracket, refer to P.136.


Base mounting dimensions


(*) Notes	*) Notes The moving end of the Z-axis cable track is to be fixed to a plate or the like mounted on the Z-axis slider by the customer.															
Dimensions by Stroke																
X: Stroke	50	100	150	200	250	300	350	400	450	500	550	600	650	700	750	800
A	237	287	337	387	437	487	537	587	637	687	737	787	837	887	937	987
В	0	0	1	1	2	2	3	3	4	4	5	5	6	6	7	7
С	4	4	8	8	10	10	12	12	14	14	16	16	18	18	20	20
D	-	-	100	100	100	100	100	100	100	100	100	100	100	100	100	100
E	147	197	47	97	47	97	47	97	47	97	47	97	47	97	47	97

	147	1.27				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			/	,,,	77	,,,				,,
F	2	2	4	4	4	4	4	4	4	4	4	4	4	4	4	4
G	-	-	198	248	298	348	398	448	498	548	598	648	698	748	798	848
Н	221	246	271	296	321	346	371	396	421	446	471	496	521	546	571	596
Cable track size	CT	CTM	CTL	CTXL												
Q1	356	368	383	401												
Q2	83	95	110	128												
S1	84.5	96.5	-	-												
S2	48.5	55	-	-												

* Dimensions Q1, Q2, S1 and S2 change depending on the size of the cable track.

HSL type: X high spee	ed/Y ultra high speed/Z low speed	HSM type: X high speed/Y ultra high speed/Z medium speed (U							
Y-axis (mm) Acceleration/ deceleration (G)	50~400 (Every 50mm)	Y-axis (mm) Acceleration/ deceleration (G)	50~400 (Every 50mm)						
0.1	4	0.1	2						
· · · · · · · · · · · · · · · · · · ·		0.3	2						
		0.5	2						
HSH type: X high spee	d/Y ultra high speed/Z high speed		-						
HSH type: X high spee Y-axis (mm) Acceleration/ deceleration (G)	rd/Y ultra high speed/Z high speed 50~400 (Every 50mm)		-						
Y-axis (mm) Acceleration/	50~400	HSS type: X high speed Y-axis (mm) Acceleration/	– Y ultra high speed/Z ultra high sp 50~400						
Y-axis (mm) Acceleration/ deceleration (G)	50~400	HSS type: X high speed Y-axis (mm) Acceleration/ deceleration (G)	Y ultra high speed/Z ultra high sp 50~400 (Every 50mm)						

The photograph above shows the configuration direction "1" where all axes have cable tracks. Please refer to P3 for other configuration directions.

When there is significant vibration, decrease the speed and acceleration/deceleration as required.

S	troke												
Y-a	xis stroke (mm)		5	0			1(00			1:	50	
Z-a	xis stroke (mm)	50	100	150	200	50	100	150	200	50	100	150	200
	50	0	0	0	0	0	0	0	0	0	0	0	0
	100	0	0	0	0	0	0	0	0	0	0	0	0
	150	0	0	0	0	0	0	0	0	0	0	0	0
	200	0	0	0	0	0	0	0	0	0	0	0	0
	250	0	0	0	0	0	0	0	0	0	0	0	0
2	300	0	0	0	0	0	0	0	0	0	0	0	0
(mm)	350	0	0	0	0	0	0	0	0	0	0	0	0
stroke	400	0	0	0	0	0	0	0	0	0	0	0	0
s str	450	0	0	0	0	0	0	0	0	0	0	0	0
X-axis	500	0	0	0	0	0	0	0	0	0	0	0	0
×	550	0	0	0	0	0	0	0	0	0	0	0	0
	600	0	0	0	0	0	0	0	0	0	0	0	0
	650	0	0	0	0	0	0	0	0	0	0	0	0
	700	0	0	0	0	0	0	0	0	0	0	0	0
	750	0	0	0	0	0	0	0	0	0	0	0	0
	800	0	0	0	0	0	0	0	0	0	0	0	0

Y-a	kis stroke (mm)		20	00			2	50			3	00	
Z-a	xis stroke (mm)	50	100	150	200	50	100	150	200	50	100	150	200
	50	0	0	0	0	0	0	0	0	0	0	0	0
	100	0	0	0	0	0	0	0	0	0	0	0	0
	150	0	0	0	0	0	0	0	0	0	0	0	0
	200	0	0	0	0	0	0	0	0	0	0	0	0
	250	0	0	0	0	0	0	0	0	0	0	0	0
	300	0	0	0	0	0	0	0	0	0	0	0	0
(mm)	350	0	0	0	0	0	0	0	0	0	0	0	0
stroke	400	0	0	0	0	0	0	0	0	0	0	0	0
s str	450	0	0	0	0	0	0	0	0	0	0	0	0
X-axis	500	0	0	0	0	0	0	0	0	0	0	0	0
×	550	0	0	0	0	0	0	0	0	0	0	0	0
	600	0	0	0	0	0	0	0	0	0	0	0	0
	650	0	0	0	0	0	0	0	0	0	0	0	0
	700	0	0	0	0	0	0	0	0	0	0	0	0
	750	0	0	0	0	0	0	0	0	0	0	0	0
	800	0	0	0	0	0	0	0	0	0	0	0	0

Y-a	xis stroke (mm)		3	50		400						
Z-a	xis stroke (mm)	50	100	150	200	50	100	150	200			
	50	0	0	0	0	0	0	0	0			
	100	0	0	0	0	0	0	0	0			
	150	0	0	0	0	0	0	0	0			
	200	0	0	0	0	0	0	0	0			
	250	0	0	0	0	0	0	0	0			
2	300	0	0	0	0	0	0	0	0			
stroke (mm)	350	0	0	0	0	0	0	0	0			
oke	400	0	0	0	0	0	0	0	0			
s str	450	0	0	0	0	0	0	0	0			
X-axis	500	0	0	0	0	0	0	0	0			
×	550	0	0	0	0	0	0	0	0			
	600	0	0	0	0	0	0	0	0			
	650	0	0	0	0	0	0	0	0			
	700	0	0	0	0	0	0	0	0			
	750	0	0	0	0	0	0	0	0			
	800	0	0	0	0	0	0	0	0			

Cable Track

Туре	Cable code	Length
	1L	1m
Standard	3L	3m
type	5L	5m
	□L	Specified length (15m max.)

Туре	Model	Reference page	First wiring (X-axis lateral)	Second wiring (Y-axis lateral)	Third wiring (Z-axis lateral)
Without cable track (cable only)	N		0	0	0
Cable track S size (inner width: 38mm)	СТ	1	0	0	0
Cable track M size (inner width: 50mm)	СТМ	See P.136	0	0	0
Cable track L size (inner width: 63mm)	CTL		0	0	Cannot be selected *1
Cable track XL size (inner width: 80mm)	CTXL		0	Cannot be	selected *2
*1 Only the first and second wiring can be	coloctod	*2 Only the	first wiring can l	a coloctod	

Note 1. All-axis standard cable is used. Note 2. The length of the second and third axis cable is from the exit of the cable track. A separate robot cable is included for wiring inside the cable track. Note 3. The standard lengths are 1m, 3m and 5m, but other lengths can be specified in 1m increments up to 15m.

*1 Only the first and second wiring can be selected *2 Only the first wiring can be selected

Applicable Controllers

Cable Length

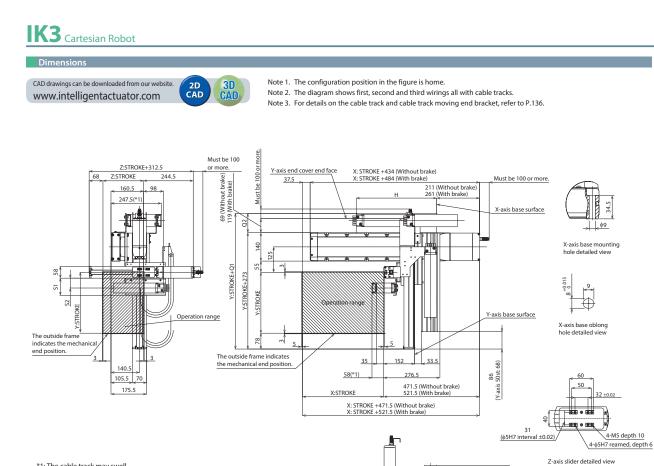
Controllers are sold separately. Please refer to each controller page.

Туре	Axis configuration	Applicable controllers	Reference page
		PCON-CB/CGB	P-149
	X-axis : WSA14C	PCON-CYB/PLB/POB	Please contact IAI
PM1	Y-axis : SA7C	MCON-C/CG	P-153
		MCON-LC/LCG	P-155
	Z-axis : SA6C	MSEL	P-139
PM2		RCON-PC	P-159

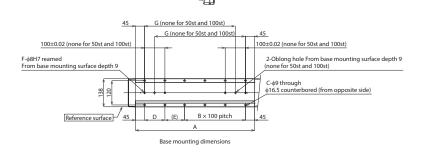
* Operation is possible with the high output setting specification. When connecting to the MCON controller, "HIGH OUTPUT SETTING SPECIFICATION" must be selected. Please contact IAI regarding use with the high-output setting disabled.

Specifications

opeenreat								
ltem		X-axis	Y-axis	Z-axis				
Axis configurati	ion	RCP6-WSA14C	RCP6-SA7C	RCP6-SA6C				
Stroke (Every 50)mm)	50~800mm	50~400mm	50~200mm				
	HSL			170mm/s				
Max. speed *	HSM	280mm/s	640mm/s	340mm/s				
Max. speed	HSH	20011111/5	04011111/5	680mm/s				
	HSS			800mm/s				
Motor size		56 Stepper motor	56 Stepper motor	42 Stepper motor				
	HSL			3mm				
Ball screw	HSM	16mm	24mm	6mm				
lead	HSH	IOIIIII	24000	12mm				
	HSS			20mm				
Drive system		Ball screw ¢12mm rolled C10	Ball screw ø12mm rolled C10	Ball screw \u00f610mm rolled C10				
Positioning repe	atability	±0.01mm						
Base material		Aluminum						
Ambient operating temperature, humidity		0~40°C, 85% RH or less (non-condensing)						


Туре	Option code	Reference page	X-axis	Y-axis	Z-axis
Brake *	В	See P.134	0	0	Standard equipment *
Cable exit direction (Top)	CJT	See P.134	0		
Cable exit direction (Right)	CJR	See P.134	0	Cann	ot be
Cable exit direction (Left)	CJL	See P.134	0	sele	cted
Cable exit direction (Bottom)	CJB	See P.134	0		
Non-motor end specification	NM	See P.135	0	0	0
Slider section roller specification	SR	See P.135	0	0	0

Options * Please check the Options reference pages to confirm each option.


outside as standard. Be sure to specify.
 * Brake option for X- and/or Y-axes increases the length of the motor unit(s).
 Please contact IAI for more information.

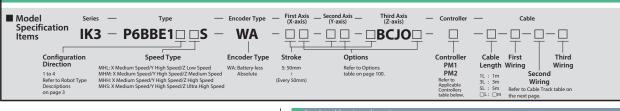
* The maximum speed may not be reached if the travel distance is short or acceleration is low. Maximum speed may change depending on the stroke.

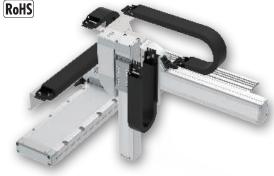
For details, refer to the Maximum Speed by Stroke table on P.137.

*1: The cable track may swell, becoming slightly larger than the indicated dimensions.

306.5(*1)

(*) Notes	The moving end of the Z-axis cable track is to be fixed to a plate or the like mounted on the Z-axis slider by the customer.															
Dimensions by	Strok	2														
X: Stroke	50	100	150	200	250	300	350	400	450	500	550	600	650	700	750	800
A	237	287	337	387	437	487	537	587	637	687	737	787	837	887	937	987
В	0	0	1	1	2	2	3	3	4	4	5	5	6	6	7	7
С	4	4	8	8	10	10	12	12	14	14	16	16	18	18	20	20
D	-	-	100	100	100	100	100	100	100	100	100	100	100	100	100	100
E	147	197	47	97	47	97	47	97	47	97	47	97	47	97	47	97
F	2	2	4	4	4	4	4	4	4	4	4	4	4	4	4	4
G	-	-	198	248	298	348	398	448	498	548	598	648	698	748	798	848
Н	221	246	271	296	321	346	371	396	421	446	471	496	521	546	571	596


	221	240	2/1	290	
Cable track size	CT	CTM	CTL	CTXL	
Q1	356	368	383	401	
Q2	83	95	110	128	
S1	84.5	96.5	-	-	
52	48.5	55	-	-	


* Dimensions Q1, Q2, S1 and S2 change depending on the size of the cable track.

IK3-P6BBE1

RCP6 3-axis XYB + Z-axis base mount configurations X-axis: WSA16R (side-mounted) Y-axis: SA8R (side-mounted) Z-axis: SA7R (side-mounted)

MHL type: X medium	speed/Y high speed/Z low speed	MHM type: X medium speed	d/Y high speed/Z mediu	mspeed (Unit: kg
Y-axis (mm) Acceleration/ deceleration (G)	50~500 (Every 50mm)	Y-axis (mm) Acceleration/ deceleration (G)	50~400 (Every 50mm)	450~500 (Every 50mm)
0.1	6	0.1	4	1
		0.3	4	-
MHH type: X medium	speed/Y high speed/Z high speed	0.3 MHS type: X medium s		— /Z ultra high speed
MHH type: X medium Y-axis (mm) Acceleration/ deceleration (G)	speed/Y high speed/Z high speed 50~500 (Every 50mm)		peed/Y high speed	– Zultrahighspeed 500 50mm)
Y-axis (mm) Acceleration/	50~500	MHS type: X medium s Y-axis (mm) Acceleration/	peed/Y high speed	500

When there is significant vibration, decrease the speed and acceleration/deceleration as required.

The photograph above shows the configuration direction "1" where all axes have cable tracks. Please refer to P.3 for other configuration directions.

St	troke												
Y-a	xis stroke (mm)			5	0					10	00		
	xis stroke (mm)	50	100	150	200	250	300	50	100	150	200	250	300
	50	0	0	0	0	0	0	0	0	0	0	0	0
	100	0	0	0	0	0	0	0	0	0	0	0	0
	150	0	0	0	0	0	0	0	0	0	0	0	0
	200	0	0	0	0	0	0	0	0	0	0	0	0
	250	0	0	0	0	0	0	0	0	0	0	0	0
	300	0	0	0	0	0	0	0	0	0	0	0	0
	350	0	0	0	0	0	0	0	0	0	0	0	0
Ê	400	0	0	0	0	0		0	0	0	0	0	0
Ľ,	450 500	0	0	0	0	0	0	0	0	0	0	0	0
ke	550	0	0	0	0	0	0	0	0	0	0	0	0
tro	600	0	0	0	0	0	0	0	0	0	0	0	0
is s	650	0	0	0	0	0	0	0	0	0	0	0	0
X-axis stroke (mm)	700	0	0	0	0	0	0	0	0	0	0	0	0
×	750	0	0	0	0	0	0	0	0	0	0	0	0
	800	0	0	0	0	0	0	0	0	0	Ö	0	ŏ
	850		Ö	Õ	ŏ	ŏ	Ő	Ö	Ö	0	ŏ	ŏ	ŏ
	900	Ō	Ō	Ō	Ō	Ō	Ō	Ō	Ō	Ō	Ō	Ō	Ō
	950	0	0	0	0	0	0	0	0	0	0	0	0
	1000	0	0	0	0	0	0	0	0	0	0	0	0
	1050	0	0	0	0	0	0	0	0	0	0	0	0
	1100	0	0	0	0	0	0	0	0	0	0	0	0
		0	0			0	0	0	0	-	-	0	0
	xis stroke (mm)			- 15	50	-	-	-	-	- 20	00	_	-
	xis stroke (mm) xis stroke (mm)	50	100	15 150	50 200	250	300	50	100	20 150	00 200	250	300
	xis stroke (mm) xis stroke (mm) 50	50	100	150 0	50 200 O	250	300 O	50	100 O	20 150 O	00 200 O	250	300 O
	xis stroke (mm) xis stroke (mm) 50 100	50 O	100 O	150 0 0	50 200 0	250 O	300 O	50 O	100 O	20 150 0	00 200 0	250 O	300 O
	xis stroke (mm) xis stroke (mm) 50 100 150	50 O O	100 O O O	150 0 0	50 200 0 0	250 O O O	300 O O	50 O O	100 O O	20 150 0 0	200 0 0 0	250 O O O	300 O O
	xis stroke (mm) xis stroke (mm) 50 100	50 O	100 O	150 0 0	50 200 0	250 O	300 O	50 O	100 O	20 150 0	00 200 0	250 O	300 O
	xis stroke (mm) xis stroke (mm) 50 100 150 200	50 〇 〇 〇	100 0 0 0 0	150 0 0 0 0	50 200 0 0 0 0 0	250 O O O O	300 O O O O	50 0 0 0 0	100 0 0 0 0	20 150 0 0	200 200 0 0 0 0 0	250 0 0 0 0	300 O O O O
	kis stroke (mm) kis stroke (mm) 50 100 150 200 250	50 O O O O O	100 0 0 0 0 0	150 0 0 0 0	50 200 0 0 0 0 0	250 0 0 0 0 0	300 0 0 0 0 0	50 0 0 0 0 0	100 0 0 0 0 0	20 150 0 0 0	200 0 0 0 0 0 0 0	250 0 0 0 0 0	300 0 0 0 0 0
Z-a	kis stroke (mm) stis stroke (mm) 50 100 150 200 250 300	50 0 0 0 0 0 0	100 0 0 0 0 0 0 0 0	150 0 0 0 0 0 0 0	50 200 0 0 0 0 0 0 0	250 0 0 0 0 0 0	300 0 0 0 0 0 0	50 0 0 0 0 0 0	100 0 0 0 0 0 0 0 0	20 150 0 0 0 0	200 0 0 0 0 0 0 0 0	250 0 0 0 0 0 0 0 0	300 0 0 0 0 0 0
Z-a	xis stroke (mm) xis stroke (mm) 50 100 150 200 250 300 350 400 450	50 0 0 0 0 0 0 0 0 0 0 0 0 0	100 0 0 0 0 0 0 0 0 0 0 0 0	150 0 0 0 0 0 0 0 0 0 0 0 0 0	50 200 0 0 0 0 0 0 0 0 0 0 0 0	250 0 0 0 0 0 0 0 0 0 0 0 0 0	300 0 0 0 0 0 0 0 0 0 0 0 0	50 0 0 0 0 0 0 0 0 0 0 0 0 0		20 150 0 0 0 0 0 0 0 0 0 0 0 0 0		250 0 0 0 0 0 0 0 0 0 0 0 0 0	300 0 0 0 0 0 0 0 0 0 0 0 0
Z-a	kis stroke (mm)) sis stroke (mm) 50 150 200 250 300 350 400 450 500	50 0 0 0 0 0 0 0 0 0 0 0 0 0	100 0 0 0 0 0 0 0 0 0 0 0 0	150 0 0 0 0 0 0 0 0 0 0 0 0 0	50 200 0 0 0 0 0 0 0 0 0 0 0 0	250 0 0 0 0 0 0 0 0 0 0 0 0 0	300 0 0 0 0 0 0 0 0 0 0 0 0	50 0 0 0 0 0 0 0 0 0 0 0 0 0		20 150 0 0 0 0 0 0 0 0 0 0 0 0 0	200 200 0 0 0 0 0 0 0 0 0 0 0 0	250 0 0 0 0 0 0 0 0 0 0 0 0 0	300 0 0 0 0 0 0 0 0 0 0 0 0 0
Z-a	xis stroke (mm) xis stroke (mm) 50 100 250 250 350 400 450 550	50 0 0 0 0 0 0 0 0 0 0 0 0 0		150 0 0 0 0 0 0 0 0 0 0 0 0 0	50 200 0 0 0 0 0 0 0 0 0 0 0 0	250 0 0 0 0 0 0 0 0 0 0 0 0 0	300 0 0 0 0 0 0 0 0 0 0 0 0	50 0 0 0 0 0 0 0 0 0 0 0 0 0 0		20 150 0 0 0 0 0 0 0 0 0 0 0 0 0	200 200 0 0 0 0 0 0 0 0 0 0 0 0	250 0 0 0 0 0 0 0 0 0 0 0 0 0	300 0 0 0 0 0 0 0 0 0 0 0 0
Z-a	kis stroke (mm) 50 100 250 250 350 400 450 500 550 600	50 0 0 0 0 0 0 0 0 0 0 0 0 0		15 50 0 0 0 0 0 0 0 0 0 0 0 0 0	50 200 0 0 0 0 0 0 0 0 0 0 0 0	250 0 0 0 0 0 0 0 0 0 0 0 0 0	300 0 0 0 0 0 0 0 0 0 0 0 0	50 0 0 0 0 0 0 0 0 0 0 0 0 0		20 150 0 0 0 0 0 0 0 0 0 0 0 0 0	200 200 0 0 0 0 0 0 0 0 0 0 0 0	250 0 0 0 0 0 0 0 0 0 0 0 0 0	300 0 0 0 0 0 0 0 0 0 0 0 0
Z-a	kis stroke (mm) sis stroke (mm) 50 100 150 200 250 300 350 400 450 550 600 650	50 0 0 0 0 0 0 0 0 0 0 0 0 0			50 200 0 0 0 0 0 0 0 0 0 0 0 0	250 0 0 0 0 0 0 0 0 0 0 0 0 0	300 0 0 0 0 0 0 0 0 0 0 0 0	50 0 0 0 0 0 0 0 0 0 0 0 0 0		20 150 0 0 0 0 0 0 0 0 0 0 0 0 0	200 200 0 0 0 0 0 0 0 0 0 0 0 0	250 0 0 0 0 0 0 0 0 0 0 0 0 0	300 0 0 0 0 0 0 0 0 0 0 0 0
	kis stroke (mm) 50 100 150 250 300 350 400 450 550 600 650 700	50 0 0 0 0 0 0 0 0 0 0 0 0 0		15 150 0 0 0 0 0 0 0 0 0 0 0 0 0	50 200 0 0 0 0 0 0 0 0 0 0 0 0	250 0 0 0 0 0 0 0 0 0 0 0 0 0	300 0 0 0 0 0 0 0 0 0 0 0 0	50 0 0 0 0 0 0 0 0 0 0 0 0 0		2(150 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	200 200 0 0 0 0 0 0 0 0 0 0 0 0	250 0 0 0 0 0 0 0 0 0 0 0 0 0	300 0 0 0 0 0 0 0 0 0 0 0 0
Z-a	kis stroke (mm) 50 100 250 250 350 350 400 450 500 550 600 650 700 750	50 0 0 0 0 0 0 0 0 0 0 0 0 0		150 150 0 0 0 0 0 0 0 0 0 0 0 0 0	50 200 0 0 0 0 0 0 0 0 0 0 0 0	250 0 0 0 0 0 0 0 0 0 0 0 0 0	300 0 0 0 0 0 0 0 0 0 0 0 0	50 0 0 0 0 0 0 0 0 0 0 0 0 0		20 150 0 0 0 0 0 0 0 0 0 0 0 0 0	200 200 0 0 0 0 0 0 0 0 0 0 0 0	250 0 0 0 0 0 0 0 0 0 0 0 0 0	300 0 0 0 0 0 0 0 0 0 0 0 0
Z-a	kis stroke (mm) sis stroke (mm) 50 100 150 200 250 300 350 400 450 550 600 650 700 750 800	50 0 0 0 0 0 0 0 0 0 0 0 0 0		150 0 0 0 0 0 0 0 0 0 0 0 0 0	50 200 0 0 0 0 0 0 0 0 0 0 0 0	250 0 0 0 0 0 0 0 0 0 0 0 0 0	300 0 0 0 0 0 0 0 0 0 0 0 0	50 0 0 0 0 0 0 0 0 0 0 0 0 0		20 150 0 0 0 0 0 0 0 0 0 0 0 0 0	200 200 0 0 0 0 0 0 0 0 0 0 0 0	250 0 0 0 0 0 0 0 0 0 0 0 0 0	300 0 0 0 0 0 0 0 0 0 0 0 0
Z-a	kis stroke (mm) 50 100 250 250 300 250 300 400 450 550 600 650 600 650 700 750 800 850	50 0 0 0 0 0 0 0 0 0 0 0 0 0		15 150 0 0 0 0 0 0 0 0 0 0 0 0 0	50 200 0 0 0 0 0 0 0 0 0 0 0 0	250 0 0 0 0 0 0 0 0 0 0 0 0 0	300 0 0 0 0 0 0 0 0 0 0 0 0	50 0 0 0 0 0 0 0 0 0 0 0 0 0		20 150 0 0 0 0 0 0 0 0 0 0 0 0 0		250 0 0 0 0 0 0 0 0 0 0 0 0 0	300 0 0 0 0 0 0 0 0 0 0 0 0
Z-a	kis stroke (mm) 50 100 150 200 250 350 350 400 450 500 550 600 650 700 750 800 850 850 900	50 0 0 0 0 0 0 0 0 0 0 0 0 0		150 150 0 0 0 0 0 0 0 0 0 0 0 0 0	200 0 0 0 0 0 0 0 0 0	250 0 0 0 0 0 0 0 0 0 0 0 0 0	300 0 0 0 0 0 0 0 0 0 0 0 0	50 0 0 0 0 0 0 0 0 0 0 0 0 0		20 150 0 0 0 0 0 0 0 0 0 0 0 0 0	200 200 0 0 0 0 0 0 0 0 0 0 0 0	250 0 0 0 0 0 0 0 0 0 0 0 0 0	300 0 0 0 0 0 0 0 0 0 0 0 0
Z-a	kis stroke (mm) sis stroke (mm) 50 100 150 200 250 300 350 400 450 550 600 650 700 750 800 850 900 950	50 0 0 0 0 0 0 0 0 0 0 0 0 0		150 0 0 0 0 0 0 0 0 0 0 0 0 0	50 200 0 0 0 0 0 0 0 0 0 0 0 0		300 0 0 0 0 0 0 0 0 0 0 0 0	50 0 0 0 0 0 0 0 0 0 0 0 0 0		20 150 0 0 0 0 0 0 0 0 0 0 0 0 0	200 200 0 0 0 0 0 0 0 0 0 0 0 0		300 0 0 0 0 0 0 0 0 0 0 0 0
Z-a	kis stroke (mm) 50 100 150 250 300 255 300 400 450 550 600 655 600 655 700 750 800 850 900 955 900	50 0 0 0 0 0 0 0 0 0 0 0 0 0		150 0 0 0 0 0 0 0 0 0 0 0 0 0	50 200 0 0 0 0 0 0 0 0 0 0 0 0		300 0 0 0 0 0 0 0 0 0 0 0 0	50 0 0 0 0 0 0 0 0 0 0 0 0 0		20 150 0 0 0 0 0 0 0 0 0 0 0 0 0			300 0 0 0 0 0 0 0 0 0 0 0 0
Z-a	kis stroke (mm) sis stroke (mm) 50 100 150 200 250 300 350 400 450 550 600 650 700 750 800 850 900 950	50 0 0 0 0 0 0 0 0 0 0 0 0 0		150 0 0 0 0 0 0 0 0 0 0 0 0 0	50 200 0 0 0 0 0 0 0 0 0 0 0 0		300 0 0 0 0 0 0 0 0 0 0 0 0	50 0 0 0 0 0 0 0 0 0 0 0 0 0		20 150 0 0 0 0 0 0 0 0 0 0 0 0 0	200 200 0 0 0 0 0 0 0 0 0 0 0 0		300 0 0 0 0 0 0 0 0 0 0 0 0

-axis stroke (mm)			2	50					3	00		
-axis stroke (mm)	50	100	150	200	250	300	50	100	150	200	250	300
50	0	0	0	0	0	0	0	0	0	0	0	0
100	0	0	0	0	0	0	0	0	0	0	0	0
150	0	0	0	0	0	0	0	0	0	0	0	0
200	0	0	0	0	0	0	0	0	0	0	0	0
250	0	0	0	0	0	0	0	0	0	0	0	0
300	0	0	0	0	0	0	0	0	0	0	0	0
350	0	0	0	0	0	0	0	0	0	0	0	0
400	0	0	0	0	0	0	0	0		0	0	0
450 500 550 600 650 700	0	0	0	0	0	0	0	0	0	0	0	0
500	0	0	0	0	0	0	0	0	0	0	0	0
550	0	0	0	0	0	0	0	0	0	0	0	0
600	0	0	0	0	0	0	0	0	0	0	0	0
650	0	0	0	0	0	0	0	0	0	0	0	0
700	0	0	0	0	0	0	0	0	0	0	0	0
750	0	0	0	0	0	0	0	0	0	0	0	0
800	0	0	0	0	0	0	0	0	0	0	0	0
850	0	0	0	0	0	0	0	0	0	0	0	0
900	0	0	0	0	0	0	0	0	0	0	0	0
950	0	0	0	0	0	0	0	0	0	0	0	0
1000	0	0	0	0	0	0	0	0	0	0	0	0
1050	0	0	0	0	0	0	0	0	0	0	0	0
1100	0	0	0	0	0	0	0	0	0	0	0	0
axis stroke (mm)			2	50					4	00		
axis stroke (mm)	50	100	150	200	250	300	50	100	150	200	250	300
50	0	0	0	0	0	0	0	0	0	0	0	0
100	ŏ	ŏ	ŏ	Ő	Ö	ŏ	ŏ	Ő	ŏ	Ŏ	ŏ	Ő
150	0	0	0	0	0	0	0	0	0	0	0	Ō
200	Ő	Ö	Õ	0	0	Ő	Ő	0	Ő	0	Ő	Õ
250	Õ	0	Õ	0	0	0	Ő	0	Ő	0	Ö	Õ
300	ŏ	ŏ	Ő	Ö	Ö	Ő	Ö	Ö	ŏ	Ö	ŏ	Ő
350	Õ	0	Õ	0	0	Õ	0	0	0	0	0	Ő
400	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0
	0		0		0	0	0	0	0			
500	0	0	0	0	0	0	0	0	0	0	0	0
550		0	0		0	0	0	0		0	0	
450 500 550 600 650 700	0	0	0	0	0		0		0	0	0	0
650	0	0	0	0	0	0	0	0	0	0	0	0
700												
750	0	0	0	0	0	0	0	0	0	0	0	0
800	0	0	0	0	0	0	0	0	0	0	0	0
850	0	0	0	0	0	0	0	0	0	0	0	0
900	0	0	0	0	0	0	0	0	0	0	0	0
950	0	0	0	0	0	0	0	0	0	0	0	0
1000	0	0	0	0	0	0	0	0	0	0	0	0
1050	0	0	0	0	0	0	0	0	0	0	0	0
1100	0	0	0	0	0	0	0	0	0	0	0	0
axis stroke (mm)				50						00		
axis stroke (mm)	50	100	150	200	250	300	50	100	150	200	250	300
50	0	0	0	0	0	0	0	0	0	0	0	0
100												
150	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0
200	0	0	0	0	0	0	0	0	0	0	0	0
250	0	0	0	0	0	0	0	0	0	0	0	0
250 300			0	0	0	0	0	0	0	0	0	0
250 300 350	0			0	0	0	0	0	0	0	0	0
250 300 350 400	0	0	0			0	0	0	0	0	0	0
250 300 350 400 450	0	0	0	0	0					0	0	0
250 300 350 400 450 500	0 0 0	0 0 0	0	0	0	0	0	0	0	-		0
250 300 350 400 450 500 550	0 0 0 0	0 0 0 0	0 0 0	0 0 0	0	0	0	0	0	0	0	
250 300 350 400 450 500 550 600	0 0 0 0 0	0 0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0	0	0	0	0	0
250 300 350 400 450 500 550 600 650	0 0 0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0	0 0 0	0 0 0 0	0 0 0	0 0 0	0 0 0	0	0	0
250 300 400 450 500 550 600 650 700	0 0 0 0 0 0 0 0		0 0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0
250 300 400 450 550 600 650 700 750		0 0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0	0 0 0	0 0 0
250 300 400 450 500 550 600 650 700				0 0 0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0	0 0 0
250 300 400 500 550 650 700 750 800 850					0 0 0 0 0 0 0 0		0 0 0 0 0 0	0 0 0 0 0 0		0 0 0 0 0	0 0 0 0 0	0 0 0 0
250 300 400 550 600 650 750 750 800				0 0 0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0	0 0 0
250 300 400 500 550 650 700 750 800 850											0 0 0 0 0 0 0	
250 300 400 450 550 600 650 700 750 800 850 900							0 0 0 0 0 0 0 0					
250 300 400 500 600 650 750 800 850 900 950 1000 1050												
250 300 400 500 550 650 700 750 800 850 950 1000												

Туре	Cable code	Length
	1L	1m
Standard	3L	3m
type	5L	5m
		Specified length (15m max.)

Туре	Model	Reference page	First wiring (X-axis lateral)	Second wiring (Y-axis lateral)	Third wiring (Z-axis lateral)
Without cable track (cable only)	N		0	0	0
Cable track S size (inner width: 38mm)	СТ		0	0	0
Cable track M size (inner width: 50mm)	СТМ	See P.136	0	0	0
Cable track L size (inner width: 63mm)	CTL		0	0	Cannot be selected *1
Cable track XL size (inner width: 80mm)	CTXL		0	Cannot be	selected *2

Note 1. All-axis standard cable is used. Note 2. The length of the second and third axis cable is from the exit of the cable track. A separate robot cable is included for wiring inside the cable track. Note 3. The standard lengths are 1m, 3m and 5m, but other lengths can be specified in 1m increments up to 15m.

Applicable Controllers

Controller	s are sold separat	ely. Please refer to each c	ontroller page.
Type	Axis configuration	Applicable controllers	Reference page
	X-axis : WSA16R	PCON-CFB/CGFB	P-149
	Y-axis : SA8R	MSEL-PCF/PGF	P-139
		PCON-CB/CGB	P-149
PM1		PCON-CYB/PLB/POB	Please contact IAI
	Z-axis : SA7R	MCON-C/CG	P-153
		MCON-LC/LCG	P-155
		MSEL	P-139
	X-axis : WSA16R	RCON-PCF	
PM2	Y-axis : SA8R	NCON-F CF	P-159
	Z-axis : SA7R	RCON-PC	

*1 Only the first and second wiring can be selected *2 Only the first wiring can be selected

* Operation is possible with the high output setting specification. When connecting to the MCON controller, "HIGH OUTPUT SETTING SPECIFICATION" must be selected. Please contact IAI regarding use with the high-output setting disabled.

ltem		X-axis	Y-axis	Z-axis
Axis configurati	on	RCP6-WSA16R	RCP6-SA8R	RCP6-SA7R
Stroke (Every 50)mm)	50~1100mm	50~500mm	50~300mm
	MHL			105mm/s
Max. speed *	MHM	210mm/s	400mm/s	210mm/s
wax. speed	MHH	2101111/5	40011111/5	420mm/s
	MHS			640mm/s
Motor size		56 High thrust stepper motor	56 High thrust stepper motor	56 Stepper motor
	MHL			4mm
Ball screw	MHM	- 10mm	20mm	8mm
ead	MHH	IUmm	ZUMM	16mm
	MHS			24mm
Drive system		Ball screw \u00f616mm rolled C10	Ball screw \u00f616mm rolled C10	Ball screw ϕ 12mm rolled C10
Positioning repe	atability	±0.01mm		
Base material		Aluminum		
Ambient operat temperature, hi		0~40°C, 85% RH or le	ss (non-condensing)	

Options refe	erence pages	to confirm	ı each opti	on.
Option code	Reference page	X-axis	Y-axis	Z-axis
В	See P.134	-	-	Standard equipment
cio	See P.134			Standard equipment
NM	See P.135	-	-	-
SR	See P.135	-	-	-
	Option code B CJO NM	Option code Reference page B See P.134 CJO See P.134 NM See P.135	Option code Reference page X-axis B See P.134 - CJO See P.134 Cann sele NM See P.135 -	code page X-axis Y-axis B See P.134 - - CJO See P.134 Cannot be selected NM See P.135 -

* The maximum speed may not be reached if the travel distance is short or acceleration is low. Maximum speed may change depending on the stroke. For details, refer to the Maximum Speed by Stroke table on P.137.

Н

Μ

60.5 60.5

1 130 155

> 2 3

60.5 60.5

3 3

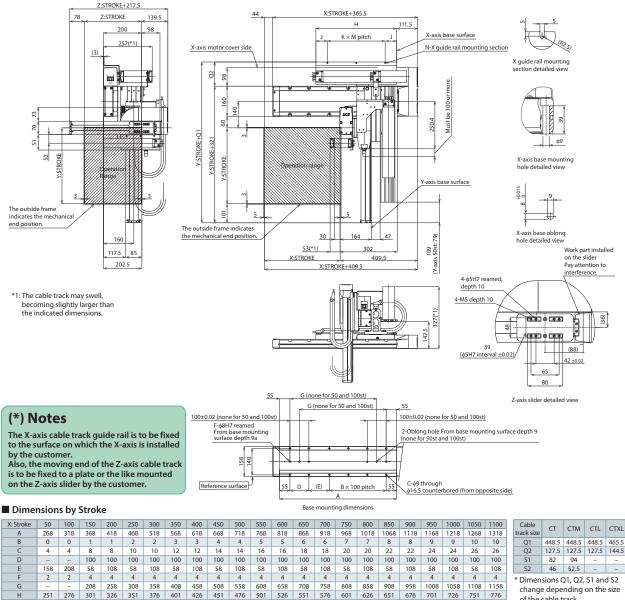
60.5 60.5 60.5

3

3

60.5 60.5 58 63 60.5 58 58 60.5 58 60.5 58 60.5 63 63 63

 2
 2
 2
 2
 2
 3
 3
 3
 3
 4


 90
 102.5
 115
 127.5
 140
 152.5
 110
 120
 125
 135
 145
 115

4 4 4 4

3

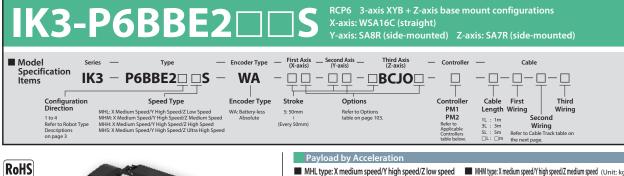
CAD drawings can be downloaded from our website. 2D CAD 3D CAD www.intelligentactuator.com

Note 1. The configuration position in the figure is home. Note 2. The diagram shows first, second and third wirings all with cable tracks. Note 3. For details on the cable track and cable track moving end bracket, refer to P.136.

change depending on the size of the cable track.

5 5

4


125 130

5 6 6

120 127.5 132.5 140 145 120

5

5 5

MHL type: X medium	speed/Y high speed/Z low speed	MHM type: X medium spee	d/Y high speed/Z mediu	I m speed (Unit: k
Y-axis (mm) Acceleration/ deceleration (G)	50~500 (Every 50mm)	Y-axis (mm) Acceleration/ deceleration (G)	50~400 (Every 50mm)	450~500 (Every 50mn
0.1	6	0.1	4	4
		0.3	4	-
	speed/Y high speed/Z high speed	0.3 MHS type: X medium s		— /Z ultra high spe
	speed/Y high speed/Z high speed 50~500 (Every 50mm)		peed/Y high speed	– /Z ultra high spec 500 50mm)
MHH type: X medium Y-axis (mm) Acceleration/	50~500	MHS type: X medium s Y-axis (mm) Acceleration/	peed/Y high speed	500

The photograph above shows the configuration direction "1" where all axes have cable tracks. Please refer to P.3 for other configuration directions.

When there is significant vibration, decrease the speed and acceleration/deceleration as required.

S	troke												
Y-a	kis stroke (mm)			5	0					10	00		
	xis stroke (mm)	50	100	150	200	250	300	50	100	150	200	250	300
	50	0	0	0	0	0	0	0	0	0	0	0	0
	100	0	0	0	0	0	0	0	0	0	0	0	0
	150	0	0	0	0	0	0	0	0	0	0	0	0
	200	0	0	0	0	0	0	0	0	0	0	0	0
	250	0	0	0	0	0	0	0	0	0	0	0	0
	300	0	0	0	0	0	0	0	0	0	0	0	0
	350	0	0	0	0	0	0	0	0	0	0	0	0
2	400	0	0	0	0	0	0	0	0	0	0	0	0
Ĕ	450	0	0	0	0	0	0	0	0	0	0	0	0
é	500	0	0	0	0	0	0	0	0	0	0	0	0
2	550	0	0	0	0	0	0	0	0	0	0	0	0
s st	600	0	0	0	0	0	0	0	0	0	0	0	0
X-axis stroke (mm)	650	0	0	0	0	0	0	0	0	0	0	0	0
×-í	700	0	0	0	0	0	0	0	0	0	0	0	0
	750	0	0	0	0	0	0	0	0	0	0	0	0
	800	0	0	0	0	0	0	0	0	0	0	0	0
	850	0	0	0	0	0	0	0	0	0	0	0	0
	900	0	0	0	0	0	0	0	0	0	0	0	0
	950	0	0	0	0	0		0	0		0	0	0
	1000	0	0	0	0	0		0	0	0	0	0	0
	1050	0	0	0	0	0	0	0	0	0	0	0	0
	1100	0							1 0				
Y-a	xis stroke (mm)		-	15	50					20	00		
	xis stroke (mm) xis stroke (mm)	50	100	150	50 200	250	300	50	100	20 150	00 200	250	300
		50	100			250	300	50	100			250	300
	xis stroke (mm)			150	200					150	200		
	xis stroke (mm) 50	0	0	150	200	0	0	0	0	150	200	0	0
	xis stroke (mm) 50 100 150 200	0 0 0	0 0 0	150 0 0 0 0	200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0	0 0 0 0	0 0 0	0 0 0	150 0 0 0 0	200 O O O O O O O O O	0 0 0	0 0 0
	xis stroke (mm) 50 100 150 200 250	0 0 0 0	0 0 0 0	150 0 0 0 0 0 0	200 0 0 0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	150 0 0 0 0 0 0	200 0 0 0 0 0 0	0 0 0 0	0 0 0 0
	xis stroke (mm) 50 100 150 200 250 300	0 0 0 0 0	0 0 0 0 0	150 0 0 0 0 0 0	200 0 0 0 0 0 0 0 0		0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	150 0 0 0 0 0 0 0 0	200 0 0 0 0 0 0 0 0	0 0 0 0 0	0 0 0 0 0
	xis stroke (mm) 50 100 150 200 250 300 350	0 0 0 0 0 0	0 0 0 0 0 0	150 0 0 0 0 0 0 0 0	200 0 0 0 0 0 0 0					150 0 0 0 0 0 0 0 0	200 0 0 0 0 0 0 0 0		
Z-a	xis stroke (mm) 50 100 150 200 250 300 350 400		0 0 0 0 0 0 0 0	150 0 0 0 0 0 0 0 0 0 0	200 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0		0 0 0 0 0 0 0 0	150 0 0 0 0 0 0 0 0 0 0	200 0 0 0 0 0 0 0 0 0 0		
Z-a	stroke (mm) 50 100 150 200 250 300 350 400 450			150 0 0 0 0 0 0 0 0 0 0 0 0 0	200 0 0 0 0 0 0 0 0 0 0 0 0					150 0 0 0 0 0 0 0 0 0 0 0 0	200 0 0 0 0 0 0 0 0 0 0 0 0		
Z-a	xis stroke (mm) 50 100 150 200 250 300 350 400 450 500			150 0 0 0 0 0 0 0 0 0 0 0 0 0	200 0 0 0 0 0 0 0 0 0 0 0 0					150 0 0 0 0 0 0 0 0 0 0 0 0	200 0 0 0 0 0 0 0 0 0 0 0 0		
Z-a	kis stroke (mm) 50 100 150 200 250 300 350 400 450 550			150 0 0 0 0 0 0 0 0 0 0 0 0 0	200 0 0 0 0 0 0 0 0 0 0 0 0					150 0 0 0 0 0 0 0 0 0 0 0 0 0	200 0 0 0 0 0 0 0 0 0 0 0 0		
Z-a	xis stroke (mm) 50 100 150 250 300 350 400 450 500 550 600			150 0 0 0 0 0 0 0 0 0 0 0 0 0	200 0 0 0 0 0 0 0 0 0 0 0 0					150 0 0 0 0 0 0 0 0 0 0 0 0 0	200 0 0 0 0 0 0 0 0 0 0 0 0		
Z-a	xis stroke (mm) 50 100 150 200 250 350 400 450 550 600 650			150 0 0 0 0 0 0 0 0 0 0 0 0 0	200 0 0 0 0 0 0 0 0 0 0 0 0					150 0 0 0 0 0 0 0 0 0 0 0 0 0	200 0 0 0 0 0 0 0 0 0 0 0 0		
	xis stroke (mm) 50 100 150 250 300 350 400 450 550 600 650 700			150 0 0 0 0 0 0 0 0 0 0 0 0 0	200 0 0 0 0 0 0 0 0 0 0 0 0						200 0 0 0 0 0 0 0 0 0 0 0 0		
Z-a	stroke (mm) 50 100 150 200 300 350 400 450 500 600 650 700 750			150 0 0 0 0 0 0 0 0 0 0 0 0 0	200 0 0 0 0 0 0 0 0 0 0 0 0						200 0 0 0 0 0 0 0 0 0 0 0 0		
Z-a	xis stroke (mm) 50 100 150 200 250 350 400 450 500 550 660 650 700 750 800			150 0 0 0 0 0 0 0 0 0 0 0 0 0						150 0 0 0 0 0 0 0 0 0 0 0 0 0			
Z-a	xis stroke (mm) 50 100 150 250 300 350 400 450 550 600 650 700 750 800 850			150 0 0 0 0 0 0 0 0 0 0 0 0 0	200 0 0 0 0 0 0 0 0 0 0 0 0						200 0 0 0 0 0 0 0 0 0 0 0 0		
Z-a	kis stroke (mm) 50 100 150 200 250 300 350 400 450 500 600 650 700 750 800 850 900			150 0 0 0 0 0 0 0 0 0 0 0 0 0							200 0 0 0 0 0 0 0 0 0 0 0 0		
Z-a	xis stroke (mm) 50 100 150 200 250 300 350 400 450 550 660 550 665 700 750 800 850 900 950			150 0 0 0 0 0 0 0 0 0 0 0 0 0									
Z-a	xis stroke (mm) 50 100 150 250 300 350 400 450 550 600 650 700 750 800 850 900 950 1000												
Z-a	xis stroke (mm) 50 100 150 200 250 300 350 400 450 550 660 550 665 700 750 800 850 900 950			150 0 0 0 0 0 0 0 0 0 0 0 0 0									

Y-axis stroke (mm)			2	50					3	00		
Z-axis stroke (mm)	50	100	150	200	250	300	50	100	150	200	250	300
50	0	0	0	0	0	0	0	0	0	0	0	0
100	0	0	0	0	0	0	0	0	0	0	0	0
150	0	0	0	0	0	0	0	0	0	0	0	0
200	0	0	0	0	0	0	0	0	0	0	0	0
250	0	0	0	0	0	0	0	0	0	0	0	0
300	0	0	0	0	0	0	0	0	0	0	0	0
350	0	0	0	0	0	0	0	0	0	0	0	0
400	0	0	0	0	0	0	0	0	0	0	0	0
450 500 550 600 650 700	0	0	0	0	0	0	0	0	0	0	0	0
500	0	0	0	0	0	0	0	0	0	0	0	0
550	0	0	0	0	0	0	0	0	0	0	0	Ō
600	Ō	0	0	0	Ō	0	0	0	0	Ō	0	Ō
650	0	Ö	0	0	Ö	0	Õ	0	Ö	0	Õ	Õ
700	Ō	0	0	0	0	Ō	Ō	0	0	0	0	Ō
750	0	0	0	0	0	0	Õ	0	0	0	Õ	Õ
800	0	0	0	0	0	Õ	ŏ	0	Õ	Ö	Õ	0
850	0	0	0	0	0	0	ŏ	0	0	ŏ	ŏ	0
900	0	0	0	0	0	0	0	0	0	0	0	0
			0									
950	0	0	0	0	0	0	0	0	0	0	0	0
1000	0			0	0		0	0		0	0	
1050	0	0	0	0	0	0	0	0	0	0	0	0
1100	0	0	0	0	0	0	0	0	0	0	0	0
-axis stroke (mm)			3	50					4	00		-
Z-axis stroke (mm)	50	100	150	200	250	300	50	100	150	200	250	300
50	0	0	0	0	0	0	0	0	0	0	0	0
100	0	0	0	0	0	0	0	0	0	0	0	0
150	0	0	0	0	0	0	0	0	0	0	0	0
200	0	0	0	0	0	0	0	0	0	0	0	0
250	0	0	0	0	0	0	0	0	0	0	0	0
300	0	0	0	0	0	0	0	0	0	0	0	0
350	0	0	0	0	0	0	0	0	0	0	0	Ō
400	Õ	0 0 0 0 0 0		0	0	Ő	Ő	Ő				
450	0	0	0	0	0	0	Õ	0	Ö	Ö	Ö	Ő
500	0	0	0	0	0	ŏ	ŏ	0	ŏ	ŏ	0	0
550	0	0	0	0	0	0	0	0	ŏ	0	0	0
550 550 600 650 700	0	0	0	0	0	0	0	0	0	0	0	0
650	0	0	0	0	0	0	0	0	0	0	0	0
650	0	0	0	0	0	0	0	0	0	0	0	0
700					0							
750	0	0	0	0		0	0	0	0	0	0	0
800	0	0	0	0	0	0	0	0	0	0	0	0
850	0	0	0	0	0	0	0	0	0	0	0	0
900	0	0	0	0	0	0	0	0	0	0	0	0
950	0	0	0	0	0	0	0	0	0	0	0	0
1000	0	0	0	0	0	0	0	0	0	0	0	0
1050	0	0	0	0	0	0	0	0	0	0	0	0
1100	0	0	0	0	0	0	0	0	0	0	0	0
'-axis stroke (mm)			4	50					F	00		
-axis stroke (mm)	50	100	150	200	250	300	50	100	150	200	250	300
50	0	0	0	0	0	0	0	0	0	0	0	0
100	0	0	0	0	0	0	0	0	0	0	0	0
150	0	0	0	0	0	0	0	0	0	0	0	0
200	0	0	0	0	0	0	0	0	0	0	0	0
250	Õ	0	0	0	0	0	0	0	0	0	0	0
300	0	0	Ő	0	0	Ő	Õ	0	ŏ	ŏ	0	0
350	ŏ	0	ŏ	0	Ö	ŏ	ŏ	Ö	ŏ	ŏ	ŏ	Ő
400	0	0	0	0	Ö	Ő	ŏ	Ö	Ő	ŏ	Ö	0
400	0	0	Ö	0	0	0	ŏ	0	0	ŏ	0	0
500	0	0	0	0	0	0	0	0	0	0	0	0
550	0	0	0	0	0	0	0	0	0	0	0	0
550	0	0	0	0	0	0	0	0	0	0	0	0
600 650	0	0	0	0	0	0	0	0	0	0	0	0
700	0	0	0	0	0	0	0	0	0	0	0	0
750	0	0	0	0	0	0	0	0	0	0	0	0
800	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0
850	0	0	0	0	0	0	0	0	0	0	0	0
900				0	0	0	0	0	0	0	0	0
900 950	0	0	0	0		<u> </u>						
900 950 1000	0	0	0	0	0	0	0	0	0	0	0	0
900 950						0 0 0			0			0

Cable Length											
Туре	Cable code	Length									
	1L	1m									
Standard	3L	3m									
type	5L	5m									
	٦L	Specified length (15m max.)									

Note 1. All-axis standard cable is used. Note 2. The length of the second and third axis cable is from the exit of the cable track. A separate robot cable is included for wiring inside the cable track. Note 3. The standard lengths are 1m, 3m and 5m, but other lengths can be specified in 1m increments up to 15m.

Cable Track

Туре	Model	Reference page	First wiring (X-axis lateral)	Second wiring (Y-axis lateral)	Third wiring (Z-axis lateral)
Without cable track (cable only)	N		-	-	-
Cable track S size (inner width: 38mm)	СТ		-	-	-
Cable track M size (inner width: 50mm)	СТМ	See P.136	-	-	-
Cable track L size (inner width: 63mm)	CTL		-	-	Cannot be selected *1
Cable track XL size (inner width: 80mm)	CTXL		-	Cannot be	selected *2

*1 Only the first and second wiring can be selected *2 Only the first wiring can be selected

Applicable Controllers

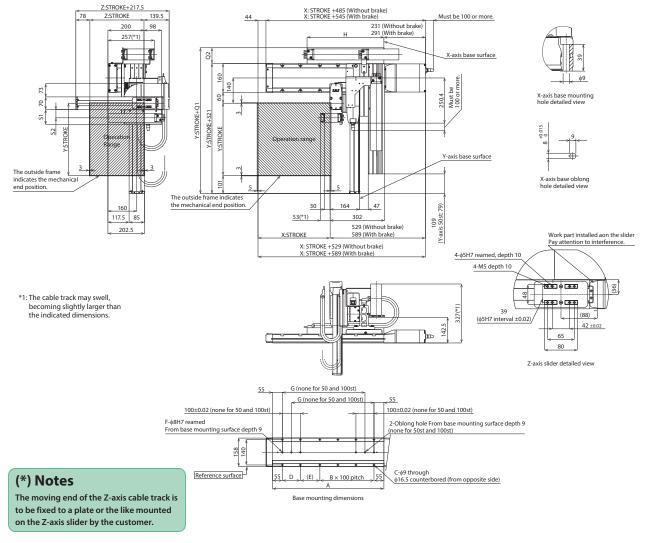
Controllers are sold separately. Please refer to each controller page.

Туре	Axis configuration	Applicable controllers	Reference page	* Operation is p
	X-axis : WSA16C	PCON-CFB/CGFB	P-149	to the MCON o
	Y-axis : SA8R	MSEL-PCF/PGF	P-139	Please contact
		PCON-CB/CGB	P-149	
PM1		PCON-CYB/PLB/POB	Please contact IAI	
	Z-axis : SA7R	MCON-C/CG	P-153	
		MCON-LC/LCG	P-155	
		MSEL	P-139	
PM2	X-axis : WSA16C Y-axis : SA8R	RCON-PCF	P-159	
	Z-axis : SA7R	RCON-PC		
				IAI

* Operation is possible with the high output setting specification. When connecting to the MCON controller, "HIGH OUTPUT SETTING SPECIFICATION" must be selected. Please contact IAI regarding use with the high-output setting disabled.

Specification	ons					
ltem		X-axis	Y-axis	Z-axis		
Axis configuration	on	RCP6-WSA16C	RCP6-SA8R	RCP6-SA7R		
Stroke (Every 50	mm)	50~1100mm	50~500mm	50~300mm		
	MHL			105mm/s		
Max. speed *	MHM	210mm/s	400mm/s	210mm/s		
wax. speed	MHH	2100000	40011111/5	420mm/s		
	MHS			640mm/s		
Motor size		56 High thrust stepper motor	56 High thrust stepper motor	56 Stepper motor		
	MHL			4mm		
Ball screw	MHM	10mm	20mm	8mm		
lead	MHH	TOMIN	2011111	16mm		
	MHS			24mm		
Drive system		Ball screw \u00f616mm rolled C10	Ball screw \u00f616mm rolled C10	Ball screw ϕ 12mm rolled C10		
Positioning repea	atability	±0.01mm				
Base material		Aluminum				
Ambient operat temperature, hu	5	0~40°C, 85% RH or less	(non-condensing)			

Options * Please check the	Options ref	erence page	s to confirn	n each opti	ion.
Туре	Option code	Reference page	X-axis	Y-axis	Z-axis
Brake *	В	See P.134	0	0	Standard equipment *
Cable exit direction (Top)	CJT	See P.134	0		
Cable exit direction (Right)	CJR	See P.134	0	Cann	ot be
Cable exit direction (Left)	CJL	See P.134	0	sele	cted
Cable exit direction (Bottom)	CJB	See P.134	0		
Cable exit direction (Outside)	clo	See P.134	Cannot b	e selected	Standard equipment *
Non-motor end specification	NM	See P.135	0	0	0
Slider section roller specification	SR	See P.135	0	0	0

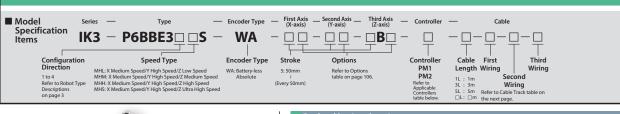

* Be sure to specify.

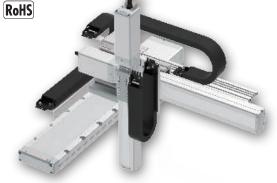
* Brake option for X-axis increases the length of the motor unit. Please contact IAI for more information.

* The maximum speed may not be reached if the travel distance is short or acceleration is low. Maximum speed may change depending on the stroke. For details, refer to the Maximum Speed by Stroke table on P.137.

Note 1. The configuration position in the figure is home. Note 2. The diagram shows first, second and third wirings all with cable tracks. Note 3. For details on the cable track and cable track moving end bracket, refer to P.136.

Dimensions by Stroke


103 IK3-P6BBE2


X: Stroke	50	100	150	200	250	300	350	400	450	500	550	600	650	700	750	800	850	900	950	1000	1050	1100	Cable	CT	СТМ	CTL	CTXL
A	268	318	368	418	468	518	568	618	668	718	768	818	868	918	968	1018	1068	1118	1168	1218	1268	1318	track size	CI	CTIVI	CIL	CIAL
В	0	0	1	1	2	2	3	3	4	4	5	5	6	6	7	7	8	8	9	9	10	10	Q1	396.5	408.5	423.5	441.5
C	4	4	8	8	10	10	12	12	14	14	16	16	18	18	20	20	22	22	24	24	26	26	Q2	75.5	87.5	102.5	120.5
D	-	-	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	S1	82	94	-	-
E	158	208	58	108	58	108	58	108	58	108	58	108	58	108	58	108	58	108	58	108	58	108	S2	46	52.5	-	-
F	2	2	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	* Dimen	sions (01 02	S1 an	d 52
G	-	-	208	258	308	358	408	458	508	558	608	658	708	758	808	858	908	958	1008	1058	1108	1158	change				
Н	251	276	301	326	351	376	401	426	451	476	501	526	551	576	601	626	651	676	701	726	751	776	of the			on the	5120

IK3-P6BBE3

RCP6 3-axis XYB + Z-axis base mount configurations X-axis: WSA16C (straight) Y-axis: SA8C (straight) Z-axis: SA7C (straight)

MHL type: X medium	speed/Y high speed/Z low speed	MHM type: X medium speed	d/Y high speed/Z mediu	mspeed (Unit:
Y-axis (mm) Acceleration/ deceleration (G)	50~500 (Every 50mm)	Y-axis (mm) Acceleration/ deceleration (G)	50~400 (Every 50mm)	450~500 (Every 50mi
0.1	6	0.1	4	4
		0.3	4	-
	speed/Y high speed/Z high speed	0.3 MHS type: X medium s		— /Z ultra high spe
	speed/Y high speed/Z high speed 50~500 (Every 50mm)		peed/Y high speed	– /Z ultra high spe 500 50mm)
MHH type: X medium Y-axis (mm) Acceleration/	50~500	MHS type: X medium s Y-axis (mm) Acceleration/	peed/Y high speed	500

The photograph above shows the configuration direction "1" where all axes have cable tracks. Please refer to P.3 for other configuration directions.

(-axis stroke (mm)			5	0					1	00		
Z-axis stroke (mm)	50	100	150	200	250	300	50	100	150	200	250	300
50	0	0	0	0	0	0	0	0	0	0	0	0
100	0	0	0	0	0	0	0	0	0	0	0	0
150	0	0	0	0	0	0	0	0	0	0	0	0
200	0	0	0	0	0	0	0	0	0	0	0	0
250	0	0	0	0	0	0	0	0	0	0	0	С
300	0	0	0	0	0	0	0	0	0	0	0	C
350	0	0	0	0	0	0	0	0	0	0	0	C
400	0	0	0	0	0	0	0	0	0	0	0	C
450	0	0	0	0	0	0	0	0	0	0	0	C
500	0	0	0	0	0	0	0	0	0	0	0	C
550	0	0	0	0	0	0	0	0	0	0	0	C
600	0	0	0	0	0	0	0	0	0	0	0	C
650	0	0	0	0	0	0	0	0	0	0	0	C
700	0	0	0	0	0	0	0	0	0	0	0	C
750	0	0	0	0	0	0	0	0	0	0	0	(
800	0	0	0	0	0	0	0	0	0	0	0	0
850	0	0	0	0	0	0	0	0	0	0	0	(
900	0	0	0	0	0	0	0	0	0	0	0	(
950	0	0	0	0	0	0	0	0	0	0	0	C
1000	0	0	0	0	0	0	0	0	0	0	0	(
1050	Ō	0	0	Ō	Ō	0	0	0	0	0	0	0
1100	Ō	Ō	Ō	Ō	Ō	Ō	Ō	Ō	Ō	Ō	Ō	C
axis stroke (mm)			1	50					2	00		
xis stroke (mm)	50	100	150	200	250	300	50	100	150	200	250	30
50	0	0	0	0	0	0	0	0	0	0	0	C
100	0	0	0	0	0	0	0	0	0	0	0	C
150	0	0	0	0	0	0	0	0	0	0	0	C
200	0	0	0	0	0	0	0	0	0	0	0	C
250	0	0	0	0	0	0	0	0	0	0	0	C
300	0	0	0	0	0	0	0	0	0	0	0	C
350	0	0	0	0	0	0	0	0	0	0	0	C
400	0	0	0	0	0	0	0	0	0	0	0	C
450	0	0	0	0	0	0	0	0	0	0	0	C
500	0	0	0	0	0	0	0	0	0	0	0	C
550	0	0	0	0	0	0	0	0	0	0	0	C
600	0	0	0	0	0	0	0	0	0	0	0	C
650	0	0	0	0	0	0	0	0	0	0	0	C
700	0	0	0	0	0	0	0	0	0	0	0	C
	0	0	0	0	0	0	0	0	0	0	0	C
750	0	0	0	0	0	0	0	0	0	0	0	C
750 800		0	0	0	0	0	0	0	0	0	0	C
	0					0	0	0	0	0	0	(
800	0	0	0	0	0	0	0					
800 850	0	0	0	0	0	0	0	0	0	0	0	C
800 850 900	0	0										0
800 850 900 950	0	0	0	0	0	0	0	0	0	0	0	C

Y-av													
	tis stroke (mm)	50	100		50	250	200	50	100		00	250	200
Z-ax	(is stroke (mm) 50	50	100	150	200	250	300	50	100	150	200	250	300
	100	0	0	0	0	0	0	0	0	0	0	0	0
	150	ŏ	0	0	0	ŏ	ŏ	ŏ	0	ŏ	0	0	ŏ
	200	ŏ	Ő	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	Ö
	250	0	0	0	0	0	0	Õ	0	0	0	0	0
	300	Õ	0	Õ	0	Ö	Õ	Ő	0	Ő	0	0	Ő
	350	õ	0	0	0	0	Õ	Õ	0	Õ	0	0	Õ
	400	Õ	Ő	ŏ	0	Ő	Õ	Ő	Ő	Ő	Ő	Ő	Õ
Ê	450	0	0	0	0	0	0	Õ	0	0	0	0	Õ
X-axis stroke (mm)	500	Ő	0	Õ	0	0	Õ	Ö	0	Ő	0	0	Ő
¥ -	550	Õ	0	ŏ	0	0	Õ	Õ	0	Ö	0	0	Ő
Ĕ	600	Õ	0	Ő	0	0	Õ	Õ	0	Ő	0	0	Ő
is	650	ŏ	0	ŏ	0	Ö	ŏ	ŏ	Ö	ŏ	0	Ö	ŏ
- a	700	0	0	0	0	0	0	0	0	0	0	0	0
×	750	Õ	0	0	0	0	0	Õ	0	0	0	0	0
	800	Ő	0	Ő	0	0	Ő	Ő	0	0	0	0	Ő
	850	ŏ	Ö	ŏ	0	Ö	ŏ	ŏ	0	Ö	Ö	Ö	ŏ
	900	0	0	0	0	0	Ő	0	0	0	0	0	Ő
	950	ŏ	0	ŏ	0	0	ŏ	0	0	0	0	0	0
	1000	0	0	0	0	0	0	0	0	0	0	0	0
1	1050	0	0	0	0	0	0	0	0	0	0	0	0
	1100	ŏ	0		0	0	ŏ	0	0	0	0	0	Ö
			~			5		9				5	
	(is stroke (mm)				50						00		
Z-ax	(is stroke (mm)	50	100	150	200	250	300	50	100	150	200	250	300
	50	0	0	0	0	0	0	0	0	0	0	0	0
	100	0	0	0	0	0	0	0	0	0	0	0	0
	150	0	0	0	0	0	0	0	0	0	0	0	0
	200	0	0	0	0	0	0	0	0	0	0	0	0
- F	250	0	0	0	0	0	0	0	0	0	0	0	0
	300	0	0	0	0	0	0	0	0	0	0	0	0
	350	0	0	0	0	0	0	0	0	0	0	0	0
	400	0	0	0	0	0	0	0	0	0	0	0	0
Ē	450	0	0	0	0	0	0	0	0	0	0	0	0
5	500	0	0	0	0	0	0	0	0	0	0	0	0
X-axis stroke (mm	550	0	0	0	0	0	0	0	0	0	0	0	0
st	600	0	0	0	0	0	0	0	0	0	0	0	0
is:	650	0	0	0	0	0	0	0	0	0	0	0	0
â	700	Ō	Ō	Ō	Ō	Ō	Ō	Ō	Ō	Ō	Ō	Ō	Ō
×	750	Ō	0	0	0	0	0	0	0	0	0	0	0
	800	0	0	0	0	0	0	0	0	0	0	0	0
- 1	850	Õ	0	0	0	0	Õ	0	0	0	0	0	0
	900	Ő	Ő	Ő	0	0	Õ	0	0	Ő	0	0	Ő
	950	ŏ	Ö	ŏ	Ö	ŏ	ŏ	ŏ	0	ŏ	ŏ	0	ŏ
	1000	0	0	ŏ	0	0	0	0	0	0	0	0	0
	1050	0	0	0	0	0	0	0	0	0	0	0	0
	1100	0	0	0	0	0	0	0	0	0	0	0	0
			Ŭ,			<u> </u>	<u> </u>	Ŭ	<u> </u>			<u> </u>	
Y-ax	(is stroke (mm)			4	50					5	00		
Z-ax	(is stroke (mm)	50	100	150	200	250	300	50	100	150	200	250	300
Ľ	50	0	0	0	0	0	0	0	0	0	0	0	0
			0	0	0	0	0	0	0	0	0	0	0
	100	0											0
Ē	150	0	0	0	0	0	0	0	0	0	0	0	
	150 200	0	0	0	0	0	0	0	0	0	0	0	0
	150 200 250	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0	0	0
	150 200 250 300	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0
	150 200 250 300 350	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0	0 0 0	0 0 0
	150 200 250 300 350 400	0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0
um)	150 200 250 300 350 400 450	0 0 0 0 0 0		0 0 0 0 0 0			0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0
د (mm)	150 200 250 300 350 400		0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0		0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	
OKe (mm)	150 200 250 300 350 400 450		0 0 0 0 0 0 0 0 0 0					0 0 0 0 0 0			0 0 0 0 0	0 0 0 0 0 0 0 0	
Stroke (mm)	150 200 250 300 350 400 450 500		0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0		0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0
XIS Stroke (mm)	150 200 250 300 350 400 450 500 550												
(-axis stroke (mm)	150 200 250 300 350 400 450 500 550 600												0 0 0 0 0 0 0 0 0
X-axis stroke (mm)	150 200 250 300 450 500 550 600 650 700												
X-axis stroke (mm)	150 200 250 300 350 400 450 550 550 600 650												
X-axis stroke (mm)	150 200 250 300 350 400 450 550 550 600 650 700 750 800												
X-axis stroke (mm)	150 200 250 300 400 450 550 600 650 700 750 800 850												
X-axis stroke (mm)	150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900												
X-axis stroke (mm)	150 200 250 300 400 450 550 650 700 750 750 800 850 900 950												
X-axis stroke (mm)	150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900												

Туре	Cable code	Length
	1L	1m
Standard	3L	3m
type	5L	5m
		Specified length (15m max.)

Cable Track

Туре	Model	Reference page	First wiring (X-axis lateral)	Second wiring (Y-axis lateral)	Third wiring (Z-axis lateral)
Without cable track (cable only)	N		0	0	0
Cable track S size (inner width: 38mm)	СТ		0	0	0
Cable track M size (inner width: 50mm)	СТМ	See P.136	0	0	0
Cable track L size (inner width: 63mm)	CTL		0	0	Cannot be selected *1
Cable track XL size (inner width: 80mm)	CTXL		0	Cannot be	selected *2
*1 Only the first and second wiring can be	pe selected				

Note 1. All-axis standard cable is used. Note 2. The length of the second and third axis cable is from the exit of the cable track. A separate robot cable is included for wiring inside the cable track. Note 3. The standard lengths are 1m, 3m and 5m, but other lengths can be specified in 1m increments up to 15m.

Applicable Controllers

105 IK3-P6BBE3

Controllers are sold separately. Please refer to each controller page.

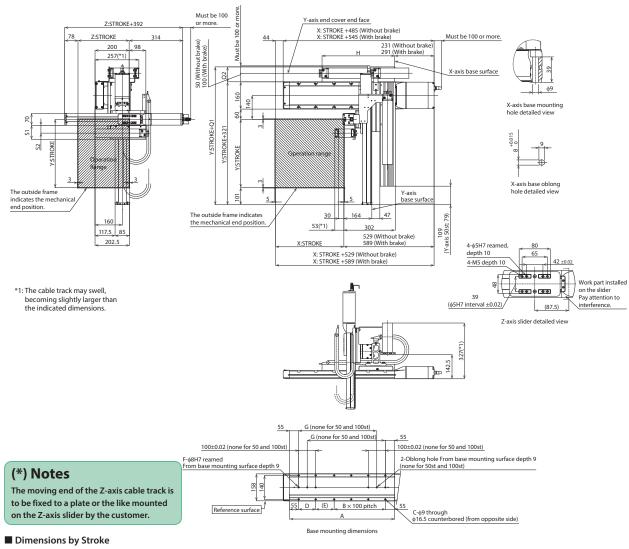
Type	Axis configuration	Applicable controllers	Reference page
	X-axis : WSA16C	PCON-CFB/CGFB	P-149
	Y-axis : SA8C	MSEL-PCF/PGF	P-139
		PCON-CB/CGB	P-149
PM1		PCON-CYB/PLB/POB	Please contact IAI
	Z-axis : SA7C	MCON-C/CG	P-153
		MCON-LC/LCG	P-153
		MSEL	P-139
PM2	X-axis : WSA16C Y-axis : SA8C	RCON-PCF	P-159
	Z-axis : SA7C	RCON-PC	

* Operation is possible with the high output setting specification. When connecting to the MCON controller, "HIGH OUTPUT SETTING SPECIFICATION" must be selected. Please contact IAI regarding use with the high-output setting disabled.

Specificati	ons							
ltem		X-axis	Y-axis	Z-axis				
Axis configurati	on	RCP6-WSA16C	RCP6-SA8C	RCP6-SA7C				
Stroke (Every 50)mm)	50~1100mm	50~500mm	50~300mm				
	MHL			105mm/s				
Max. speed *	MHM	210mm/s	400mm/s	210mm/s				
wax. speed	MHH	2101111/5	40011111/5	420mm/s				
	MHS			640mm/s				
Motor size		56 High thrust stepper motor	56 High thrust stepper motor	56 Stepper motor				
	MHL			4mm				
Ball screw	MHM	10mm	20mm	8mm				
lead	MHH	TUMM	ZUMM	16mm				
	MHS			24mm				
Drive system		Ball screw ¢16mm rolled C10	Ball screw \u00f616mm rolled C10	Ball screw ø12mm rolled C10				
Positioning repe	atability	±0.01mm						
Base material		Aluminum						
Ambient operat temperature, hu	5	0~40°C, 85% RH or less (non-condensing)						

Options * Please check the Options reference pages to confirm each option.												
Туре	Option code	Reference page	X-axis	Y-axis	Z-axis							
Brake *	В	See P.134	0	0	Standard equipment *							
Cable exit direction (Top)	CJT	See P.134	0									
Cable exit direction (Right)	CJR	See P.134	0	Cann	ot be							
Cable exit direction (Left)	CJL	See P.134	0	sele	cted							
Cable exit direction (Bottom)	CJB	See P.134	0									
Non-motor end specification	NM	See P.135	0	0	0							
Slider section roller specification	SR	See P.135	0	0	0							

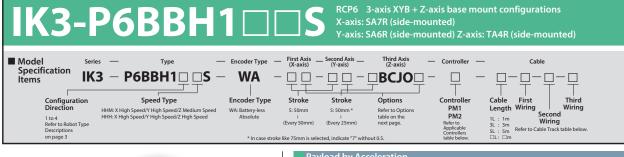
* Outside as standard. Be sure to specify.


* Brake option for X- and/or Y-axes increases the length of the motor unit(s). Please contact IAI for more information.

* The maximum speed may not be reached if the travel distance is short or acceleration is low. Maximum speed may change depending on the stroke. For details, refer to the Maximum Speed by Stroke table on P.137.

Dimensions

CAD drawings can be downloaded from our website.


Note 1. The configuration position in the figure is home. Note 2. The diagram shows first, second and third wirings all with cable tracks. Note 3. For details on the cable track and cable track moving end bracket, refer to P.136.

X: Stroke	50	100	150	200	250	300	350	400	450	500	550	600	650	700	750	800	850	900	950	1000	1050	1100	Cable	ст	СТМ	CTL	CTXL
A	268	318	368	418	468	518	568	618	668	718	768	818	868	918	968	1018	1068	1118	1168	1218	1268	1318	track size	CI	CTM	CIL	CIVE
В	0	0	1	1	2	2	3	3	4	4	5	5	6	6	7	7	8	8	9	9	10	10	Q1	396.5	408.5	423.5	441.5
C	4	4	8	8	10	10	12	12	14	14	16	16	18	18	20	20	22	22	24	24	26	26	Q2	75.5	87.5	102.5	120.5
D	-	-	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	S1	82	94	-	-
E	158	208	58	108	58	108	58	108	58	108	58	108	58	108	58	108	58	108	58	108	58	108	S2	46	52.5	-	-
F	2	2	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	* Dimen	sions (01 02	S1 an	d 52
G	-	-	208	258	308	358	408	458	508	558	608	658	708	758	808	858	908	958	1008	1058	1108	1158	chang				
Н	251	276	301	326	351	376	401	426	451	476	501	526	551	576	601	626	651	676	701	726	751	776	of the			on the	. 5120

IK3 Cartesian Robot

Y-axis (mm)	50~200 (Every 50mm)
deceleration (G)	(Every Somm)
0.1	1
0.3	1
0.5	1
	0.1

When there is significant vibration, decrease the speed and acceleration/deceleration as required.

The photograph above shows the configuration direction "1" where all axes have cable tracks. Please refer to P.3 for other configuration directions.

Stroke

RoHS

Y-a	ixis stroke (mm)		50			100			150			200	
	xis stroke (mm)	50	75	100	50	75	100	50	75	100	50	75	100
	50	0	0	0	0	0	0	0	0	0	0	0	0
	100	0	0	0	0	0	0	0	0	0	0	0	0
	150	0	0	0	0	0	0	0	0	0	0	0	0
	200	0	0	0	0	0	0	0	0	0	0	0	0
	250	0	0	0	0	0	0	0	0	0	0	0	0
-	300	0	0	0	0	0	0	0	0	0	0	0	0
(mm)	350	0	0	0	0	0	0	0	0	0	0	0	0
stroke	400	0	0	0	0	0	0	0	0	0	0	0	0
s str	450	0	0	0	0	0	0	0	0	0	0	0	0
X-axis	500	0	0	0	0	0	0	0	0	0	0	0	0
×	550	0	0	0	0	0	0	0	0	0	0	0	0
	600	0	0	0	0	0	0	0	0	0	0	0	0
	650	0	0	0	0	0	0	0	0	0	0	0	0
	700	0	0	0	0	0	0	0	0	0	0	0	0
	750	0	0	0	0	0	0	0	0	0	0	0	0
	800	0	0	0	0	0	0	0	0	0	0	0	0

Cable Length

Туре	Cable code	Length	
Standard type	1L	1m	
	3L	3m	
	5L	5m	
		Specified length (15m max.)	

Note 1. All-axis standard cable is used. Note 2. The length of the second and third axis cable is from the

exit of the cable track. A separate robot cable is included for wiring inside the cable track.

Note 3. The standard lengths are 1m, 3m and 5m, but other lengths can be specified in 1m increments up to 15m.

Cable Track

Туре	Model	Reference page	First wiring (X-axis side)	Second wiring (Y-axis side)	Third wiring (Z-axis side)
Without cable track (cable only)	N		-	-	-
Cable track S size (inner width: 38mm)	СТ		0	0	0
Cable track M size (inner width: 50mm)	СТМ	See	0	0	0
Cable track L size (inner width: 63mm)	CTL	P.136	0	0	Cannot be selected *1
Cable track XL size (inner width: 80mm)	CTXL		0	Cannot be selected *2	

*1 Only the first and second wiring can be selected *2 Only the first wiring can be selected

Applicable Controllers

Controllers are sold separately. Please refer to each controller page.

Type	Axis configuration	Applicable controllers	Reference page	
PM1	X-axis : SA7R Y-axis : SA6R Z-axis : TA4R	PCON-CB/CGB	P-149	
		PCON-CYB/PLB/POB	Please contact IAI	
		MCON-C/CG	P-153	
		MCON-LC/LCG		
		MSEL	P-139	
PM2		RCON-PC	P-159	

* Operation is possible with the high output setting specification. When connecting to the MCON controller, "HIGH

When connecting to the MCON controller, "HIGH OUTPUT SETTING SPECIFICATION" must be selected. Please contact IAI regarding use with the highoutput setting disabled.

Specificat	ions					
ltem		X-axis	Y-axis	Z-axis		
Axis configurati	on	RCP6-SA7R	RCP6-SA6R	RCP6-TA4R		
Stroke		50 ~ 800mm (Every 50mm)	50 ~ 200mm (Every 50mm)	50 ~ 100mm (Every 25mm)		
Max speed * HHM HHH		420mm/s	560mm/s	260mm/s 350mm/s		
Motor size		56 Stepper motor	42 Stepper motor	35 Stepper motor		
Ball screw lead	HHM HHH	16mm	12mm	5mm 10mm		
Drive system		Ball screw ø12mm rolled C10	Ball screw ø10mm rolled C10	Ball screw ø8mm rolled C10		
Positioning repe	atability	±0.01mm				
Base material		Aluminum				
Ambient operat temperature, hi		0~40°C, 85% RH or less (non-condensing)			

Options * Please check th			ges to confi		
Туре	Option code	Reference page	X-axis	Y-axis	Z-axis
Brake	В	See P.134	0	0	Standard equipment
Cable exit direction (Outside)	clo	See P.134	Cannot be	e selected	Standard equipment
Non-motor end specification	NM	See P.135	0	0	0
Slider section roller specification	SR	See P.135	0	0	Cannot be selected

city.

* The maximum speed may not be reached if the travel distance is short or acceleration is low. Maximum speed may change depending on the stroke. For details, refer to the Maximum Speed by Stroke table on P.137.

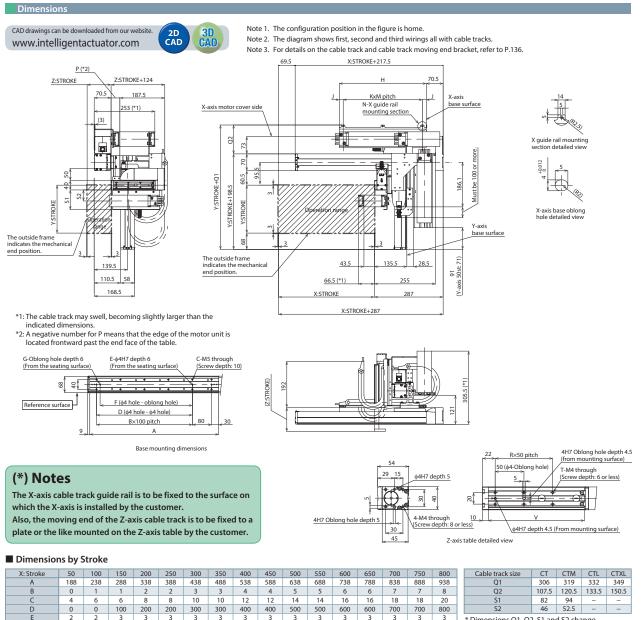
16.5 16.5 1 16.5 16.5 16.5 16.5 3 66.5 56.5

M

N

Z: Stroke

P (*2)

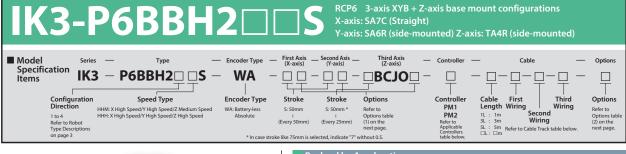

50 75 100

-13.5 11.5 36.5 4 6 6 117 142 167

115 127.5

140 155

IAI


685 785

200 177

Dimensions Q1, Q2, S1 and S2 change depending on the size of the cable track

IK3 Cartesian Robot

Payload by A	cceleration			
HHM type: X H Y high speed/	nigh speed/ /Z medium speed	HHH type: X high speed/ Y high speed/Z high speed		
Y-axis (mm) Acceleration/ deceleration (G)	50~200 (Every 50mm)		Y-axis (mm) Acceleration/ deceleration (G)	50~200 (Every 50mm)
0.1	2		0.1	1
0.3	2		0.3	1
0.5	1.5		0.5	1

* When X, Y and Z axes all have the same acceleration/deceleration.

When there is significant vibration, decrease the speed and acceleration/deceleration as required.

The photograph above shows the configuration direction "1" where all axes have cable tracks. Please refer to P.3 for other configuration directions.

Stroke

RoHS

Y-a	xis stroke (mm)		50			100			150			200	
Z-a	xis stroke (mm)	50	75	100	50	75	100	50	75	100	50	75	100
	50	0	0	0	0	0	0	0	0	0	0	0	0
	100	0	0	0	0	0	0	0	0	0	0	0	0
	150	0	0	0	0	0	0	0	0	0	0	0	0
	200	0	0	0	0	0	0	0	0	0	0	0	0
	250	0	0	0	0	0	0	0	0	0	0	0	0
-	300	0	0	0	0	0	0	0	0	0	0	0	0
(mm)	350	0	0	0	0	0	0	0	0	0	0	0	0
stroke	400	0	0	0	0	0	0	0	0	0	0	0	0
s str	450	0	0	0	0	0	0	0	0	0	0	0	0
X-axis	500	0	0	0	0	0	0	0	0	0	0	0	0
×	550	0	0	0	0	0	0	0	0	0	0	0	0
	600	0	0	0	0	0	0	0	0	0	0	0	0
	650	0	0	0	0	0	0	0	0	0	0	0	0
	700	0	0	0	0	0	0	0	0	0	0	0	0
	750	0	0	0	0	0	0	0	0	0	0	0	0
	800	0	0	0	0	0	0	0	0	0	0	0	0

Cable Length

Туре	Cable code	Length
	1L	1m
Standard	3L	3m
type	5L	5m
		Specified length (15m max.)

Note 1. All-axis standard cable is used. Note 2. The length of the second and third axis cable is from the

exit of the cable track. A separate robot cable is included for wiring inside the cable track.

Note 3. The standard lengths are 1m, 3m and 5m, but other lengths can be specified in 1m increments up to 15m.

Cable Track

Туре	Model	Reference page	First wiring (X-axis side)	Second wiring (Y-axis side)	Third wiring (Z-axis side)
Without cable track (cable only)	N		-	-	-
Cable track S size (inner width: 38mm)	СТ		0	0	0
Cable track M size (inner width: 50mm)	СТМ	See	0	0	0
Cable track L size (inner width: 63mm)	CTL	P.136	0	0	Cannot be selected *1
Cable track XL size (inner width: 80mm)	CTXL		0	Cannot be	selected *2

*1 Only the first and second wiring can be selected *2 Only the first wiring can be selected

Applicable Controllers

Controllers are sold separately. Please refer to each controller page.

Type	Axis configuration	Applicable controllers	Reference page
	<u> </u>	PCON-CB/CGB	P-149
	X-axis : SA7C	PCON-CYB/PLB/POB	Please contact IAI
PM1	Y-axis : SA6R	MCON-C/CG	P-153
		MCON-LC/LCG	P-153
	Z-axis : TA4R	MSEL	P-139
PM2		RCON-PC	P-159

* Operation is possible with the high output setting specification. When connecting to the MCON controller, "HIGH

When connecting to the MCON controller, "HIGH OUTPUT SETTING SPECIFICATION" must be selected. Please contact IAI regarding use with the highoutput setting disabled.

Y-axis

Z-axis

Standard equipment

Cannot be selected

Specifications							
Item		X-axis	Y-axis	Z-axis			
Axis configuration	on	RCP6-SA7C	RCP6-SA6R	RCP6-TA4R			
Stroke		50 ~ 800mm	50 ~ 200mm	50 ~ 100mm			
Stroke		(Every 50mm)	(Every 50mm)	(Every 25mm)			
Max speed * HHM HHH		420	5 () m m /n	260mm/s			
		420mm/s	560mm/s	350mm/s			
Motor size		56 Stepper motor	42 Stepper motor	35 Stepper motor			
Ball screw	HHM	16mm	12mm	5mm			
lead	HHH	IOIIIII	12000	10mm			
Drive system		Ball screw \u00f812mm rolled C10	Ball screw ϕ 10mm rolled C10	Ball screw ø8mm rolled C10			
Positioning repeatability		±0.01mm					
Base material		Aluminum					
Ambient operati temperature, hu		0~40°C, 85% RH or less (non-condensing)					

CJT See P.134 Cable exit direction (Top) Cable exit direction (Right) See P.134 CJR Cannot be Cable exit direction (Left) CJL See P.134 selected Cable exit direction (Bottom) CJB See P 134 Cable exit direction (Outside) CJO See P.134 Cannot be selected Standard equipment Non-motor end specification NM See P.135 Slider section roller SR See P.135 0 specification

Options (1) * Please check the Options reference

Type

Brake*

Note 1. The configuration position in the figure is home.

69.5

5.0 2

Note 2. The diagram shows first, second and third wirings all with cable tracks.

Note 3. For details on the cable track and cable track moving end bracket, refer to P.136.

X: STROKE +342 (Without brake) X: STROKE +392 (With brake)

н KxM pitch

N-X guide rail

nting s

Option

code

В

Reference

page

See P.134

X-axis

* Be sure to specify. * Brake option for X-axis increases the length of the motor unit. Please contact IAI for more information.

Options (2) * Please check the Opti	ons reference pages to	confirm each option.
Туре	Option code	Reference page
Foot plate	FTP	See P.134

195 (Without brake)

Must be 100 or more.

14

X guide rail mounting section detailed view

245 (With brake)

X-axis base surface

* The maximum speed may not be reached if the travel distance is short or acceleration is low. Maximum speed may change depending on the stroke. For details, refer to the Maximum Speed by Stroke table on P.110.

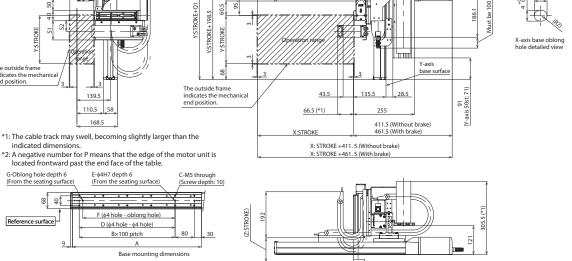
Dimensions

CAD drawings can be downloaded from our website. 2D CAD 3D CAD www.intelligentactuator.com P (*2) Z:STROKE Z:STROKE+124 70.5 187.5 253 (*1) (3) ':STROKE The outside frame indicates the mechanica end position. 139.5 110.5

58

F-64H7 depth 6

(From the seating surfac


F (64 hole - oblong hole

D (64 hole - 64 hole) B×100 pitch

А

168.5

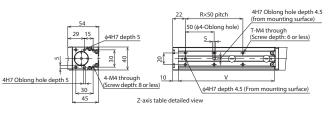
located frontward past the end face of the table.

(*) Notes

indicated dimensions.

8] \$[

9


G-Oblong hole depth 6 (From the seating surface

Reference surface

The X-axis cable track guide rail is to be fixed to the surface on which the X-axis is installed by the customer.

When the foot plate option is selected, the unit will be shipped fixed on the foot plate. (See P. 134)

Also, the moving end of the Z-axis cable track is to be fixed to a plate or the like mounted on the Z-axis table by the customer.

Cable track size

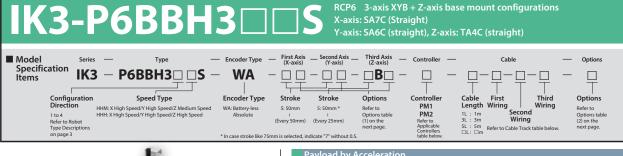
Dimensions by Stroke

X: Stroke	50	100	150	200	250	300	350	400	450	500	550	600	650	700	750	800
A	188	238	288	338	388	438	488	538	588	638	688	738	788	838	888	938
В	0	1	1	2	2	3	3	4	4	5	5	6	6	7	7	8
C	4	6	6	8	8	10	10	12	12	14	14	16	16	18	18	20
D	0	0	100	200	200	300	300	400	400	500	500	600	600	700	700	800
E	2	2	3	3	3	3	3	3	3	3	3	3	3	3	3	3
F	0	85	85	185	185	285	285	385	385	485	485	585	585	685	685	785
G	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Н	188	213	238	263	288	313	338	363	388	413	438	463	488	513	538	563
J	16.5	16.5	14	16.5	16.5	16.5	14	16.5	14	16	15	66.5	44	56.5	69	16
K	1	1	1	2	2	2	2	2	2	3	3	3	2	2	2	3
М	155	180	210	115	127.5	140	155	165	180	127	136	110	200	200	200	177
N	2	2	2	3	3	3	3	3	3	4	4	4	3	3	3	4

N	2	2	2
Z: Stroke	50	75	100
P (*2)	-13.5	11.5	36.5
R	1	2	2
Т	4	6	6
V	117	142	167

CT CTM CTL CTXL

84.5 97.5 110.5 127.5


283 296 309 326

82 94 46 52.5

* Dimensions Q1, Q2, S1 and S2 change depending on the size of the cable track

IK3 Cartesian Robot

RoHS

HHM type: X h Y high speed/.	igh speed/ Z medium speed	HHH type: X h Y high speed/		
Y-axis (mm) Acceleration/ deceleration (G)	50~200 (Every 50mm)	Y-axis (mm) Acceleration/ deceleration (G)	50~200 (Every 50mm)	
0.1	2	0.1	1	
0.3	2	0.3	1	
0.5	1.5	0.5 1		

When there is significant vibration, decrease the speed and acceleration/deceleration as required.

The photograph above shows the configuration direction "1" where all axes have cable tracks. Please refer to P.3 for other configuration directions.

S	troke												
Y-a	xis stroke (mm)		50			100			150			200	
Z-a	xis stroke (mm)	50	75	100	50	75	100	50	75	100	50	75	100
	50	0	0	0	0	0	0	0	0	0	0	0	0
	100	0	0	0	0	0	0	0	0	0	0	0	0
	150	0	0	0	0	0	0	0	0	0	0	0	0
	200	0	0	0	0	0	0	0	0	0	0	0	0
	250	0	0	0	0	0	0	0	0	0	0	0	0
	300	0	0	0	0	0	0	0	0	0	0	0	0
(mm)	350	0	0	0	0	0	0	0	0	0	0	0	0
stroke	400	0	0	0	0	0	0	0	0	0	0	0	0
s str	450	0	0	0	0	0	0	0	0	0	0	0	0
X-axis	500	0	0	0	0	0	0	0	0	0	0	0	0
×	550	0	0	0	0	0	0	0	0	0	0	0	0
	600	0	0	0	0	0	0	0	0	0	0	0	0
	650	0	0	0	0	0	0	0	0	0	0	0	0
	700	0	0	0	0	0	0	0	0	0	0	0	0
	750	0	0	0	0	0	0	0	0	0	0	0	0
	800	0	0	0	0	0	0	0	0	0	0	0	0

Cable Length

Cable code	Length
1L	1m
3L	3m
5L	5m
	Specified length (15m max.)
	1L 3L

Note 1. All-axis standard cable is used. Note 2. The length of the second and third axis cable is from the exit of the cable track. A separate robot cable is included for wiring inside the cable track.

Note 3. The standard lengths are 1m, 3m and 5m, but other lengths can be specified in 1m increments up to 15m.

Cable Track

Туре	Model	Reference page	First wiring (X-axis side)	Second wiring (Y-axis side)	Third wiring (Z-axis side)
Without cable track (cable only)	N		-	-	-
Cable track S size (inner width: 38mm)	СТ		0	0	0
Cable track M size (inner width: 50mm)	СТМ	See	0	0	0
Cable track L size (inner width: 63mm)	CTL	P.136	0	0	Cannot be selected *1
Cable track XL size (inner width: 80mm)	CTXL		0	Cannot be	selected *2

*1 Only the first and second wiring can be selected *2 Only the first wiring can be selected

Applicable Controllers

Controllers are sold separately. Please refer to each controller page.

Туре	Axis configuration	Applicable controllers	Reference page	
		PCON-CB/CGB	P-149	* Operation is possible with the high output setting
	X-axis : SA7C	PCON-CYB/PLB/POB	Please contact IAI	specification.
PM1	Y-axis: SA6C	MCON-C/CG	P-153	When connecting to the MCON controller, "HIGH
		MCON-LC/LCG	P-155	OUTPUT SETTING SPECIFICATION" must be selected
	Z-axis : TA4C	MSEL	P-139	Please contact IAI regarding use with the high-
PM2		RCON-PC	P-159	output setting disabled.

Y-axis

Z-axis

Standard equipment

Ο

Cannot be selected

Cannot be selected

Reference page

See P.134

X-axis

0

ltem		X-axis	Z-axis					
Axis configuration	on	RCP6-SA7C	RCP6-SA6C	RCP6-TA4C				
Stroke		50 ~ 800mm (Every 50mm)	50 ~ 200mm (Every 50mm)	50 ~ 100mm (Every 25mm)				
	HHM	400 /	500 1	260mm/s				
Max speed *	HHH	420mm/s	560mm/s	350mm/s				
Motor size		56 Stepper motor	42 Stepper motor	35 Stepper motor				
Ball screw	HHM	16	12	5mm				
lead	HHH	16mm	12mm	10mm				
Drive system		Ball screw ¢12mm rolled C10	Ball screw \u00f610mm rolled C10	Ball screw ø8mm rolled C10				
Positioning repea	tability	±0.01mm						
Base material		Aluminum						
Ambient operat temperature, hu		0~40°C, 85% RH or less (non-condensing)						

* The maximum speed may not be reached if the travel distance is short or acceleration is low.

Maximum speed may change depending on the stroke. For details, refer to the Maximum Speed by Stroke table on P.137.

Dimensions

CAD drawings can be downloaded from our website. 2D CAD www.intelligentactuator.com

Note 1. The configuration position in the figure is home. Note 2. The diagram shows first, second and third wirings all with cable tracks.

Options (1) * Please check the Options reference

Type

Cable exit direction (Top)

Cable exit direction (Right)

Cable exit direction (Left)

Slider section roller

Options (2)

specification

Foot plate

Cable exit direction (Bottom)

Non-motor end specification

Outside as standard. Be sure to specify.

Type

Brake*

Option

code

В

CJT

CJR

CJL

CIB

NM

SR

* Brake option for X- and/or Y-axes increases the length of the motor unit(s). Please contact IAI for more information.

Reference

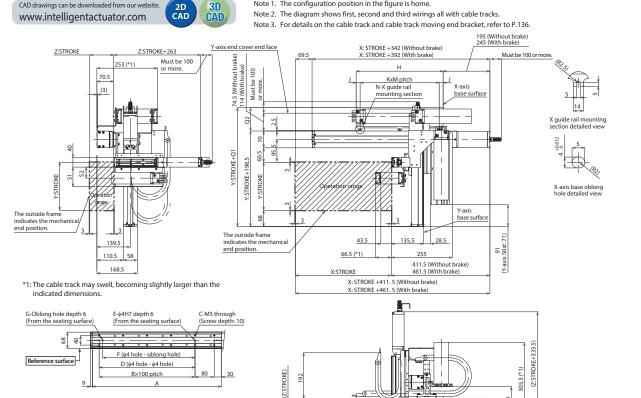
page

See P.134

See P.134

See P.134

See P.134


See P 134

See P.135

See P.135

Option code

FTP

92

IAI

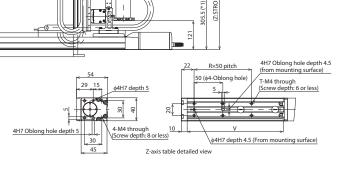
(*) Notes

9

The X-axis cable track guide rail is to be fixed to the surface on which the X-axis is installed by the customer.

Base mounting dimensions

When the foot plate option is selected, the unit will be shipped fixed on the foot plate. (See P. 134)


Also, the moving end of the Z-axis cable track is to be fixed to a

6 142

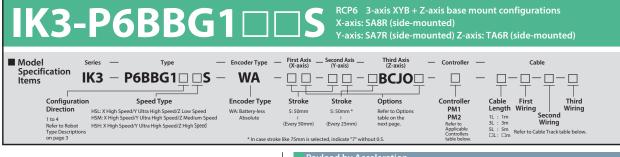
6 167

4

plate or the like mounted on the Z-axis table by the customer.

Dimensions by Stroke

X: Stroke	50	100	150	200	250	300	350	400	450	500	550	600	650	700	750	800
A	188	238	288	338	388	438	488	538	588	638	688	738	788	838	888	938
В	0	1	1	2	2	3	3	4	4	5	5	6	6	7	7	8
С	4	6	6	8	8	10	10	12	12	14	14	16	16	18	18	20
D	0	0	100	200	200	300	300	400	400	500	500	600	600	700	700	800
E	2	2	3	3	3	3	3	3	3	3	3	3	3	3	3	3
F	0	85	85	185	185	285	285	385	385	485	485	585	585	685	685	785
G	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Н	188	213	238	263	288	313	338	363	388	413	438	463	488	513	538	563
J	16.5	16.5	14	16.5	16.5	16.5	14	16.5	14	16	15	66.5	44	56.5	69	16
K	1	1	1	2	2	2	2	2	2	3	3	3	2	2	2	3
M	155	180	210	115	127.5	140	155	165	180	127	136	110	200	200	200	177
N	2	2	2	3	3	3	3	3	3	4	4	4	3	3	3	4
				1												
Z: Stroke	50	75	100													


30

Cable track size	CT	CTM	CTL	CTXL				
Q1	283	296	309	326				
Q2	84.5	97.5	110.5	127.5				
S1	S1 82 94							
S2 46 52.5								
* Dimensions Q1, Q2, S1 and S2 change								

depending on the size of the cable track.

IK3 Cartesian Robot

RoHS

HSL type: X h Y ultra high s		speed	HSM type: X high Y ultra high spee		peed			
Y-axis (mm) Acceleration/ deceleration (G)	50~200 (Every 50mm)	250	Y-axis (mm) Acceleration/ deceleration (G)	50~200 (Every 50mm)	2			
0.1	4	3	0.1	2.5				
0.3	4	3	0.3	2.5				
0.5	4	3	0.5	2.5				
HSH type: X h Y ultra high s	peed/Z high	speed	1					
Y-axis (mm) Acceleration/ deceleration (G)	50~200 (Every 50mm)	250						
0.1	1.5	1	* When X, Y and Z axes all have the sam					
0.3	1.5		acceleration/deceleration. When there					

1.5

: X high speed/

gh speed/Z medium speed (Unit: kg) (is (mm) 50~200 250 (Every 50mm) 2.5 2.5 2 2.5

The photograph above shows the configuration direction "1" where all axes have cable tracks. Please refer to P.3 for other configuration directions.

S	troke																				
Y-axi	s stroke (mm)			50					100					150					200		
Z-axi	s stroke (mm)	50	75	100	125	150	50	75	100	125	150	50	75	100	125	150	50	75	100	125	150
	50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	150	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	200	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	250	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	300	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	350	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2	400	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Ě	450	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
stroke (mm)	500	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ě	550	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	600	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
X-axis	650	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
×	700	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	750	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	850	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	900	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	950	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1000	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1050	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

0.5

Y-axis	s stroke (mm)			250		
Z-axis	s stroke (mm)	50	75	100	125	150
	50	0	0	0	0	0
	100	0	0	0	0	0
	150	0	0	0	0	0
	200	0	0	0	0	0
	250	0	0	0	0	0 0 0
	300	0	0	0	0	0
	350	0	0	0	0	0
	400	0	0	0	0	0
X-axis stroke (mm)	450	0	0	0	0	0
e.	500	0	0	0	0	0
ķ	550	0	0	0	0	0
sti	600	0	0	0	0	0
xis	650	0	0	0	0	0
<-a	700	0	0	0	0	0
\sim	750	0	0	0	0	0
	800	0	0	0	0	0
	850	0	0	0	0	0
	900	0	0	0	0	0
	950	0	0	0	0	0
	1000	0	0	0	0	0
	1050	0	0	0	0	0
	1100	0	0	0	0	0

Applicable Controllers

Controllers are sold separately. Please refer to each controller page.

Type	Axis configuration	Applicable controllers	Reference page		
	X-axis : SA8R	PCON-CFB/CGFB	P-149		
	X-axis : SA8K	MSEL-PCF/PGF	P-139		
		PCON-CB/CGB	P-149		
PM1	Y-axis : SA7R	PCON-CYB/PLB/POB	Please contact IAI		
		P-153			
	Z-axis : TA6R	MCON-LC/LCG	P-155		
		MSEL	P-139		
	X-axis : SA8R	RCON-PCF			
PM2	Y-axis : SA7R Z-axis : TA6R	RCON-PC	P-159		

* Operation is possible with the high output setting specification. When connecting to the MCON controller, "HIGH OUTPUT SETTING SPECIFICATION" must be selected. Please contact IAI regarding use with the high-output setting disabled.

Cable	Length	
Туре	Cable code	Length
	1L	1m
Standard	3L	3m
type	5L	5m
		Specified length (15m max)

Note 1. All-axis standard cable is used. Note 2. The length of the second and third axis cable is from the

exit of the cable track. A separate robot cable is included for wiring inside the cable track.

Note 3. The standard lengths are 1m, 3m and 5m, but other lengths can be specified in 1m increments up to 15m.

Cable Track

Туре	Model	Reference page	First wiring (X-axis side)	Second wiring (Y-axis side)	Third wiring (Z-axis side)
Without cable track (cable only)	N		-	-	-
Cable track S size (inner width: 38mm)	СТ		0	0	0
Cable track M size (inner width: 50mm)	СТМ	See	0	0	0
Cable track L size (inner width: 63mm)	CTL	P.136	0	0	Cannot be selected *1
Cable track XL size (inner width: 80mm)	CTXL	1	0	Cannot be	selected *2

*1 Only the first and second wiring can be selected *2 Only the first wiring can be selected

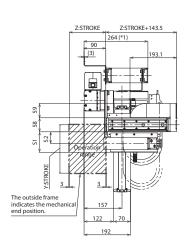
/deceleration. When there is significant vibration, decrease the speed and acceleration/deceleration as required.

IK3 Cartesian Robot

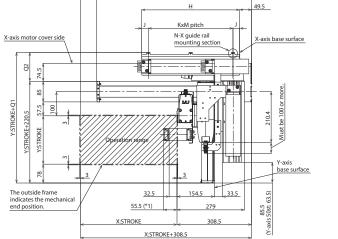
ltem		X-axis	Y-axis	Z-axis	Туре	Option
Axis configurat	ion	RCP6-SA8R	RCP6-SA7R	RCP6-TA6R	туре	code
Stroke		50 ~ 1100mm (Every 50mm)	50 ~ 250mm (Every 50mm)	50 ~ 150mm (Every 25mm)	Brake	В
	HSL			140mm/s	Cable exit direction (Outside)	oro
Max speed *	HSM	300mm/s	640mm/s	280mm/s		
	HSH			440mm/s	Non-motor end specification	NM
Motor size		56 High thrust stepper motor	56 Stepper motor	42 Stepper motor	Slider section roller specification	SR
Ball screw	HSL			3mm	* Be sure to specify.	<u></u>
lead	HSM	20mm	24mm	6mm		
ieau	HSH			12mm		
Drive system		Ball screw ø16mm rolled C10	Ball screw ¢12mm rolled C10	Ball screw ϕ 10mm rolled C10		
Positioning repe	atability	±0.01mm				
Base material		Aluminum				
Ambient opera temperature, h		0~40°C, 85% RH or les	s (non-condensing)			

Type	Option	Reference	X-axis	Y-axis	Z-axis
type	code	page	A dAis	I UXIS	2 0/15
Brake	В	See P.134	0	0	Standard equipment
Cable exit direction (Outside)	clo	See P.134	Cannot be	e selected	Standard equipment
Non-motor end specification	NM	See P.135	0	0	0
Slider section roller specification	SR	See P.135	0	0	Cannot be selected

For details, refer to the Maximum Speed by Stroke table on P.137.


Dimensions

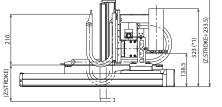
CAD drawings can be downloaded from our website. 2D CAD www.intelligentactuator.com


Note 1. The configuration position in the figure is home. Note 2. The diagram shows first, second and third wirings all with cable tracks.

Note 3. For details on the cable track and cable track moving end bracket, refer to P.136. X:STROKE+240.5

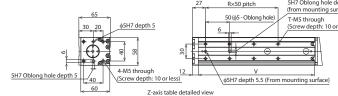
*1: The cable track may swell, becoming slightly larger than the indicated dimensions.

11



R3 X-axis base oblong hole detailed view

C-M6 through (Screw depth: 12) G-Oblong hole depth 6.5 (From the seating surface E-66H7 depth 6.5 (From the seating surface) - 22 83 F (ø6 hole - oblong hole) Reference surface D (\u00f36 hole - \u00f36 hole) 100 B×100 pitch


A

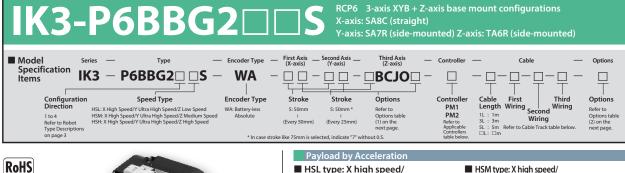
5H7 Oblong hole depth 5.5 (from mounting surface) R×50 pitch 50 (¢5 - Oblong hole T-M5 through (Screw depth: 10 or less) 6 12 . φ5H7 depth 5.5 (From mounting surface

(*) Notes

The X-axis cable track guide rail is to be fixed to the surface on which the X-axis is installed by the customer. Also, the moving end of the Z-axis cable track is to be fixed to a plate or the like mounted on the Z-axis table by the customer.

Dimensions by Stroke

1 4 2 6 26 3 8 8


140 165 190 215 240

X: Stroke	50	100	150	200	250	300	350	400	450	500	550	600	650	700	750	800	850	900	950	1000	1050	1100
	230	280	330	380	430	480	530	580	630	680	730	780	830	880	930	980	1030	1080	1130	1180	1230	1280
A	230	280	330	380		480	530	280	030	080	/30	780	830	880	930	980	1030				1230	
В	1	2	2	3	3	4	4	5	5	6	6	7	7	8	8	9	9	10	10	11	11	12
C	4	6	6	8	8	10	10	12	12	14	14	16	16	18	18	20	20	22	22	24	24	26
D	0	100	100	200	200	300	300	400	400	500	500	600	600	700	700	800	800	900	900	1000	1000	1100
E	2	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
F	0	0	80	180	180	280	280	380	380	480	480	580	580	680	680	780	780	880	880	980	980	1080
G	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Н	230	255	280	305	330	355	380	405	430	455	480	505	530	555	580	605	630	655	680	705	730	755
J	30	27.5	27.5	27.5	27.5	27.5	27.5	27.5	27.5	27.5	22.5	27.5	77.5	52.5	65	77.5	52.5	27.5	77.5	22.5	55	27.5
K	1	1	1	2	2	2	2	2	2	2	3	3	3	3	3	3	3	3	3	4	4	4
M	170	200	225	125	137.5	150	162.5	175	187.5	200	145	150	125	150	150	150	175	200	175	165	155	175
N	2	2	2	3	3	3	3	3	3	3	4	4	4	4	4	4	4	4	4	5	5	5
Z: Stroke	50	75	100	125	150																	

Cable track size	СТ	СТМ	CTL	CTXL					
Q1	328	341	354	371					
Q2	107.5	120.5	133.5	150.5					
S1 84.5 96.5									
S2 48.5 55									
* Dimensions Q1, Q2, S1 and S2									

change depending on the size of the cable track.

ke 75mm is selected, indicate "7" w	ithout 0.5.	table b	pelow.					
Payload by A	cceleration							
HSL type: X hi Y ultra high s	gh speed/	speed	HSM type: X high speed/ Y ultra high speed/Z medium speed (Unit: kg					
Y-axis (mm) Acceleration/ deceleration (G)	50~200 (Every 50mm)	250		Y-axis (mm) cceleration/ eceleration (G)	50~200 (Every 50mm)	250		
0.1	4	3	1Г	0.1	2.5	2		
0.3	4	3	1 [0.3	2.5	2		
0.5	4	3	1 Г	0.5	2.5	2		
HSH type: X h Y ultra high s		speed						
Y-axis (mm) Acceleration/ deceleration (G)	50~200 (Every 50mm)	250						
0.1	1.5	1		When X, Y and Z ax				
0.3	1.5	1	acceleration/deceleration. When there is significant vibration, decrease the speed and					
0.5	1.5	1		acceleration/decele				

The photograph above shows the configuration direction "1" where all axes have cable tracks. Please refer to P.3 for other configuration directions.

Stroke

Y-axi:	s stroke (mm)			50					100					150					200		
Z-axi	s stroke (mm)	50	75	100	125	150	50	75	100	125	150	50	75	100	125	150	50	75	100	125	150
	50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	150	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	200	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	250	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	300	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	350	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	400	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(mm)	450	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	500	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
oke	550	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
str	600	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
xis	650	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
X-axis	700	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	750	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	850	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Ó	0	0	0	0
	900	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	950	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1000	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1050	0	0	0	0	0	Ó	0	0	Ó	0	0	Ó	Ó	0	Ó	Ó	0	0	Ó	0
	1100	0	0	0	0	0	Ó	0	0	0	0	0	Ó	Ó	0	0	Ó	0	0	0	0

Y-axi	s stroke (mm)			250		
Z-axi	s stroke (mm)	50	75	100	125	150
	50	0	0	0	0	0
	100	0	0	0	0	0
	150	0	0	0	0	0
	200	Õ	0	0	0	0 0 0
	250	0	0	0	0	0
	300	0	0	0	0	0
	350	0	0	0	0	0
	400	0	0	0	0	0
E	450	0	0	0	0	0
X-axis stroke (mm)	500	0	0	0	0	0
	550	0	0	0	0	0
sti	600	0	0	0	0	0
xis	650	0	0	0	0	0
-a	700	0	0	0	0	0
$ ^{\sim}$	750	0	0	0	0	0
	800	0	0	0	0	0
	850	Ó	0	Ó	0	
	900	0	0	0	0	0
	950	0	0	Ō	0	0
	1000	0	0	0	0	0
	1050	0	0	0	0	0
	1100	0	0	0	0	0

Applicable Controllers

Controllers are sold separately. Please refer to each controller page.

Type	Axis configuration	Applicable controllers	Reference page
	X-axis : SA8C	PCON-CFB/CGFB	P-149
	X-axis : SA8C	MSEL-PCF/PGF	P-139
		PCON-CB/CGB	P-149
PM1	Y-axis : SA7R	PCON-CYB/PLB/POB	Please contact IAI
		P-153	
	Z-axis : TA6R	MCON-LC/LCG	P-155
		MSEL	P-139
	X-axis : SA8C	RCON-PCF	
PM2	Y-axis : SA7R Z-axis : TA6R	RCON-PC	P-159

* Operation is possible with the high output setting specification. When connecting to the MCON controller, "HIGH OUTPUT SETTING SPECIFICATION" must be selected. Please contact IAI regarding use with the high-output setting disabled.

Cable Length

Type	Cable code	Length
	1L	1m
Standard	3L	3m
type	5L	5m
		Specified length (15m max.)

Note 1. All-axis standard cable is used. Note 2. The length of the second and third axis cable is from the

exit of the cable track. A separate robot cable is included for wiring inside the cable track.

Note 3. The standard lengths are 1m, 3m and 5m, but other lengths can be specified in 1m increments up to 15m.

Track					
Туре	Model	Reference page	First wiring (X-axis side)	Second wiring (Y-axis side)	Third wiring (Z-axis side)
ole track (cable only)	N		-	-	-
S size (inner width: 38mm)	СТ		0	0	0
M size (inner width: 50mm)	СТМ	See	0	0	0
L size (inner width: 63mm)	CTL	P.136	0	0	Cannot be selected *1
XL size (inner width: 80mm)	CTXL		0	Cannot be	selected *2

Cable track XL size (inner width: 80mm) CTXL *1 Only the first and second wiring can be selected

*2 Only the first wiring can be selected

IK3-P6BBG2□□S

ltem		X-axis	Y-axis	Z-axis				
Axis configurati	on	RCP6-SA8C	CP6-SA8C RCP6-SA7R R					
Stroke		50 ~ 1100mm	50 ~ 250mm	50 ~ 150mm				
Stioke		(Every 50mm)	(Every 50mm)	(Every 25mm)				
HSL				140mm/s				
Max speed *	HSM	300mm/s	640mm/s	280mm/s				
	HSH							
Motor size		56 High thrust stepper motor	56 Stepper motor	42 Stepper motor				
Ball screw	HSL			3mm				
lead	HSM	20mm	24mm	6mm				
leau	HSH			12mm				
Drive system		Ball screw \u00f616mm rolled C10	Ball screw ø12mm rolled C10	Ball screw \u00f610mm rolled C10				
Positioning repe	atability	±0.01mm						
Base material		Aluminum	Aluminum					
Ambient operat temperature, hi		0~40°C, 85% RH or less (non-condensing)						

Туре	Option code	Reference page	X-axis	Y-axis	Z-axis
Brake *	В	See P.134	0	0	Standard equipment
Cable exit direction (Top)	CJT	See P.134	0		
Cable exit direction (Right)	CJR	See P.134	0	Cannot be	
Cable exit direction (Left)	CJL	See P.134	0	Cannot be	e selected
Cable exit direction (Bottom)	CJB	See P.134	0		
Cable exit direction (Outside)	clo	See P.134	Cannot b	e selected	Standard equipment
Non-motor end specification	NM	See P.135	0	0	0
Slider section roller specification	SR	See P.135	0	0	Cannot be selected

* Brake option for X-axis increases the length of the motor unit.

Please contact IAI for more information.

Options (2) * Please check the Options reference pages to confirm each option.										
Туре	Option code	Reference page								
Foot plate	FTP	See P.134								

Maximum speed may change depending on the stroke. For details, refer to the Maximum Speed by Stroke table on P.137.

Z:STROKE

90

157

192

122 70

(3)

59

28

S

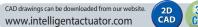
The outside fram

end position.

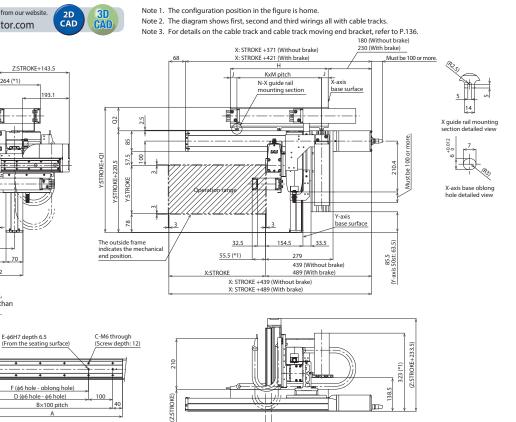
S

Y:STROKE

indicates the mechanica


3

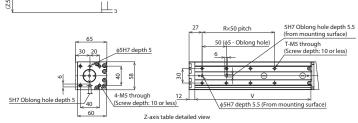
*1: The cable track may swell, becoming slightly larger than the indicated dimensions. G-Oblong hole depth 6.5


> 22 8

> > 11

(From the seating surface

264 (*1)



(*) Notes

Reference surface

The X-axis cable track guide rail is to be fixed to the surface on which the X-axis is installed by the customer. Also, the moving end of the Z-axis cable track is to be fixed to a plate or the like mounted on the Z-axis table by the customer.

Base mounting dimensions

Dimensions by Stroke

2 6

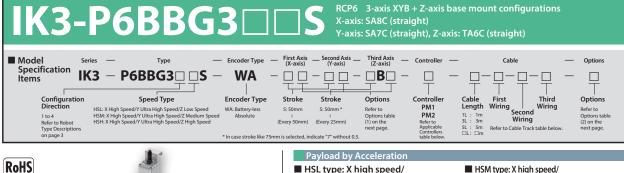
4

140 165 190 215 240

2 3 6 8

8

X: Stroke	50	100	150	200	250	300	350	400	450	500	550	600	650	700	750	800	850	900	950	1000	1050	1100
A	230	280	330	380	430	480	530	580	630	680	730	780	830	880	930	980	1030	1080	1130	1180	1230	1280
В	1	2	2	3	3	4	4	5	5	6	6	7	7	8	8	9	9	10	10	11	11	12
С	4	6	6	8	8	10	10	12	12	14	14	16	16	18	18	20	20	22	22	24	24	26
D	0	100	100	200	200	300	300	400	400	500	500	600	600	700	700	800	800	900	900	1000	1000	1100
E	2	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
F	0	0	80	180	180	280	280	380	380	480	480	580	580	680	680	780	780	880	880	980	980	1080
G	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Н	230	255	280	305	330	355	380	405	430	455	480	505	530	555	580	605	630	655	680	705	730	755
J	30	27.5	27.5	27.5	27.5	27.5	27.5	27.5	27.5	27.5	22.5	27.5	77.5	52.5	65	77.5	52.5	27.5	77.5	22.5	55	27.5
К	1	1	1	2	2	2	2	2	2	2	3	3	3	3	3	3	3	3	3	4	4	4
М	170	200	225	125	137.5	150	162.5	175	187.5	200	145	150	125	150	150	150	175	200	175	165	155	175
N	2	2	2	3	3	3	3	3	3	3	4	4	4	4	4	4	4	4	4	5	5	5
Z: Stroke	50	75	100	125	150																	


IAI

Cable track size	СТ	СТМ	CTL	CTXL						
Q1	305	318	331	348						
Q2	84.5	97.5	110.5	127.5						
S1	84.5	96.5	-	-						
S2	48.5	55	-	-						
* D: : 01 02 01 102										

* Dimensions Q1, Q2, S1 and S2 change depending on the size of the cable track.

Stroke

Payload by A	cceleration		
HSL type: X h Y ultra high s		speed	HSN Y ult
Y-axis (mm Acceleration/ deceleration (G)	50~200 (Every 50mm)	250	Accelera decelera
0.1	4	3	
0.3	4	3	
0.5	4	3	
HSH type: X h Y ultra high s	peed/Z high	speed	
Y-axis (mm Acceleration/ deceleration (G)	50~200 (Every 50mm)	250	

1.5

1.5

1.5

1

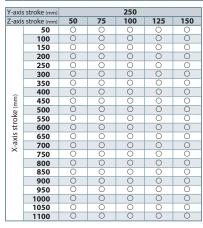
N type: X high speed/

Itra high speed/Z medium speed (Unit: kg) Y-axis (mm) 50~200 250 (Every 50mm) ation/ ation (G) 0.1 2.5 0.3 2.5 2 0.5

2.5

2

When X, Y and Z axes all have the same acceleration/deceleration. When there is significant vibration, decrease the speed and acceleration/deceleration as required.


The photograph above shows the configuration direction "1" where all axes have cable tracks. Please refer to P.3 for other configuration directions.

P	uroke																				
Y-axi	s stroke (mm)			50					100					150					200		
Z-axi	s stroke (mm)	50	75	100	125	150	50	75	100	125	150	50	75	100	125	150	50	75	100	125	150
	50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	150	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	200	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	250	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	300	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	350	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	400	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(mm)	450	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
e e	500	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
oke	550	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
str	600	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
xis	650	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
X-axis	700	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	750	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	800	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	850	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	900	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	950	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1000	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1050	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

0.1

0.3

0.5

Applicable Controllers

Cable Track

Controllers are sold separately. Please refer to each controller page.

Type	Axis configuration	Applicable controllers	Reference page
	X-axis : SA8C	PCON-CFB/CGFB	P-149
	X-axis: SA8C	MSEL-PCF/PGF	P-139
		PCON-CB/CGB	P-149
PM1	Y-axis : SA7C	PCON-CYB/PLB/POB	Please contact IAI
		MCON-C/CG	P-153
	Z-axis : TA6C	MCON-LC/LCG	P-155
		MSEL	P-139
	X-axis : SA8C	RCON-PCF	
PM2	Y-axis : SA7C Z-axis : TA6C	RCON-PC	P-159

* Operation is possible with the high output setting specification. When connecting to the MCON controller, "HIGH OUTPUT SETTING SPECIFICATION" must be selected. Please contact IAI regarding use with the high-output setting disabled.


Cable Length

Type	Cable code	Length
	1L	1m
Standard	3L	3m
type	5L	5m
		Specified length (15m max.)

Note 1. All-axis standard cable is used. Note 2. The length of the second and third axis cable is from the exit of the cable track. A separate robot cable is included for

wiring inside the cable track. Note 3. The standard lengths are 1m, 3m and 5m, but other lengths

can be specified in 1m increments up to 15m.

				_
Туре	Model	Reference page	First wiring (X-axis side)	
Without cable track (cable only)	N		-	Γ
Cable track S size (inner width: 38mm)	СТ		0	Г
Cable track M size (inner width: 50mm)	СТМ	See	0	Γ
Cable track L size (inner width: 63mm)	CTL	P.136	0	

Cable track XL size (inner width: 80mm) CTXL *1 Only the first and second wiring can be selected

*2 Only the first wiring can be selected

Second wiring

(Y-axis side)

0

Third wiring

(Z-axis side)

Cannot be

selected *1

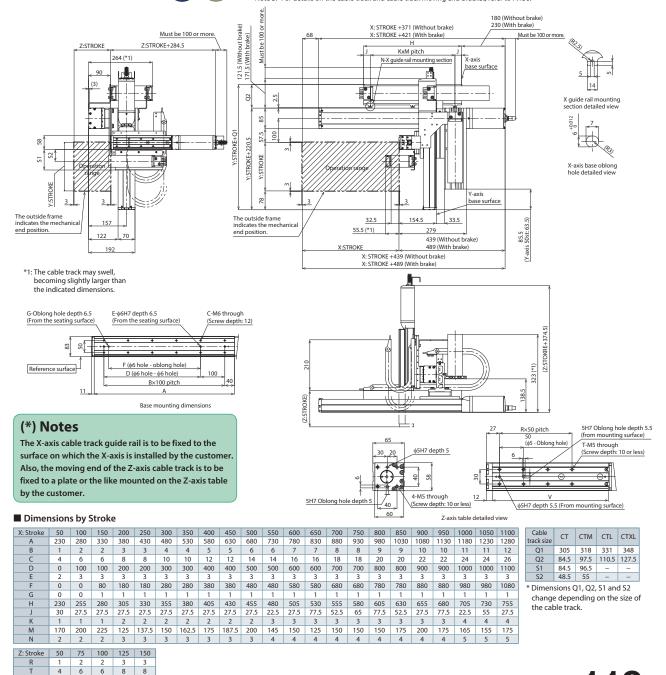
Cannot be selected *2

ltem		X-axis	Y-axis	Z-axis	Ture	Option	Reference	X-axis	Y-axis	Z-a
Axis configurat	ion	RCP6-SA8C	RCP6-SA7C	RCP6-TA6C	Туре	code	page	X-axis	r-axis	Z-6
Stroke		50 ~ 1100mm (Every 50mm)	50 ~ 250mm (Every 50mm)	50 ~ 150mm (Every 25mm)	Brake *	В	See P.134	0	0	Stan equip
	HSL			140mm/s	Cable exit direction (Top)	CJT	See P.134	0		
Max speed *	HSM	300mm/s	640mm/s	280mm/s	Cable exit direction (Right)	CJR	See P.134	0	Cannot b	
	HSH			440mm/s	Cable exit direction (Left)	CJL	See P.134	0	Cannot b	e sele
M - +		56 High thrust	EC Change and the s		Cable exit direction (Bottom)	CJB	See P.134	0]	
Motor size		stepper motor	56 Stepper motor	42 Stepper motor	Non-motor end specification	NM	See P.135	0	0	0
Ball screw	HSL			3mm	Slider section roller	SR	See P.135	0	0	Canne
lead	HSM	20mm	24mm	6mm	specification	эл	See P.155	0	0	selec
ieau	HSH			12mm	* Outside as standard. Be sure	to specify.				
Drive system		Ball screw \u00f616mm rolled C10	Ball screw \u00f612mm rolled C10	Ball screw ø10mm rolled C10	* Brake option for X- and/or Y- Please contact IAI for more ir		-	gth of the	motor un	it(s).
Positioning repe	atability	±0.01mm			Options (2) * Please cl	ock the Ont	ions referenc		onfirm one	h ontio
Base material		Aluminum			Options (2) Please C	leck the Opt	ions reference	e pages to c	committe ac	nopuo
Ambient opera temperature, h		0~40°C, 85% RH or les	s (non-condensing)		Type Foot plate		Option FT		Referer	nce pag P.134

For details, refer to the Maximum Speed by Stroke table on P.137.

3D CAD

Dimensions

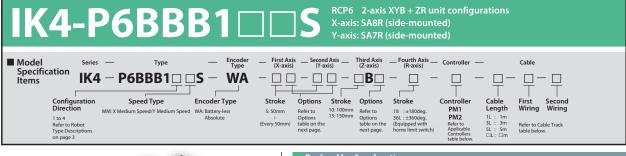

CAD drawings can be downloaded from our website.

140 165 190 215

240

Note 1. The configuration position in the figure is home. Note 2. The diagram shows first, second and third wirings all with cable tracks.

Note 3. For details on the cable track and cable track moving end bracket, refer to P.136.



ΙΑΙ

IK4 Cartesian Robot

RoHS

Payload by Acceleration

MM type: X medium s	MM type: X medium speed/Y medium speed (Unit: kg											
Y-axis stroke (mm) deceleration/ deceleration (G)		250~300 (Every 50mm)										
0.1	3	.5										
0.3	2	1										

* When X, Y, Z and R axes all have the same acceleration/deceleration.

When there is significant vibration, decrease the speed and acceleration/deceleration as required.

The photograph above shows the configuration direction "1" where all axes have cable tracks. Please refer to P.3 for other configuration directions.

	troke												
Y-a	xis stroke (mm)		5	50			10	00			1:	50	
	xis stroke (mm)	1	00		50	10	00		50	10	00	1!	50
R-axis	operation range (deg.)	±180	±360	±180	±360	±180	±360	±180	±360	±180	±360	±180	±360
	50	0	0	0	0	0	0	0	0	0	0	0	0
	100	0	0	0	0	0	0	0	0	0	0	0	0
	150	0	0	0	0	0	0	0	0	0	0	0	0
	200	0	0	0	0	0	0	0	0	0	0	0	0
	250	0	0	0	0	0	0	0	0	0	0	0	0
	300 350	0	0	0	0	0	0	0	0	0	0	0	0
	400	0	0	0	0	0	0	0	0	0	0	0	0
Ê	400	ŏ	ŏ	0	0	ŏ	0	ŏ	ŏ	ŏ	ŏ	ŏ	0
5	500	ŏ	Õ	Ő	Ŏ	Õ	Õ	Õ	ŏ	Õ	Õ	Õ	Õ
- ×	550	Ō	Ō	Ō	Ō	Ō	Ō	Ō	Ō	Ō	Ō	Ō	Ō
str	600	0	0	0	0	0	0	0	0	0	0	0	0
Xis	650	0	0	0	0	0	0	0	0	0	0	0	0
X-axis stroke (mm)	700	0	0	0	0	0	0	0	0	0	0	0	0
^	750	0	0	0	0	0	0	0	0	0	0	0	0
	800	0	0	0	0	0	0	0	0	0	0	0	0
	850	0	0	0	0	0	0	0	0	0	0	0	0
	900 950	0	0	0	0	0	0	0	0	0	0	0	0
	1000	0	0	0	0	0	0	0	0	0	0	0	0
	1050	0	0	0	0	0	0	0	0	0	0	0	0
	1100	0	0	0	0	0	0	0	0	0	0	0	0
	1100												
								-	-	-			
	xis stroke (mm)			00				50				00	
Z-a	xis stroke (mm)		00	1	50		00	1	50		00	1:	50
Z-a	xis stroke (mm) operation range (deg.)	±180	00 ±360	1 ±180	±360	±180	00 ±360	1 ±180	±360	±180	00 ±360	1! ±180	±360
Z-a	xis stroke (mm) operation range (deg.) 50	±180	00 ±360 ○	1: ±180	±360	±180	00 ±360 ○	1: ±180	±360	±180	00 ±360 ○	1! ±180 ○	±360
Z-a	xis stroke (mm) operation range (deg.) 50 100	±180 〇	00 ±360 ○	1: ±180 ○	±360 〇	±180 〇	00 ±360 ○	1: ±180 ○	±360 〇	±180 〇	00 ±360 ○	1: ±180 ○	±360 〇
Z-a	xis stroke (mm) operation range (deg.) 50 100 150	±180 O O O O	00 ±360 ○ ○	1: ±180 ○ ○ ○	±360 ○ ○ ○	±180 O O O O	00 ±360 ○ ○	1: ±180 0 0 0	±360 O O O	±180 O O O O	00 ±360 ○ ○	15 ±180 ○ ○ ○	±360 ○ ○ ○
Z-a	xis stroke (mm) operation range (deg.) 50 100	±180 〇	00 ±360 ○	1: ±180 ○	±360 〇	±180 〇	00 ±360 ○	1: ±180 ○	±360 〇	±180 〇	00 ±360 ○	1: ±180 ○	±360 〇
Z-a	xis stroke (mm) operation range (deg.) 50 100 150 200	±180 ○ ○ ○ ○ ○	00 ±360 ○ ○	1: ±180 0 0 0 0 0	±360 0 0 0 0	±180 0 0 0 0	00 <u>+360</u> O O O O	1: ±180 0 0 0 0 0	±360 ○ ○ ○ ○ ○	±180 0 0 0 0	00 ±360 ○ ○ ○ ○	1! ±180 0 0 0 0 0	±360 0 0 0 0
Z-a	xis stroke (mm) operation range (deg.) 50 100 150 200 250	±180 O O O O O O O O O O O O O O O O O O O	00 ±360 ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○	1: ±180 0 0 0 0 0 0 0 0 0 0	±360 0 0 0 0 0 0 0	±180 0 0 0 0 0 0 0 0	±360 O O O O O O O O O	1: ±180 0 0 0 0 0 0 0 0 0	±360 0 0 0 0 0 0 0 0	±180 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00 ±360 ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○	1! ±180 0 0 0 0 0 0 0 0 0	±360 0 0 0 0 0 0 0 0
Z-a R-axis	xis stroke (mm) operation range (deg.) 50 100 150 200 250 300 350 400	±180 O O O O O O O O O O O O O O O O O O O	00 ±360 ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○	1: ±180 0 0 0 0 0 0 0 0 0 0 0 0 0	±360 0 0 0 0 0 0 0 0 0 0	±180 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	±360 O O O O O O O O O	1: ±180 0 0 0 0 0 0 0 0 0 0 0	±360 0 0 0 0 0 0 0 0 0 0	±180 0 0 0 0 0 0 0 0 0 0	00 ±360 ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○	1! ±180 0 0 0 0 0 0 0 0 0 0 0	±360 0 0 0 0 0 0 0 0 0 0
Z-a R-axis	xis stroke (mm) operation range (deg.) 50 100 150 250 250 300 350 400 450	±180 ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○	00 ±360 ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○	1: ±180 0 0 0 0 0 0 0 0 0 0	±360 0 0 0 0 0 0 0 0 0 0 0 0	±180 0 0 0 0 0 0 0 0 0 0 0 0 0	±360 	1: ±180 0 0 0 0 0 0 0 0 0 0 0 0 0	±360 0 0 0 0 0 0 0 0 0 0 0 0	±180 0 0 0 0 0 0 0 0 0 0 0 0 0	00 ±360 ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○	1! ±180 0 0 0 0 0 0 0 0 0 0 0 0 0	±360 0 0 0 0 0 0 0 0 0 0 0 0
Z-a R-axis	xis stroke (mm) operation range (deg.) 50 100 150 200 250 300 350 400 450 500	±180 0 0 0 0 0 0 0 0 0 0 0 0 0	000 ±360	1: ±180 0 0 0 0 0 0 0 0 0 0 0 0 0	±360 0 0 0 0 0 0 0 0 0 0 0 0 0	±180 0 0 0 0 0 0 0 0 0 0 0 0 0	200 ±360 ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○	1: ±180 0 0 0 0 0 0 0 0 0 0 0 0 0	±360 0 0 0 0 0 0 0 0 0 0 0 0 0	±180 0 0 0 0 0 0 0 0 0 0 0 0 0	000 ±360 ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○	1! ±180 0 0 0 0 0 0 0 0 0 0 0 0 0	±360 0 0 0 0 0 0 0 0 0 0 0 0
Z-a R-axis	xis stroke (mm) operation range (deg.) 50 100 250 250 350 350 400 450 550	±180 0 0 0 0 0 0 0 0 0 0 0 0 0	00 ±360 ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○	1: ±180 0 0 0 0 0 0 0 0 0 0 0 0 0	±360 O O O O O O O O O	±180 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	200 ±360 ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○	1: ±180 0 0 0 0 0 0 0 0 0 0 0 0 0	±360 O O O O O O O O O	±180 0 0 0 0 0 0 0 0 0 0 0 0 0	00 ±360 ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○	1! ±180 0 0 0 0 0 0 0 0 0 0 0 0 0	±360 0 0 0 0 0 0 0 0 0 0 0 0 0
Z-a R-axis	xis stroke (mm) operation range (deg.) 50 100 150 250 300 350 450 450 500 550 600	±180 0 0 0 0 0 0 0 0 0 0 0 0 0	00 ±360 ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○	1: ±180 0 0 0 0 0 0 0 0 0 0 0 0 0	±360 O O O O O O O O O	±180 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00 ±360 ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○	1: ±180 0 0 0 0 0 0 0 0 0 0 0 0 0	±360 O O O O O O O O O	±180 0 0 0 0 0 0 0 0 0 0 0 0 0	00 ±360 ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○	19 ±180 0 0 0 0 0 0 0 0 0 0 0 0 0	±360 0 0 0 0 0 0 0 0 0 0 0 0 0
Z-a R-axis	xis stroke (mm) operation range (deg.) 500 100 150 2250 300 350 400 450 500 550 600 650	±180 0 0 0 0 0 0 0 0 0 0 0 0 0	00 ±360 ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○	1: ±180 0 0 0 0 0 0 0 0 0 0 0 0 0	±360 0 0 0 0 0 0 0 0 0 0 0 0 0	±180 0 0 0 0 0 0 0 0 0 0 0 0 0	200 ±360 ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○	1: ±180 0 0 0 0 0 0 0 0 0 0 0 0 0	±360 0 0 0 0 0 0 0 0 0 0 0 0 0	±180 0 0 0 0 0 0 0 0 0 0 0 0 0	00 ±360 0 0 0 0 0 0 0 0 0 0 0 0 0	19 ±180 0 0 0 0 0 0 0 0 0 0 0 0 0	±360 0 0 0 0 0 0 0 0 0 0 0 0 0
Z-a	xis stroke (mm) operation range (deg.) 50 100 150 200 250 300 350 400 450 550 600 650 700	±180 0 0 0 0 0 0 0 0 0 0 0 0 0	00 ±360 ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○	1: ±180 0 0 0 0 0 0 0 0 0 0 0 0 0	±360 0 0 0 0 0 0 0 0 0 0 0 0 0	±180 0 0 0 0 0 0 0 0 0 0 0 0 0	20 ±360 ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○	1: ±180 0 0 0 0 0 0 0 0 0 0 0 0 0	±360 0 0 0 0 0 0 0 0 0 0 0 0 0	±180 0 0 0 0 0 0 0 0 0 0 0 0 0	00 ±360 ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○	1: ±180 0 0 0 0 0 0 0 0 0 0 0 0 0	±360 0 0 0 0 0 0 0 0 0 0 0 0 0
Z-a R-axis	xis stroke (mm) operation range (deg.) 50 100 150 200 250 300 350 450 500 550 600 650 750	±180 0 0 0 0 0 0 0 0 0 0 0 0 0	00 ±360 ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○	1: ±180 0 0 0 0 0 0 0 0 0 0 0 0 0	±360 0 0 0 0 0 0 0 0 0 0 0 0 0	±180 0 0 0 0 0 0 0 0 0 0 0 0 0	200 ±360 ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○	1: ±180 0 0 0 0 0 0 0 0 0 0 0 0 0	±360 0 0 0 0 0 0 0 0 0 0 0 0 0	±180 0 0 0 0 0 0 0 0 0 0 0 0 0	00 ±360 0 0 0 0 0 0 0 0 0 0 0 0 0	19 ±180 0 0 0 0 0 0 0 0 0 0 0 0 0	±360 0 0 0 0 0 0 0 0 0 0 0 0 0
Z-a R-axis	xis stroke (mm) operation range (deg.) 50 100 150 200 250 300 350 400 450 550 600 650 700	±180 0 0 0 0 0 0 0 0 0 0 0 0 0	000 ±360 0 0 0 0 0 0 0 0 0 0 0 0 0	1: ±180 0 0 0 0 0 0 0 0 0 0 0 0 0	2360 0 0 0 0 0 0 0 0 0 0 0 0 0	±180 0 0 0 0 0 0 0 0 0 0 0 0 0	200 ±360 0 0 0 0 0 0 0 0 0 0 0 0 0	1: ±180 0 0 0 0 0 0 0 0 0 0 0 0 0	2360 0 0 0 0 0 0 0 0 0 0 0 0 0	±180 0 0 0 0 0 0 0 0 0 0 0 0 0	00 ±360 0 0 0 0 0 0 0 0 0 0 0 0 0	1! ±180 0 0 0 0 0 0 0 0 0 0 0 0 0	±360 0 0 0 0 0 0 0 0 0 0 0 0 0
Z-a R-axis	xis stroke (mm) operation range (deg.) 50 100 150 2250 350 350 400 450 550 650 650 650 700 750 800	±180 0 0 0 0 0 0 0 0 0 0 0 0 0	00 ±360 ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○	1: ±180 0 0 0 0 0 0 0 0 0 0 0 0 0	±360 0 0 0 0 0 0 0 0 0 0 0 0 0	±180 0 0 0 0 0 0 0 0 0 0 0 0 0	200 ±360 0 0 0 0 0 0 0 0 0 0 0 0 0	1: ±180 0 0 0 0 0 0 0 0 0 0 0 0 0	2360 0 0 0 0 0 0 0 0 0 0 0 0 0	±180 0 0 0 0 0 0 0 0 0 0 0 0 0	00 ±360 0 0 0 0 0 0 0 0 0 0 0 0 0	1! ±180 0 0 0 0 0 0 0 0 0 0 0 0 0	±360 0 0 0 0 0 0 0 0 0 0 0 0 0
Z-a R-axis	xis stroke (mm) operation range (deg.) 50 100 200 250 300 350 400 450 550 600 650 650 650 700 750 800 850 850 950	±180 0 0 0 0 0 0 0 0 0 0 0 0 0	00 ±360 0 0 0 0 0 0 0 0 0 0 0 0 0	1: ±180 0 0 0 0 0 0 0 0 0 0 0 0 0	2360 0 0 0 0 0 0 0 0 0 0 0 0 0	±180 0 0 0 0 0 0 0 0 0 0 0 0 0	D0 ±360 0 0 0 0 0 0 0 0 0 0 0 0 0	1: ±180 0 0 0 0 0 0 0 0 0 0 0 0 0	±360 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	±180 0 0 0 0 0 0 0 0 0 0 0 0 0	00 ±360 0 0 0 0 0 0 0 0 0 0 0 0 0	1! ±180 0 0 0 0 0 0 0 0 0 0 0 0 0	±360 0 0 0 0 0 0 0 0 0 0 0 0 0
Z-a R-axis	xis stroke (mm) operation range (deg.) 50 100 150 200 250 300 350 450 500 550 600 650 700 750 800 850 850 900 950 1000	±180 ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○	00 ±360 0 0 0 0 0 0 0 0 0 0 0 0 0	1: ±180 0 0 0 0 0 0 0 0 0 0 0 0 0	2360 0 0 0 0 0 0 0 0 0 0 0 0 0	±180 0 0 0 0 0 0 0 0 0 0 0 0 0	20 ±360 0 0 0 0 0 0 0 0 0 0 0 0 0	1: ±180 0 0 0 0 0 0 0 0 0 0 0 0 0	2360 0 0 0 0 0 0 0 0 0 0 0 0 0	±180 0 0 0 0 0 0 0 0 0 0 0 0 0	00 ±360 0 0 0 0 0 0 0 0 0 0 0 0 0	1! ±180 0 0 0 0 0 0 0 0 0 0 0 0 0	±360 0 0 0 0 0 0 0 0 0 0 0 0 0
Z-a R-axis	xis stroke (mm) operation range (deg.) 50 100 200 250 300 350 400 450 550 600 650 650 650 700 750 800 850 850 950	±180 0 0 0 0 0 0 0 0 0 0 0 0 0	00 ±360 0 0 0 0 0 0 0 0 0 0 0 0 0	1: ±180 0 0 0 0 0 0 0 0 0 0 0 0 0	2360 0 0 0 0 0 0 0 0 0 0 0 0 0	±180 0 0 0 0 0 0 0 0 0 0 0 0 0	D0 ±360 0 0 0 0 0 0 0 0 0 0 0 0 0	1: ±180 0 0 0 0 0 0 0 0 0 0 0 0 0	±360 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	±180 0 0 0 0 0 0 0 0 0 0 0 0 0	00 ±360 0 0 0 0 0 0 0 0 0 0 0 0 0	1! ±180 0 0 0 0 0 0 0 0 0 0 0 0 0	±360 0 0 0 0 0 0 0 0 0 0 0 0 0

Cable Length

Type	Cable code	Length
	1L	1m
Standard	3L	3m
	5L	5m
type		Specified length
		(Max. 15m)

Note 1. All-axis standard cable is used. Note 2. The length of the second, third, and fourth axis cable is from the exit of the cable track. A separate robot cable is included for wiring inside the cable track.

Note 3. The standard lengths are 1m, 3m and 5m, but other lengths can be specified in 1m increments up to 15m.

Cable Track

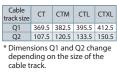
Туре	Model	Reference page	First wiring (X-axis lateral)	Second wiring (Y-axis lateral)
Without cable track (cable only)	N		-	-
Cable track S size (inner width: 38mm)	СТ		0	0
Cable track M size (inner width: 50mm)	СТМ	See	0	0
Cable track L size (inner width: 63mm)	CTL	P.136	0	0
Cable track XL size (inner width: 80mm)	CTXL		0	Cannot be selected *1

*1 Only the first wiring can be selected

Specifications				
ltem	X-axis	Y-axis	Z-axis	R-axis
Axis configuration	RCP6-SA8R	RCP6-SA7R	TTPIK	-AZR
Stroke	50 ~ 1100mm (Every 50mm)	50 ~ 300mm (Every 50mm)	100, 150mm	180deg., 360deg.
Max. speed *1	300mm/s	280mm/s	400mm/s	1,000deg/s *2
Allowable moment of inertia *2	-			0.01kg·m ²
Motor size	56 High thrust stepper motor	56 Stepper motor	42 Stepper motor	42□ Stepper motor
Ball screw lead	10mm	8mm	12mm	-
Drive system	Ball screw	Ball screw ¢12mm rolled C10	Ball screw	-
Positioning repeatability	±0.01mm			±0.01 deg.
Base material	Aluminum			
Ambient operating temperature, humidity	0~40°C, 85% RH (or less (non-conde	ensing)	

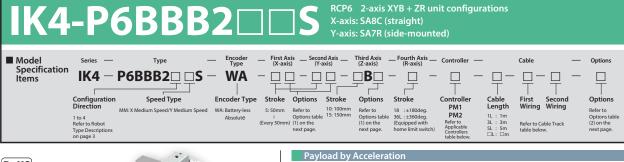
Options * PI	ease check th	e Options re	ference pages	to confirm ea	ach option.
Туре	Option code	Reference page	X-axis	Y-axis	Z-axis
Brake	В	See P.134	0	0	Standard equipment *
Slider cover	CO	See P.134	Cannot be	e selected	0
Non-motor end specification	NM	See P.135	0	0	0
Slider section roller specification	SR	See P.135	0	0	Cannot be selected
* Be sure to specify.					

* 1The maximum speed may not be reached if the travel distance is short or acceleration is low. Maximum speed may change depending on the stroke. For details, refer to the Maximum Speed by Stroke table on P.137. *2 Angular velocity and acceleration/deceleration differ depending on allowable moment of inertia. Please refer to P.138 for more information.


*2 Angular Dimer	-	tion/deceleration differ depen	ding on allowable mo	ment of inertia. Please refer to	P.138 for more information.	
CAD drawin	ngs can be downloaded fro ntelligentactuato	20 00	Note 2. The	configuration position in the figu diagram shows first and second r to P.136 for the details of the ca	wirings with cable tracks.	
		The outside	manual manua	X.STROKE+240.5	49.5 X-axis base surface Z-axis slider positic adjustment knob	n 2-65H7 depth 5 30 Z-axis slider detailed view R-axis rotational position adjustment knob
	ble track may swell, be ted dimensions.	coming slightly larger than the 158.5(2:STROKE=1 <u>108.5(2:STROKE=1</u>	50)	X:STROKE+291.5 (X.STROKE) 20 14		X-axis base oblong hole detailed view
	xis cable track guide ra ace on which the X-axi		25TIDAGE+233			X guide rail mounting section detailed view
Controlle	cable Controllers		Z:STROKE)	хбире русскухон /знузе//) (X:STROKE)	(From the seating surface) (Fro	H7 depth 6.5 C-M6 through m the seating surface) (Screw depth: 12)
Please ref	fer to each contro					
Туре	Axis configuration X-axis : SA8R	Applicable controllers PCON-CFB/CGFB MSEL-PCF/PGF	Reference page P-149 P-139		Reference surface	E (\operatorname{6} hole - oblong hole) D (\operatorname{6} hole - \operatorname{6} hole) B×100 pitch A
PM1	Y-axis : SA7R	PCON-CB/CGB PCON-CYB/PLB/POB	P-149 Please contact IAI			Base mounting dimensions

		MSEL-PCF/PGF	P-139		
		PCON-CB/CGB	P-149		
PM1	Y-axis : SA7R	PCON-CYB/PLB/POB	Please contact IAI		
	Z-axis	MCON-C/CG	P-153		
	R-axis	MCON-LC/LCG	P-153		
		MSEL	P-139		
	X-axis : SA8R	RCON-PCF			
PM2	Y-axis : SA7R Z-axis , R-axis	RCON-PC	P-159		

* Operation is possible with the high output setting specification. When connecting to the MCON controller, "HIGH OUTPUT SETTING SPECIFICATION" must be selected. Please contact IAI regarding use with the high-output setting disabled.


Dimensions by Stroke

X: Stroke	50	100	150	200	250	300	350	400	450	500	550	600	650	700	750	800	850	900	950	1000	1050	1100	1
A	230	280	330	380	430	480	530	580	630	680	730	780	830	880	930	980	1030	1080	1130	1180	1230	1280	1
В	1	2	2	3	3	4	4	5	5	6	6	7	7	8	8	9	9	10	10	11	11	12	
С	4	6	6	8	8	10	10	12	12	14	14	16	16	18	18	20	20	22	22	24	24	26	
D	0	100	100	200	200	300	300	400	400	500	500	600	600	700	700	800	800	900	900	1000	1000	1100	4
E	2	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	
F	0	0	80	180	180	280	280	380	380	480	480	580	580	680	680	780	780	880	880	980	980	1080	
G	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
Н	230	255	280	305	330	355	380	405	430	455	480	505	530	555	580	605	630	655	680	705	730	755	
J	30	27.5	27.5	27.5	27.5	27.5	27.5	27.5	27.5	27.5	22.5	27.5	77.5	52.5	65	77.5	52.5	27.5	77.5	22.5	55	27.5	
K	1	1	1	2	2	2	2	2	2	2	3	3	3	3	3	3	3	3	3	4	4	4	
M	170	200	225	125	137.5	150	162.5	175	187.5	200	145	150	125	150	150	150	175	200	175	165	155	175	
N	2	2	2	3	3	3	3	3	3	3	4	4	4	4	4	4	4	4	4	5	5	5	
																						IK4	-F

RoHS

MM type: X medium speed/X medium speed

Mini type: X medium s	speed/ r mealum speed	(Unit: kg)
Y-axis stroke (mm) deceleration/ deceleration (G)	50~200 (Every 50mm)	250~300 (Every 50mm)
0.1	3	.5
0.3	2	1

* When X, Y, Z and R axes all have the same acceleration/deceleration.

When there is significant vibration, decrease the speed and acceleration/deceleration as required.

The photograph above shows the configuration direction "1" where all axes have cable tracks. Please refer to P.3 for other configuration directions.

St	troke												
Y-ax	xis stroke (mm)		5	0			10	00			1:	50	
Z-ax	xis stroke (mm)		00		50	10			50		00		50
R-axis o	operation range (deg.)	±180	±360	±180	±360	±180	±360	±180	±360	±180	±360	±180	±360
	50	0	0	0	0	0	0	0	0	0	0	0	0
	100	0	0	0	0	0	0	0	0	0	0	0	0
	150	0	0	0	0	0	0	0	0	0	0	0	0
	200	0	0	0	0	0	0	0	0	0	0	0	0
	250	0	0	0	0	0	0	0	0	0	0	0	0
	300	0	0	0	0	0	0	0	0	0	0	0	0
	350 400	0	0	0	0	0	0	0	0	0	0	0	0
Ê	400	0	0	0	0	0	0	0	0	0	0	0	0
3	500	ŏ	ŏ	ŏ	ŏ	ŏ	0	ŏ	ŏ	ŏ	0	ŏ	0
- ×	550	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ
str	600	ŏ	ŏ	ŏ	ŏ	ŏ	Ő	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ
is:	650	ŏ	Õ	Ö	Õ	ŏ	Ő	Õ	Õ	Õ	Õ	Ö	Ö
X-axis stroke (mm)	700	0	0	0	0	0	0	0	0	0	0	0	0
×	750	0	0	0	0	0	0	0	0	0	0	0	0
	800	0	0	0	0	0	0	0	0	0	0	0	0
	850	0	0	0	0	0	0	0	0	0	0	0	0
	900	0	0	0	0	0	0	0	0	0	0	0	0
	950	0	0	0	0	0	0	0	0	0	0	0	0
	1000	0	0	0	0	0	0	0	0	0	0	0	0
	1050	0	0	0	0	0	0	0	0	0	0	0	0
	1100	0											
				-	-	Ŭ	0	0	0	0	0	0	Ų
Y-ax	kis stroke (mm)		20	00	-	<u> </u>	2:	_			_	00	
	xis stroke (mm) xis stroke (mm)	10	2(00		50	-	_	50	50	-	_	00	50
Z-ax	xis stroke (mm) operation range (deg.)	±180	00 ±360	1: ±180	50 ±360	1(180	25 00 ±360	50 11 ±180	50 ±360	1(180	30 20 ±360	00 1 ±180	50 ±360
Z-ax	xis stroke (mm) operation range (deg.) 50	±180	00 ±360 ○	1! ±180	50 ±360	10 ±180	2: 00 ±360	50 11 ±180	50 ±360 ○	10 ±180	30 ±360	00 1: ±180	50 ±360
Z-ax	xis stroke (mm) operation range (deg.) 50 100	±180 〇	00 ±360 ○	1: ±180 ○	50 ±360 ○	1(±180 ○	2: 00 ±360 ○	50 11 11 0 0	50 ±360 ○	10 ±180 ○	30 50 ±360 ○	00 1! 180 0 0	50 ±360 ○
Z-ax	xis stroke (mm) operation range (deg.) 50 100 150	±180 O O O O	00 ±360 ○ ○	1: ±180 ○ ○ ○	50 ±360 ○	1(±180 ○	2: 00 ±360 ○	50 11 11 0 0	50 ±360 ○ ○	1(±180 ○	30 <u>±360</u> O	00 1! 180 0 0	50 ±360 ○ ○
Z-ax	xis stroke (mm) operation range (deg.) 50 100 150 200	±180 ○ ○ ○ ○ ○	00 ±360 ○ ○	1! ±180 0 0 0 0 0	50 ±360 ○ ○ ○ ○	1(±180 0 0 0 0	2! 00 ±360 ○ ○ ○ ○	50 ±180 ○ ○ ○ ○	50 ±360 ○ ○ ○ ○	1(±180 0 0 0 0	3(00 0 0 0 0 0 0	00 1! ±180 0 0	50 ±360 ○ ○ ○ ○
Z-ax	xis stroke (mm) operation range (deg.) 50 100 150 200 250	±180 0 0 0 0 0 0	00 <u>±360</u> O O O O O	15 ±180 0 0 0 0 0 0	50 ±360 ○ ○ ○ ○ ○ ○ ○ ○	11 ±180 0 0 0 0 0 0	2: 00 0 0 0 0 0 0 0	50 11 180 0 0 0 0	50 ±360 ○ ○ ○ ○ ○ ○ ○	10 ±180 0 0 0 0 0 0	30 00 0 0 0 0 0 0 0	00 1! 180 0 0 0 0	50 ±360 ○ ○ ○ ○ ○ ○ ○
Z-ax	xis stroke (mm) operation range (deg.) 50 100 150 200 250 300	±180 0 0 0 0 0 0 0 0	00 <u>±360</u> O O O O O O	15 ±180 0 0 0 0 0 0	50 ±360 ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○	11 ±180 0 0 0 0 0 0 0	2: 00 0 0 0 0 0 0 0 0 0	50 11 180 0 0 0 0 0 0 0 0 0 0 0 0 0	50 ±360 ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○	10 ±180 0 0 0 0 0 0 0 0	30 20 23 23 23 23 23 23 23 23 23 23	00 1! 180 0 0 0 0 0	50 ±360 ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○
Z-axis o	xis stroke (mm) operation range (deg.) 50 100 150 200 250 300 350	±180 O O O O O O O O O O O O O O O O O O O	00 ±360 ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○	1: ±180 0 0 0 0 0 0 0 0 0	50 ±360 ○ ○ ○ ○ ○ ○ ○ ○		2: 00 ±360 ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○	50 11 ±180 0 0 0 0 0 0 0 0 0 0 0 0 0	50 ±360 ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○	11 ±180 0 0 0 0 0 0 0 0 0	30 ±360 0 0 0 0 0 0 0 0 0 0 0	00 11: ±180 0 0 0 0 0	50 ±360 ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○
Z-axis o	xis stroke (mm) operation range (deg.) 50 100 150 200 250 300 350 400	±180 O O O O O O O O O O O O O O O O O O O	00 ±360 ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○	1: ±180 0 0 0 0 0 0 0 0 0 0 0 0	50 ±360 ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○	11 ±180 0 0 0 0 0 0 0 0 0 0 0 0 0	2:)0 () () () () () () () () () ()	50 11: ±180 0 0 0 0 0 0 0 0	50 ±360 ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○	11 ±180 0 0 0 0 0 0 0 0 0 0 0 0 0	30 +360 0 0 0 0 0 0 0 0 0 0 0 0 0	00 1! ±180 0 0 0 0 0	50 ±360 ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○
Z-axis o	kis stroke (mm) opperation range (deg.) 50 100 150 200 250 300 350 400 450	±180 0 0 0 0 0 0 0 0 0 0 0 0	00 ±360 ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○	1! ±180 0 0 0 0 0 0 0 0 0 0 0 0 0	50 ±360 0 0 0 0 0 0 0 0 0 0 0 0 0		2: 00 ±360 0 0 0 0 0 0 0 0 0 0	50 11 ±180 0 0 0 0 0 0 0 0 0 0 0 0 0	50 ±360 0 0 0 0 0 0 0 0 0 0 0 0 0	11 ±180 0 0 0 0 0 0 0 0 0	30 ±360 0 0 0 0 0 0 0 0 0 0 0	00 1! ±180 0 0 0 0 0 0 0 0 0	50 ±360 ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○
Z-axis o	kis stroke (mm) operation range (deg.) 50 100 150 250 300 350 400 450 500	±180 O O O O O O O O O O O O O O O O O O O	00 ±360 ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○	1: ±180 0 0 0 0 0 0 0 0 0 0 0 0	50 ±360 ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○	11 ±180 0 0 0 0 0 0 0 0 0 0 0 0 0	2: 00 ±360 0 0 0 0 0 0 0 0 0 0 0 0 0	50 11 ±180 0 0 0 0 0 0 0 0 0 0 0	50 ±360 ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○	11 ±180 0 0 0 0 0 0 0 0 0 0 0 0 0	30 ±360 0 0 0 0 0 0 0 0 0 0 0 0 0	00 1! ±180 0 0 0 0 0	50 ±360 0 0 0 0 0 0 0 0 0 0 0 0 0
Z-axis o	kis stroke (mm) opperation range (deg.) 50 100 150 200 250 300 350 400 450	±180 0 0 0 0 0 0 0 0 0 0 0 0 0	000 ±360 0 0 0 0 0 0 0 0 0 0 0 0	1! ±180 0 0 0 0 0 0 0 0 0 0 0 0 0	50 ±360 0 0 0 0 0 0 0 0 0 0 0 0 0	11(±180 0 0 0 0 0 0 0 0 0 0 0 0 0	2: 00 ±360 0 0 0 0 0 0 0 0 0 0 0 0 0	50 11 ±180 0 0 0 0 0 0 0 0 0 0 0 0 0	50 ±360 ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○	11 ±180 0 0 0 0 0 0 0 0 0 0 0 0 0	31 00 ±360 0 0 0 0 0 0 0 0 0 0	00 1! ±180 0 0 0 0 0 0 0 0 0 0	50 ±360 ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○
Z-axis o	kis stroke (mm) operation range (deg) 50 100 150 200 250 300 350 400 450 500 550	±180 0 0 0 0 0 0 0 0 0 0 0 0 0	00 ±360 ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○	1! ±180 0 0 0 0 0 0 0 0 0 0 0 0 0	50 ±360 0 0 0 0 0 0 0 0 0 0 0 0 0	11 ±180 0 0 0 0 0 0 0 0 0 0 0 0 0	22 300 ±360 ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○	50 11 ±180 0 0 0 0 0 0 0 0 0 0 0 0 0	50 ±360 0 0 0 0 0 0 0 0 0 0 0 0 0	11 ±180 0 0 0 0 0 0 0 0 0 0 0 0 0	31 30 ±360 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00 11: 130 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	50 ±360 ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○
Z-axis o	kis stroke (mm) operation range (eg) 50 100 150 200 250 300 350 400 450 550 600 650 600 650 700	±180 0 0 0 0 0 0 0 0 0 0 0 0 0	00 ±360 ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○	1: ±180 0 0 0 0 0 0 0 0 0 0 0 0 0	50 ±360 0 0 0 0 0 0 0 0 0 0 0 0 0	11(±180 0 0 0 0 0 0 0 0 0 0 0 0 0	22 20 23 23 23 23 23 23 23 23 23 23	50 11: ±180 0 0 0 0 0 0 0 0 0 0 0 0 0	50 ±360 ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○	11 ±180 0 0 0 0 0 0 0 0 0 0 0 0 0	31 30 ±360 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00 11: ±180 0 0 0 0 0 0 0 0 0 0 0 0 0	50 ±360 0 0 0 0 0 0 0 0 0 0 0 0 0
Z-ax	kis stroke (mm) operation range (eg) 50 100 150 250 250 330 350 450 500 550 550 600 650 700 750	±180 0 0 0 0 0 0 0 0 0 0 0 0 0	000 ±360 0 0 0 0 0 0 0 0 0 0 0 0 0	1: ±180 0 0 0 0 0 0 0 0 0 0 0 0 0	50 ±360 0 0 0 0 0 0 0 0 0 0 0 0 0	11 ±180 0 0 0 0 0 0 0 0 0 0 0 0 0	22 300 ±360 0 0 0 0 0 0 0 0 0 0 0 0 0	50 11: ±180 0 0 0 0 0 0 0 0 0 0 0 0 0	50 ±360 0 0 0 0 0 0 0 0 0 0 0 0 0	11 ±180 0 0 0 0 0 0 0 0 0 0 0 0 0	31 30 ±360 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00 11 180 0 0 0 0 0 0 0 0 0 0 0 0 0	50 ±360 0 0 0 0 0 0 0 0 0 0 0 0 0
Z-axis o	kis stroke (mm) operation range (eg) 50 100 150 250 250 350 400 450 550 550 600 650 700 750 880	±180 0 0 0 0 0 0 0 0 0 0 0 0 0	00 ±360 ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○	1: ±180 0 0 0 0 0 0 0 0 0 0 0 0 0	50 ±360 0 0 0 0 0 0 0 0 0 0 0 0 0	11 ±180 0 0 0 0 0 0 0 0 0 0 0 0 0	22 20 ±360 0 0 0 0 0 0 0 0 0 0 0 0 0	50 11 ±180 0 0 0 0 0 0 0 0 0 0 0 0 0	50 ±360 ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○	11 ±180 0 0 0 0 0 0 0 0 0 0 0 0 0	31 30 ±360 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00 11 13 180 0 0 0 0 0 0 0 0 0 0 0 0 0	50 ±360 0 0 0 0 0 0 0 0 0 0 0 0 0
Z-axis o	kis stroke (mm) operation range (deg.) 50 100 150 200 250 300 350 400 450 550 600 6550 600 6550 700 750 800 850	±180 0 0 0 0 0 0 0 0 0 0 0 0 0	000	1! ±180 0 0 0 0 0 0 0 0 0 0 0 0 0	50 ±360 0 0 0 0 0 0 0 0 0 0 0 0 0	11 ±180 0 0 0 0 0 0 0 0 0 0 0 0 0	22 300 ±360 0 0 0 0 0 0 0 0 0 0 0 0 0	50 11 180 0 0 0 0 0 0 0 0 0 0 0 0 0	50 ±360 0 0 0 0 0 0 0 0 0 0 0 0 0	11 ±180 0 0 0 0 0 0 0 0 0 0 0 0 0	31 30 3360 34360 0 0 0 0 0 0 0 0 0 0 0 0 0	00 11 ±180 0 0 0 0 0 0 0 0 0 0 0 0 0	50 ±360 0 0 0 0 0 0 0 0 0 0 0 0 0
Z-axis o	kis stroke (mm) operation range (eg) 50 100 150 250 250 300 350 450 550 550 600 650 750 800 850 850 850 900	±180 0 0 0 0 0 0 0 0 0 0 0 0 0	00 ±360 0 0 0 0 0 0 0 0 0 0 0 0 0	1: ±180 0 0 0 0 0 0 0 0 0 0 0 0 0	50 ±360 0 0 0 0 0 0 0 0 0 0 0 0 0	11 ±180 0 0 0 0 0 0 0 0 0 0 0 0 0	22 30 2360 0 0 0 0 0 0 0 0 0 0 0 0 0	50 11 180 0 0 0 0 0 0 0 0 0 0 0 0 0	50 ±360 0 0 0 0 0 0 0 0 0 0 0 0 0	11 ±180 0 0 0 0 0 0 0 0 0 0 0 0 0	31 30 2360 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00 11 13 0 0 0 0 0 0 0 0 0 0 0 0 0	50 ±360 0 0 0 0 0 0 0 0 0 0 0 0 0
Z-axis o	kis stroke (mm) operation range (eg) 50 100 200 250 300 350 400 450 550 600 650 600 650 700 750 800 850 850 900 950	±180 0 0 0 0 0 0 0 0 0 0 0 0 0	00 ±360 0 0 0 0 0 0 0 0 0 0 0 0 0	1! ±180 0 0 0 0 0 0 0 0 0 0 0 0 0	50 ±360 0 0 0 0 0 0 0 0 0 0 0 0 0	11 ±180 0 0 0 0 0 0 0 0 0 0 0 0 0	22 20 2360 0 0 0 0 0 0 0 0 0 0 0 0 0	50 50 50 50 50 50 50 50 50 50	50 ±360 0 0 0 0 0 0 0 0 0 0 0 0 0	11 ±180 0 0 0 0 0 0 0 0 0 0 0 0 0	31 30 30 30 30 30 30 30 30 30 30 30 30 30	00 11: 180 0 0 0 0 0 0 0 0 0 0 0 0 0	50 ±360 0 0 0 0 0 0 0 0 0 0 0 0 0
Z-axis o	kis stroke (mm) operation range (eg.) 50 100 150 2200 250 3300 350 400 450 550 600 650 550 600 650 700 750 800 850 900 950 950	±180 0 0 0 0 0 0 0 0 0 0 0 0 0	00 ±360 0 0 0 0 0 0 0 0 0 0 0 0 0	1: ±180 0 0 0 0 0 0 0 0 0 0 0 0 0	50 ±360 0 0 0 0 0 0 0 0 0 0 0 0 0	11 ±180 0 0 0 0 0 0 0 0 0 0 0 0 0	22 300 2360 0 0 0 0 0 0 0 0 0 0 0 0 0	50 50 50 50 50 50 50 50 50 50	50 ±360 0 0 0 0 0 0 0 0 0 0 0 0 0	11 ±180 0 0 0 0 0 0 0 0 0 0 0 0 0	31 30 33 34 360 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00 11 180 0 0 0 0 0 0 0 0 0 0 0 0 0	50 ±360 0 0 0 0 0 0 0 0 0 0 0 0 0
Z-axis o	kis stroke (mm) operation range (eg) 50 100 200 250 300 350 400 450 550 600 650 600 650 700 750 800 850 850 900 950	±180 0 0 0 0 0 0 0 0 0 0 0 0 0	00 ±360 0 0 0 0 0 0 0 0 0 0 0 0 0	1! ±180 0 0 0 0 0 0 0 0 0 0 0 0 0	50 ±360 0 0 0 0 0 0 0 0 0 0 0 0 0	11 ±180 0 0 0 0 0 0 0 0 0 0 0 0 0	22 20 2360 0 0 0 0 0 0 0 0 0 0 0 0 0	50 50 50 50 50 50 50 50 50 50	50 ±360 0 0 0 0 0 0 0 0 0 0 0 0 0	11 ±180 0 0 0 0 0 0 0 0 0 0 0 0 0	31 30 30 30 30 30 30 30 30 30 30 30 30 30	00 11: 180 0 0 0 0 0 0 0 0 0 0 0 0 0	50 ±360 0 0 0 0 0 0 0 0 0 0 0 0 0

Cable Length

Type	Cable code	Length	No
	1L	1m	No
Standard	3L	3m	
	5L	5m	
type		Specified length	1
		(Max. 15m)	

ote 1. All-axis standard cable is used.
ote 2. The length of the second, third, and fourth axis cable is from the exit of the cable track. A separate robot cable is included for wiring inside the cable track.

Note 3. The standard lengths are 1m, 3m and 5m, but other lengths can be specified in 1m increments up to 15m.

Cable Track

Туре	Model	Reference page	First wiring (X-axis lateral)	Second wiring (Y-axis lateral)
Without cable track (cable only)	N		-	-
Cable track S size (inner width: 38mm)	СТ		0	0
Cable track M size (inner width: 50mm)	СТМ	See	0	0
Cable track L size (inner width: 63mm)	CTL	P.136	0	0
Cable track XL size (inner width: 80mm)	CTXL		0	Cannot be selected *1

*1 Only the first wiring can be selected

Specifications						
Item	X-axis	Y-axis	Z-axis	R-axis		
Axis configuration	RCP6-SA8C	CP6-SA8C RCP6-SA7R TTF				
Stroke	50 ~ 1100mm (Every 50mm)	50 ~ 300mm (Every 50mm)	100, 150mm	180deg., 360deg.		
Max. speed *1	300mm/s	280mm/s	400mm/s	1,000deg/s *2		
Allowable moment of inertia *2	-					
Motor size	56 High thrust stepper motor	56 Stepper motor	42□ Stepper motor	42□ Stepper motor		
Ball screw lead	10mm	8mm	12mm	-		
Drive system	Ball screw ¢16mm rolled C10	Ball screw ¢12mm rolled C10	Ball screw	-		
Positioning repeatability	±0.01mm			±0.01 deg.		
Base material	Aluminum					
Ambient operating temperature, humidity	0~40°C, 85% RH or less (non-condensing)					

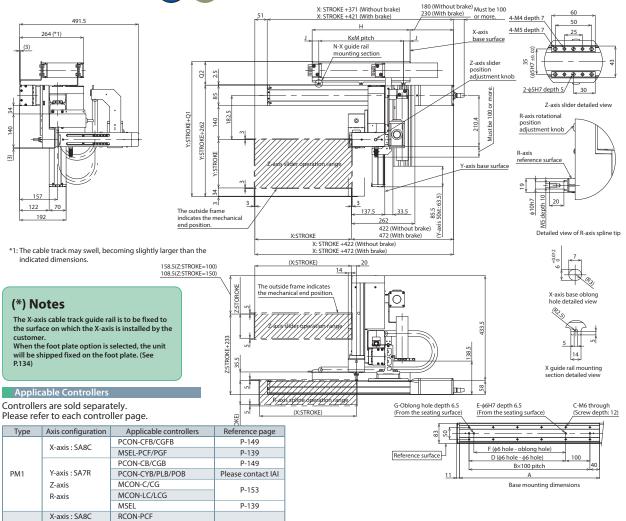
*1 The maximum speed may not be reached if the travel distance is short or acceleration is low. Maximum speed may change depending on the stroke. For details, refer to the Maximum Speed by Stroke table on P.137.

*2 Angular velocity and acceleration/deceleration differ depending on allowable moment of inertia. Please refer to P.138 for more information.

3D CAD

Туре	Option code	Reference page	X-axis	Y-axis	Z-axis	
Brake *	В	See P.134	0	0	Standard equipment *	
Cable exit direction (Top)	CJT	See P.134	0	Cannot be selected		
Cable exit direction (Right)	CJR	See P.134	0			
Cable exit direction (Left)	CJL	See P.134	0			
Cable exit direction (Bottom)	CJB	See P.134	0			
Slider cover	CO	See P.134	Cannot be	e selected	0	
Non-motor end specification	NM	See P.135	0	0	0	
Slider section roller specification	SR	See P.135	0	0	Cannot be selected	

Options (1) * Please check the Options reference pages to confirm each op


* Be sure to specify. * Brake option for X-axis increases the length of the motor unit. Please contact IAI for more information.

Options (2) * Please check the Opti	* Please check the Options reference pages to confirm each option.							
Туре	Option code	Reference page						
Foot plate	FTP	See P.134						

Dimensions

CAD drawings can be downloaded from our website. 2D CAD www.intelligentactuator.com

Note 1. The configuration position in the figure is home. Note 2. The diagram shows first and second wirings with cable tracks. Note 3. Refer to P.136 for the details of the cable tracks.

¹Operation is possible with the high output setting specification. When connecting to the MCON controller, "HIGH OUTPUT SETTING SPECIFICATION" must be selected. Please contact IAI regarding use with the high-output setting disabled.

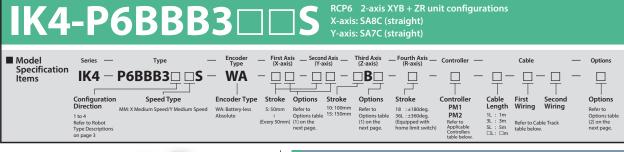
Dimensions by Stroke

Y-axis : SA7R

Z-axis, R-axis

RCON-PC

PM2


X: Stroke	50	100	150	200	250	300	350	400	450	500	550	600	650	700	750	800	850	900	950	1000	1050	1100
A	230	280	330	380	430	480	530	580	630	680	730	780	830	880	930	980	1030	1080	1130	1180	1230	1280
В	1	2	2	3	3	4	4	5	5	6	6	7	7	8	8	9	9	10	10	11	11	12
C	4	6	6	8	8	10	10	12	12	14	14	16	16	18	18	20	20	22	22	24	24	26
D	0	100	100	200	200	300	300	400	400	500	500	600	600	700	700	800	800	900	900	1000	1000	1100
E	2	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
F	0	0	80	180	180	280	280	380	380	480	480	580	580	680	680	780	780	880	880	980	980	1080
G	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Н	230	255	280	305	330	355	380	405	430	455	480	505	530	555	580	605	630	655	680	705	730	755
J	30	27.5	27.5	27.5	27.5	27.5	27.5	27.5	27.5	27.5	22.5	27.5	77.5	52.5	65	77.5	52.5	27.5	77.5	22.5	55	27.5
K	1	1	1	2	2	2	2	2	2	2	3	3	3	3	3	3	3	3	3	4	4	4
M	170	200	225	125	137.5	150	162.5	175	187.5	200	145	150	125	150	150	150	175	200	175	165	155	175
N	2	2	2	3	3	3	3	3	3	3	4	4	4	4	4	4	4	4	4	5	5	5
												IK4.										

P-159

Cable CT CTM CTL CTXL track size 346.5 359.5 372.5 389.5 Q1 Q2 84.5 97.5 110.5 127.5 * Dimensions Q1 and Q2 change depending on the size of the cable track.

RoHS

Payload by Acceleration

MM type: X medium speed/Y medium speed (Unit: kg									
Y-axis stroke (mm) deceleration/ G)	50~200 (Every 50mm)	250~300 (Every 50mm)							
0.1	3	.5							
0.3	2 1								

* When X, Y, Z and R axes all have the same acceleration/deceleration.

When there is significant vibration, decrease the speed and acceleration/deceleration as required.

The photograph above shows the configuration direction "1" where all axes have cable tracks. Please refer to P.3 for other configuration directions.

2	troke												
Y-a	xis stroke (mm)		5	0			10	00			15	50	
	xis stroke (mm)	10	00		50	10	00		50	10	00	1	50
R-axis	operation range (deg.)	±180	±360	±180	±360	±180	±360	±180	±360	±180	±360	±180	±360
	50	0	0	0	0	0	0	0	0	0	0	0	0
	100	0	0	0	0	0	0	0	0	0	0	0	0
	150	0	0	0	0	0	0	0	0	0	0	0	0
	200	0	0	0	0	0	0	0	0	0	0	0	0
	250	0	0	0	0	0	0	0	0	0	0	0	0
	300	0	0	0	0	0	0	0	0	0	0	0	0
	350	0	0	0	0	0	0	0	0	0	0	0	0
Ê	400	0	0	0	0	0	0	0	0	0	0	0	0
(mm)	450	0	0	0	0	0	0	0	0	0	0	0	0
e A	500 550	0	0	0	0	0	0	0	0	0	0	0	0
12	600	0	0	0	0	0	0	0	0	0	0	0	0
is s	650	0	0	ŏ	ŏ	0	ŏ	0	ŏ	0	0	0	0
X-axis stroke	700	0	0	0	0	0	0	0	0	0	0	0	0
×	750	0	0	ŏ	ŏ	0	0	0	0	0	0	0	0
	800	0	0	õ	ŏ	õ	õ	0	õ	Ő	õ	ŏ	Ö
	850	<u> </u>	0	ŏ	Õ	Õ	Õ	Õ	Õ	Õ	Õ	Õ	Õ
	900	Ō	Ō	Ō	Ō	Ō	Ō	Ō	Ō	Ō	Ō	Ō	Ō
	950	0	0	0	0	0	0	0	0	0	0	0	0
	1000	0	0	0	0	0	0	0	0	0	0	0	0
	1050	0	0	0	0	0	0	0	0	0	0	0	0
	1100												
	1100	0	0	0	0	0	0	0	0	0	0	0	0
Y-a		0	-	-	0	0	-	-	0	0	_		0
	xis stroke (mm)	-	-	00	50	-	-	50	50	-	_	0	
Z-a		-	20	00		-	2	50		-	- 30	00	
Z-a	xis stroke (mm) xis stroke (mm)	10 ±180 ○	20 00 ±360	00 11 ±180	50 ±360 ○	10 ±180	2: 00 ±360	50 1! ±180	50 ±360 ○	10 ±180	30 ±360	00 1! ±180	50 ±360 ○
Z-a	xis stroke (mm) xis stroke (mm) operation range (deg.)	10 ±180 ○	20 00 ±360 ○	00 1: 1: 0 0	50 ±360 ○	10 ±180 ○	2: 00 ±360 ○	50 1! ±180 ○	50 ±360 ○	1(±180 ○	30 00 ±360 ○	00 1! ±180 ○	50 ±360 ○
Z-a	xis stroke (mm) xis stroke (mm) operation range (deg.) 50 100 150	1 ±180 0 0 0	20 00 00 0 0 0	00 1: 1: 0 0 0	50 ±360 ○ ○	11 ±180 0 0 0	2: 00 ±360 ○ ○	50 1! ±180 ○	50 ±360 ○ ○	1(±180 ○	30 <u>±360</u> O	00 1! ±180 ○ ○	50 ±360 ○ ○
Z-a	xis stroke (mm) xis stroke (mm) operation range (deg.) 50 100 150 200	10 ±180 ○ ○ ○	20 00 0 0 0 0 0	00 ±180 ○ ○ ○ ○	50 <u>±360</u> O O O	11 ±180 0 0 0 0	2! 00 0 0 0 0 0	50 1! ±180 ○ ○ ○	50 ±360 ○ ○ ○ ○	1(±180 ○ ○	3(00 0 0 0 0 0 0	00 1! ±180 ○ ○ ○	50 ±360 ○ ○ ○ ○
Z-a	xis stroke (mm) xis stroke (mm) operation range (deg.) 50 100 150 200 250	10 ±180 ○ ○ ○ ○	21 00 0 0 0 0 0 0 0	00 11 180 0 0 0 0	50 ±360 ○ ○ ○ ○ ○ ○ ○ ○ ○	11 ±180 0 0 0 0 0 0	2: 00 0 0 0 0 0 0 0	50 1! ±180 0 0 0	50 ±360 ○ ○ ○ ○ ○ ○ ○	11(±180 ○ ○ ○ ○	30 00 0 0 0 0 0 0 0	00 1! 180 0 0 0 0	50 ±360 ○ ○ ○ ○ ○ ○ ○
Z-a	xis stroke (mm) xis stroke (mm) operation range (deg) 50 100 150 200 250 300	11 ±180 0 0 0 0 0 0 0 0	21 00 0 0 0 0 0 0 0 0 0	00 11 ±180 0 0 0 0 0 0 0 0 0	50 ±360 ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○	11 ±180 0 0 0 0 0 0 0 0	2: 00 0 0 0 0 0 0 0 0	50 1! ±180 0 0 0 0	50 ±360 ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○	10 ±180 0 0 0 0 0 0 0 0	30 <u>±360</u> 0 0 0 0 0 0 0 0	00 1! 180 0 0 0 0 0 0	50 ±360 ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○
Z-a	xis stroke (mm) operation range (keg) 50 100 150 200 250 300 350	11 ±180 0 0 0 0 0 0 0 0 0 0 0 0	20 00 ±360 0 0 0 0 0 0 0 0	00 ±180 0 0 0 0 0 0 0 0 0 0	50 ±360 ○ ○ ○ ○ ○ ○ ○	11 ±180 0 0 0 0 0 0 0 0	22 00 ±360 0 0 0 0 0 0 0 0	50 11 ±180 0 0 0 0	50 ±360 ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○		30 ±360 0 0 0 0 0 0 0 0 0 0 0	00 11 180 0 0 0 0 0 0 0 0 0 0 0 0 0	50 ±360 ○ ○ ○ ○ ○ ○ ○ ○
Z-a R-axis	xis stroke (mm) xis stroke (mm) operation range (deg) 50 100 150 200 250 300 350 400	1 ±180 0 0 0 0 0 0 0 0 0 0 0 0 0	21 00 0 0 0 0 0 0 0 0 0 0 0 0	00 11 ±180 0 0 0 0 0 0 0 0 0 0 0 0 0	50 ±360 0 0 0 0 0 0 0 0 0	11 ±180 0 0 0 0 0 0 0 0 0 0 0 0 0	2: 00 ±360 0 0 0 0 0 0 0 0 0 0 0 0 0	50 11: ±180 0 0 0 0 0 0 0 0 0 0 0 0 0	50 ±360 ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○	11 ±180 0 0 0 0 0 0 0 0 0 0 0 0 0	30 +360 0 0 0 0 0 0 0 0 0 0 0 0 0	00 1! ±180 0 0 0 0 0 0 0 0 0 0 0 0 0	50 ±360 ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○
Z-a R-axis	xis stroke (mm) operation range (deg) 50 100 150 250 300 350 400 450	1 ±180 0 0 0 0 0 0 0 0 0 0 0 0 0	20 00 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	200 11: ±180 0 0 0 0 0 0 0 0 0 0	50 ±360 0 0 0 0 0 0 0 0 0 0 0 0 0	11 ±180 0 0 0 0 0 0 0 0 0 0 0 0 0	2: 00 <u>±360</u> 0 0 0 0 0 0 0 0 0 0 0 0	50 1! ±180 0 0 0 0 0 0 0 0 0 0 0 0 0	50 ±360 0 0 0 0 0 0 0 0 0 0 0 0 0	11 ±180 0 0 0 0 0 0 0 0 0 0 0 0 0	30 ±360 0 0 0 0 0 0 0 0 0 0 0 0 0	00 1! ±180 0 0 0 0 0 0 0 0 0	50 ±360 0 0 0 0 0 0 0 0 0 0 0 0 0
Z-a R-axis	xis stroke (mm) xis stroke (mm) operation range (deg) 50 100 150 200 250 300 350 400 450 500	1 ±180 0 0 0 0 0 0 0 0 0 0 0 0 0	21 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00 11 ±180 0 0 0 0 0 0 0 0 0 0 0	50 ±360 ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○	- 11 +180 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	2: 00 ±360 0 0 0 0 0 0 0 0 0 0 0 0 0	50 1! ±180 0 0 0 0 0 0 0 0 0 0 0 0 0	50 ±360 ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○	11(±180 0 0 0 0 0 0 0 0 0 0 0 0 0	31 00 ±360 0 0 0 0 0 0 0 0 0 0 0 0 0	00 1! ±180 0 0 0 0 0 0 0 0 0 0 0	50 ±360 ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○
Z-a R-axis	xis stroke (mm) operation range (deg) 50 100 150 200 250 300 350 400 450 500 550	11 ±180 0 0 0 0 0 0 0 0 0 0 0 0 0	2000 ±360 0 0 0 0 0 0 0 0 0 0 0 0 0	00 11 ±180 0 0 0 0 0 0 0 0 0 0 0 0 0	50 ±360 ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○	11 ±180 0 0 0 0 0 0 0 0 0 0 0 0 0	2: 00 3:360 0 0 0 0 0 0 0 0 0 0 0 0 0	50 1! ±180 0 0 0 0 0 0 0 0 0 0 0 0 0	50 ±360 ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○	11(±180 0 0 0 0 0 0 0 0 0 0 0 0 0	30 +360 0 0 0 0 0 0 0 0 0 0 0 0 0	00 1! ±180 0 0 0 0 0 0 0 0 0 0 0 0 0	50 ±360 ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○
Z-a R-axis	xis stroke (mm) xis stroke (mm) operation range (deg.) 50 100 150 250 300 350 450 500 550 600		2000 +360 0 0 0 0 0 0 0 0 0 0 0 0 0	00 11 ±180 0 0 0 0 0 0 0 0 0 0 0 0 0	50 ±360 ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○	11 ±180 0 0 0 0 0 0 0 0 0 0 0 0 0	2: 00 ±360 0 0 0 0 0 0 0 0 0 0 0 0 0	50 11: ±180 0 0 0 0 0 0 0 0 0 0 0 0 0	50 ±360 ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○	11(±180 0 0 0 0 0 0 0 0 0 0 0 0 0	31 00 ±360 0 0 0 0 0 0 0 0 0 0 0 0 0	00 11: ±180 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	50 ±360 ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○
Z-a R-axis	xis stroke (mm) xis stroke (mm) operation range (deg) 50 100 150 200 250 350 400 450 550 600 650	11 ±180 0 0 0 0 0 0 0 0 0 0 0 0 0	21 00 ±360 ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○	00 11 ±180 0 0 0 0 0 0 0 0 0 0 0 0 0	50 ±360 0 0 0 0 0 0 0 0 0 0 0 0 0	11 ±180 0 0 0 0 0 0 0 0 0 0 0 0 0	2: 00 ±360 ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○	50 11 12 180 0 0 0 0 0 0 0 0 0 0 0 0 0	50 ±360 0 0 0 0 0 0 0 0 0 0 0 0 0	11 ±180 0 0 0 0 0 0 0 0 0 0 0 0 0	31 30 ±360 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00 11 ±180 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	50 ±360 0 0 0 0 0 0 0 0 0 0 0 0 0
Z-a	xis stroke (mm) operation range (deg.) 50 100 150 200 250 300 350 400 450 550 600 650 700		2000 +360 0 0 0 0 0 0 0 0 0 0 0 0 0	00 11 ±180 0 0 0 0 0 0 0 0 0 0 0 0 0	50 ±360 ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○	11 ±180 0 0 0 0 0 0 0 0 0 0 0 0 0	2: 00 ±360 0 0 0 0 0 0 0 0 0 0 0 0 0	50 11: ±180 0 0 0 0 0 0 0 0 0 0 0 0 0	50 ±360 ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○	11(±180 0 0 0 0 0 0 0 0 0 0 0 0 0	31 00 ±360 0 0 0 0 0 0 0 0 0 0 0 0 0	00 11: ±180 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	50 ±360 ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○
Z-a R-axis	xis stroke (mm) xis stroke (mm) operation range (deg) 50 100 150 200 250 350 400 450 550 600 650	11 ±180 0 0 0 0 0 0 0 0 0 0 0 0 0	2000 ±360 0 0 0 0 0 0 0 0 0 0 0 0 0	00 11: ±180 0 0 0 0 0 0 0 0 0 0 0 0 0	50 ±360 ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○	11 ±180 0 0 0 0 0 0 0 0 0 0 0 0 0	2: 00 ±360 0 0 0 0 0 0 0 0 0 0 0 0 0	50 11: ±180 0 0 0 0 0 0 0 0 0 0 0 0 0	50 ±360 ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○	11(±180 0 0 0 0 0 0 0 0 0 0 0 0 0	31 30 ±360 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00 11 ±180 0 0 0 0 0 0 0 0 0 0 0 0 0	50 ±360 0 0 0 0 0 0 0 0 0 0 0 0 0
Z-a R-axis	xis stroke (mm) xis stroke (mm) operation range (deg.) 50 100 150 250 300 350 400 450 500 550 600 650 700 750	11 ±180 0 0 0 0 0 0 0 0 0 0 0 0 0	21 00 ±360 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00 11 ±180 0 0 0 0 0 0 0 0 0 0 0 0 0	50 ±360 0 0 0 0 0 0 0 0 0 0 0 0 0	11 ±180 0 0 0 0 0 0 0 0 0 0 0 0 0	2: 00 ±360 ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○	50 51 51 50 50 50 50 50 50 50 50 50 50	50 ±360 0 0 0 0 0 0 0 0 0 0 0 0 0	11 ±180 0 0 0 0 0 0 0 0 0 0 0 0 0	31 30 33 33 34 360 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00 11 13 0 0 0 0 0 0 0 0 0 0 0 0 0	50 ±360 0 0 0 0 0 0 0 0 0 0 0 0 0
Z-a R-axis	xis stroke (mm) xis stroke (mm) operation range (deg.) 50 100 250 250 350 400 450 550 600 650 750 800 850 850 800 850 900	11 ±180 0 0 0 0 0 0 0 0 0 0 0 0 0	21 00 ±360 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00 1: ±180 0 0 0 0 0 0 0 0 0 0 0 0 0	50 ±360 0 0 0 0 0 0 0 0 0 0 0 0 0	11 ±180 0 0 0 0 0 0 0 0 0 0 0 0 0	2: 00 ±360 0 0 0 0 0 0 0 0 0 0 0 0 0	50 11 13 14 180 0 0 0 0 0 0 0 0 0 0 0 0 0	50 ±360 0 0 0 0 0 0 0 0 0 0 0 0 0	11 ±180 0 0 0 0 0 0 0 0 0 0 0 0 0	30 30 33 34360 0 0 0 0 0 0 0 0 0 0 0 0 0	00 11 ±180 0 0 0 0 0 0 0 0 0 0 0 0 0	50 ±360 0 0 0 0 0 0 0 0 0 0 0 0 0
Z-a R-axis	xis stroke (mm) xis stroke (mm) operation range (deg) 50 100 150 200 250 350 400 450 550 600 650 700 750 750 800 850 900 950	11 ±180 0 0 0 0 0 0 0 0 0 0 0 0 0	20 00 2360 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00 11 ±180 0 0 0 0 0 0 0 0 0 0 0 0 0	50 ±360 0 0 0 0 0 0 0 0 0 0 0 0 0	11 ±180 0 0 0 0 0 0 0 0 0 0 0 0 0	2: 00 ±360 0 0 0 0 0 0 0 0 0 0 0 0 0	50 11: 13: 14: 180 0 0 0 0 0 0 0 0 0 0 0 0 0	50 ±360 0 0 0 0 0 0 0 0 0 0 0 0 0	11 ±180 0 0 0 0 0 0 0 0 0 0 0 0 0	31 30 23 360 37 360 37 360 37 360 37 360 37 360 37 37 360 37 37 37 37 37 37 37 37 37 37 37 37 37	00 11 13 14 180 0 0 0 0 0 0 0 0 0 0 0 0 0	50 ±360 0 0 0 0 0 0 0 0 0 0 0 0 0
Z-a R-axis	xis stroke (mm) xis stroke (mm) operation range (eg.) 50 100 250 250 300 350 450 550 600 650 700 750 800 850 900 950 900 950 1000	11 ±180 0 0 0 0 0 0 0 0 0 0 0 0 0	21 00 ±360 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00 11 180 0 0 0 0 0 0 0 0 0 0 0 0 0	50 ±360 0 0 0 0 0 0 0 0 0 0 0 0 0	11 ±180 0 0 0 0 0 0 0 0 0 0 0 0 0	22 00 ±360 0 0 0 0 0 0 0 0 0 0 0 0 0	50 50 50 50 50 50 50 50 50 50	50 ±360 0 0 0 0 0 0 0 0 0 0 0 0 0	11 ±180 0 0 0 0 0 0 0 0 0 0 0 0 0	31 30 33 34 360 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00 11 13 0 0 0 0 0 0 0 0 0 0 0 0 0	50 ±360 0 0 0 0 0 0 0 0 0 0 0 0 0
Z-a R-axis	xis stroke (mm) xis stroke (mm) operation range (deg) 50 100 150 200 250 350 400 450 550 600 650 700 750 750 800 850 900 950	11 ±180 0 0 0 0 0 0 0 0 0 0 0 0 0	20 00 2360 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00 11 ±180 0 0 0 0 0 0 0 0 0 0 0 0 0	50 ±360 0 0 0 0 0 0 0 0 0 0 0 0 0	11 ±180 0 0 0 0 0 0 0 0 0 0 0 0 0	2: 00 ±360 0 0 0 0 0 0 0 0 0 0 0 0 0	50 11: 13: 14: 180 0 0 0 0 0 0 0 0 0 0 0 0 0	50 ±360 0 0 0 0 0 0 0 0 0 0 0 0 0	11 ±180 0 0 0 0 0 0 0 0 0 0 0 0 0	31 30 23 360 37 360 37 360 37 360 37 360 37 360 37 37 360 37 37 37 37 37 37 37 37 37 37 37 37 37	00 11 13 14 180 0 0 0 0 0 0 0 0 0 0 0 0 0	50 ±360 0 0 0 0 0 0 0 0 0 0 0 0 0

Cable Length

Type	Cable code	Length	
	1L	1m	
Standard	3L	3m	
	5L	5m	
type		Specified length	
		(Max. 15m)	

Note 1. All-axis standard cable is used. Note 2. The length of the second, third, and fourth axis cable is from the exit of the cable track. A separate robot cable is included for wiring inside the cable track.

Note 3. The standard lengths are 1m, 3m and 5m, but other lengths can be specified in 1m increments up to 15m.

Cable Track

Туре	Model	Reference page	First wiring (X-axis lateral)	Second wiring (Y-axis lateral)
Without cable track (cable only)	N		-	-
Cable track S size (inner width: 38mm)	СТ		0	0
Cable track M size (inner width: 50mm)	СТМ	See	0	0
Cable track L size (inner width: 63mm)	CTL	P.136	0	0
Cable track XL size (inner width: 80mm)	CTXL		0	Cannot be selected *1

*1 Only the first wiring can be selected

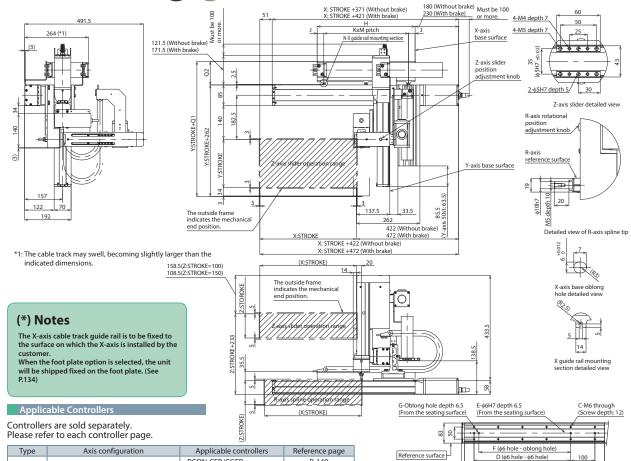
Specifications						
ltem	X-axis	Y-axis	Z-axis	R-axis		
Axis configuration	RCP6-SA8C	RCP6-SA7C	TTPIK	K-AZR		
Stroke	50 ~ 1100mm (Every 50mm)	50 ~ 300mm (Every 50mm)	100, 150mm	180deg., 360deg.		
Max. speed *1	300mm/s	280mm/s	400mm/s	1,000deg/s *2		
Allowable moment of inertia *2	-			0.01kg·m ²		
Motor size	56 High thrust stepper motor	56□ Stepper motor	42□ Stepper motor	42□ Stepper motor		
Ball screw lead	10mm	8mm	12mm	-		
Drive system	Ball screw	Ball screw ¢12mm rolled C10	Ball screw	-		
Positioning repeatability	±0.01mm			±0.01 deg.		
Base material	Aluminum					
Ambient operating temperature, humidity	0~40°C, 85% RH or less (non-condensing)					

Options (1) * Please check the Options reference pages to confirm each option.								
Туре	Option code	Reference page	X-axis	Y-axis Z-axis				
Brake *	В	See P.134	0	 Standard equipment * 				
Cable exit direction (Top)	CJT	See P.134	0					
Cable exit direction (Right)	CJR	See P.134	0	Cannot be selected				
Cable exit direction (Left)	CJL	See P.134	0	Cannot b	e selected			
Cable exit direction (Bottom)	CJB	See P.134	0					
Slider cover	CO	See P.134	Cannot be	e selected	0			
Non-motor end specification	NM	See P.135	0	0	0			
Slider section roller specification	SR	See P.135	0	0	Cannot be selected			

* Outside as standard. Be sure to specify.

* Brake option for X- and/or Y-axes increases the length of the motor unit(s). Please contact IAI for more information.

Options (2) * Please check the Opt	ions reference pages to	confirm each option.
Туре	Option code	Reference page
Foot plate	FTP	See P.134
	1	1


*1 The maximum speed may not be reached if the travel distance is short or acceleration is low. Maximum speed may change depending on the stroke. For details, refer to the Maximum Speed by Stroke table on P.137. *2 Angular velocity and acceleration/deceleration differ depending on allowable moment of inertia. Please refer to P.138 for more information.

3D CAD

Dim<u>ensions</u>

CAD drawings can be downloaded from our website. 2D CAD www.intelligentactuator.com

Note 1. The configuration position in the figure is home. Note 2. The diagram shows first and second wirings with cable tracks Note 3. Refer to P.136 for the details of the cable tracks.

Į	Type	Axis configuration	Applicable controllers	Reference page	
ĺ		X-axis : SA8C	PCON-CFB/CGFB	P-149	
		A-dXIS : SAOC	MSEL-PCF/PGF	P-139	
			PCON-CB/CGB	P-149	
	PM1	Y-axis : SA7C	PCON-CYB/PLB/POB	Please contact IAI	
		Z-axis	MCON-C/CG	P-153	
		R-axis	MCON-LC/LCG		
			MSEL	P-139	
	PM2	X-axis : SA8C	RCON-PCF	P-159	
	PIMZ	Y-axis : SA7C, Z-axis , R-axis	RCON-PC		

^t Operation is possible with the high output setting specification. When connecting to the MCON controller, "HIGH OUTPUT SETTING SPECIFICATION" must be selected. Please contact IAI regarding use with the high-output setting disabled.

11

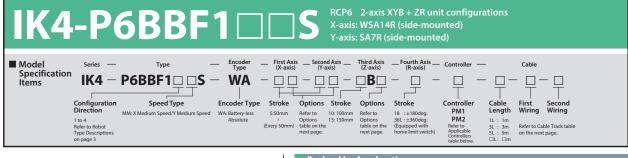
B×100 pitch

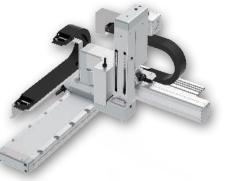
А Base mounting dimensions

Cable track size

cable track

Dimensions by Stroke


X: Stroke	50	100	150	200	250	300	350	400	450	500	550	600	650	700	750	800	850	900	950	1000	1050	1100
A	230	280	330	380	430	480	530	580	630	680	730	780	830	880	930	980	1030	1080	1130	1180	1230	1280
В	1	2	2	3	3	4	4	5	5	6	6	7	7	8	8	9	9	10	10	11	11	12
C	4	6	6	8	8	10	10	12	12	14	14	16	16	18	18	20	20	22	22	24	24	26
D	0	100	100	200	200	300	300	400	400	500	500	600	600	700	700	800	800	900	900	1000	1000	1100
E	2	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
F	0	0	80	180	180	280	280	380	380	480	480	580	580	680	680	780	780	880	880	980	980	1080
G	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Н	230	255	280	305	330	355	380	405	430	455	480	505	530	555	580	605	630	655	680	705	730	755
J	30	27.5	27.5	27.5	27.5	27.5	27.5	27.5	27.5	27.5	22.5	27.5	77.5	52.5	65	77.5	52.5	27.5	77.5	22.5	55	27.5
K	1	1	1	2	2	2	2	2	2	2	3	3	3	3	3	3	3	3	3	4	4	4
М	170	200	225	125	137.5	150	162.5	175	187.5	200	145	150	125	150	150	150	175	200	175	165	155	175
N	2	2	2	3	3	3	3	3	3	3	4	4	4	4	4	4	4	4	4	5	5	5



CT CTM CTL CTXL
 Q1
 346.5
 359.5
 372.5
 389.5

 Q2
 84.5
 97.5
 110.5
 127.5
 * Dimensions Q1 and Q2 change depending on the size of the

RoHS

Payload by Acceleration

MM type: X medium s	speed/Y medium s	peed	(Unit: kg)
Y-axis stroke (mm) deceleration/ deceleration (G)	50~300 (Every 50mm)	350	400
0.1	5	3	2
0.3	3	-	-

* When X, Y, Z and R axes all have the same acceleration/deceleration.

When there is significant vibration, decrease the speed and acceleration/deceleration as required.

The photograph above shows the configuration direction "1" where all axes have cable tracks. Please refer to P.3 for other configuration directions.

Stroke Y-axis stroke (mm) Z-axis stroke (mm) R-axis operation range (deg.) ±180 ±360 ±180 ±360 ±180 ±360 ±180 ±360 ±180 ±360 ±180 ±360 (mm X-axis stroke Ο \cap Ο Ο \cap Ο

Y-a	axis stroke (mm)		20	00			25	50		300				
Z-a	axis stroke (mm)	1(00	1:	50	1	00	1:	50	10	00	1:	50	
R-axis	operation range (deg.)	±180	±360	±180	±360	±180	±360	±180	±360	±180	±360	±180	±360	
	50	0	0	0	0	0	0	0	0	0	0	0	0	
	100	0	0	0	0	0	0	0	0	0	0	0	0	
	150	0	0	0	0	0	0	0	0	0	0	0	0	
	200	0	0	0	0	0	0	0	0	0	0	0	0	
	250	0	0	0	0	0	0	0	0	0	0	0	0	
2	300	0	0	0	0	0	0	0	0	0	0	0	0	
stroke (mm)	350	0	0	0	0	0	0	0	0	0	0	0	0	
oke	400	0	0	0	0	0	0	0	0	0	0	0	0	
s str	450	0	0	0	0	0	0	0	0	0	0	0	0	
X-axis	500	0	0	0	0	0	0	0	0	0	0	0	0	
×	550	0	0	0	0	0	0	0	0	0	0	0	0	
	600	0	0	0	0	0	0	0	0	0	0	0	0	
	650	0	0	0	0	0	0	0	0	0	0	0	0	
	700	0	0	0	0	0	0	0	0	0	0	0	0	
	750	0	0	0	0	0	0	0	0	0	0	0	0	
	800	0	0	0	0	0	0	0	0	0	0	0	0	

Y-a	axis stroke (mm)		3	50		400						
Z-a	axis stroke (mm)	10	00	1:	50	10	00	1:	50			
R-axis	operation range (deg.)	±180	±360	±180	±360	±180	±360	±180	±360			
	50	0	0	0	0	0	0	0	0			
	100	0	0	0	0	0	0	0	0			
	150	0	0	0	0	0	0	0	0			
	200	0	0	0	0	0	0	0	0			
	250	0	0	0	0	0	0	0	0			
	300	0	0	0	0	0	0	0	0			
stroke (mm)	350	0	0	0	0	0	0	0	0			
oke	400	0	0	0	0	0	0	0	0			
s str	450	0	0	0	0	0	0	0	0			
X-axis	500	0	0	0	0	0	0	0	0			
×	550	0	0	0	0	0	0	0	0			
	600	0	0	0	0	0	0	0	0			
	650	0	0	0	0	0	0	0	0			
	700	0	0	0	0	0	0	0	0			
	750	0	0	0	0	0	0	0	0			
	800	0	0	0	0	0	0	0	0			

Cable	Length	
Type	Cable code	Length
Type		
	1L	1m
Standard	3L	3m
type	5L	5m
	□L	Specified length (15m max.)

Note 1. All-axis standard cable is used. Note 2. The length of the second, third, and fourth axis cable is from the exit of the cable track. A separate robot cable is included for wiring inside the cable track. Note 3. The standard lengths are 1m, 3m and 5m, but other lengths can be specified in 1m increments up to 15m.

Cable Track

Туре	Model	Reference page	First wiring (X-axis side)	Second wiring (Y-axis side)
Without cable track (cable only)	N		-	-
Cable track S size (inner width: 38mm)	СТ		0	0
Cable track M size (inner width: 50mm)	СТМ	See P.136	0	0
Cable track L size (inner width: 63mm)	CTL	See P.150	0	0
Cable track XL size (inner width: 80mm)	CTXL		0	Cannot be selected *1

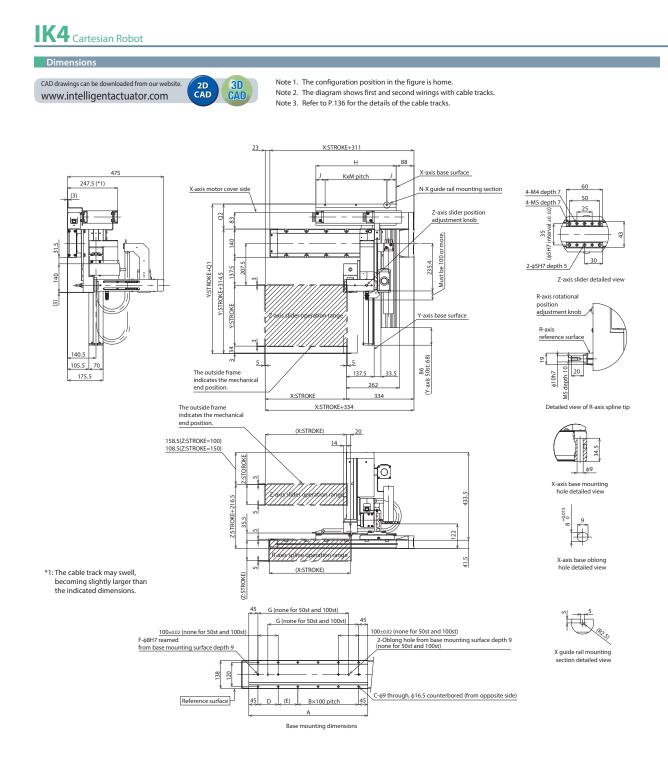
*1 Only the first wiring can be selected

IAI

Applicable Controllers

Controllers are sold separately. Please refer to each controller page.

Туре	Axis configuration	Applicable controllers	Reference page	
		PCON-CB/CGB	P-149	١.
	X-axis : WSA14R	PCON-CYB/PLB/POB	Please contact IAI	ľ
PM1	Y-axis : SA7R	MCON-C/CG	P-153	
	Z-axis	MCON-LC/LCG	P-155	
	R-axis	MSEL	P-139	
PM2	1	RCON-PC	P-159	


* Operation is possible with the high output setting specification. When connecting to the MCON controller, "HIGH OUTPUT SETTING SPECIFICATION" must be selected. Please contact IAI regarding use with the highoutput setting disabled.

Specifications							
Item	X-axis	Y-axis	Z-axis	R-axis			
Axis configuration	RCP6-WSA14R	RCP6-SA7R	TTPI	K-AZR			
Stroke	50 ~ 800mm (Every 50mm)	50 ~ 400mm (Every 50mm)	100, 150mm	180deg., 360deg.			
Max. speed *1	210mm/s	280mm/s	400mm/s	1,000deg/s *2			
Allowable moment of inertia *2	-	0.01kg⋅m²					
Motor size	56 Stepper motor	56 Stepper motor	42 Stepper motor	42 Stepper motor			
Ball screw lead	8mm	8mm	12mm	-			
Drive system	Ball screw ¢12mm rolled C10	Ball screw ¢12mm rolled C10	Ball screw φ10mm rolled C10	-			
Positioning repeatability	±0.01mm		·	±0.01 deg.			
Base material	Aluminum						
Ambient operating temperature, humidity							

Ambient operating temperature, humidity	0~40°C, 85% RH or less (non-condensing)						
Maximum speed may ch For details, refer to the M	not be reached if the travel distance is short or acceleration is low. nge depending on the stroke. ximum Speed by Stroke table on P.137. leration/deceleration differ depending on allowable moment of inertia. tore information.						

Options * Please check the Options reference pages to confirm each option.										
Option code	Reference page	X-axis	Y-axis	Z-axis						
В	See P.134	0	0	Standard equipment *						
CO	See P.134	Cannot be	e selected	0						
NM	See P.135	0	0	0						
SR	See P.135	0	0	Cannot be selected						
	Option code B CO NM	Option code Reference page B See P.134 CO See P.134 MM See P.134	Option Reference page X-axis B See P.134 O CO See P.134 Cannot be NM See P.135 O	Option reference page X-axis Y-axis B See P.134 O O CO See P.134 Cannot be selected NM See P.135 O O						

Be sure to specify.

(*) Notes

The X-axis cable track guide rail is to be fixed to the surface on which the X-axis is installed by the customer.

Dimensions by Stroke

X: Stroke	50	100	150	200	250	300	350	400	450	500	550	600	650	700	750	800
A	237	287	337	387	437	487	537	587	637	687	737	787	837	887	937	987
В	0	0	1	1	2	2	3	3	4	4	5	5	6	6	7	7
С	4	4	8	8	10	10	12	12	14	14	16	16	18	18	20	20
D	-	-	100	100	100	100	100	100	100	100	100	100	100	100	100	100
E	147	197	47	97	47	97	47	97	47	97	47	97	47	97	47	97
F	2	2	4	4	4	4	4	4	4	4	4	4	4	4	4	4
G	-	-	198	248	298	348	398	448	498	548	598	648	698	748	798	848
Н	221	246	271	296	321	346	371	396	421	446	471	496	521	546	571	596
J	45.5	45.5	45.5	45.5	45.5	45.5	45.5	45.5	45.5	43	48	45.5	43	43	45.5	43
К	1	1	2	2	2	2	2	2	3	3	3	3	3	4	4	4
М	130	155	90	102.5	115	127.5	140	152.5	110	120	125	135	145	115	120	127.5
N	2	2	3	3	3	3	3	3	4	4	4	4	4	5	5	5
Cable track size	CT	CTM	CTL	CTXL												

 Q1
 425
 438
 451
 468

 Q2
 110.5
 123.5
 136.5
 153.5

* Dimensions Q1 and Q2 change depending on the size of the cable track.

IK4-P6BBF2

RCP6 2-axis XYB + ZR unit configurations X-axis: WSA14C (straight) Y-axis: SA7R (side-mounted)

Model Specificatio	Series —	Туре –	Encoder Type	— First Axi (X-axis)	s <u>Secon</u> (Y-a	d Axis xis)	Third Axis (Z-axis)	Fourth Axis (R-axis)	Controller —	-	Cable	
Items	" IK4 –	P6BBF2 □ □S -	- WA	- 🗆 🗆] — 🗌	□ -		- 🗆 -	- 🗆 –	- 🗆 -	- 🗆 —	
				$-\pm$			ᅮ᠆		Т	T	T	T
	Configuration	Speed Type	Encoder Type	Stroke	Options	Stroke	Options	Stroke	Controller	Cable		Second
	Direction	MM: X Medium Speed/Y Medium Speed	WA: Battery-less	5: 50mm	Refer to	10:100mm	Refer to	18 :±180deg.	PM1	Length	Wiring \	Niring
	1 to 4 Refer to Robot Type Descriptions on page 3		Absolute	(Every 50mm)	Options	15:150mm		36L : ±360deg. (Equipped with home limit switch)	PM2 Refer to Applicable Controllers table below.	1L : 1m 3L : 3m 5 : 5m □L : □m	Refer to Cable on the next p	

Payload by Acceleration

The second secon	
27	

Y-axis stroke (mm) 50~300 (Every 50mm) 350 400 0.1 5 3 2 0.3 3

* When X, Y, Z and R axes all have the same acceleration/deceleration.

When there is significant vibration, decrease the speed and acceleration/deceleration as required.

The photograph above shows the configuration direction "1" where all axes have cable tracks. Please refer to P.3 for other configuration directions.

RoHS

-

Stroke Y-axis stroke (mm) Z-axis stroke (mm) R-axis operation range (deg.) ±180 ±360 ±180 ±360 ±180 ±360 ±180 ±360 ±180 ±360 ±180 ±360 (mm X-axis stroke Ο Ο Ο Ο Ο Ο Ο

Y-a	xis stroke (mm)		20	00			2	50		300			
Z-a	xis stroke (mm)	100 150		50	100 150			50	100 15			50	
R-axis	operation range (deg.)	±180	±360	±180	±360	±180	±360	±180	±360	±180	±360	±180	±360
	50	0	0	0	0	0	0	0	0	0	0	0	0
	100	0	0	0	0	0	0	0	0	0	0	0	0
	150	0	0	0	0	0	0	0	0	0	0	0	0
	200	0	0	0	0	0	0	0	0	0	0	0	0
	250	0	0	0	0	0	0	0	0	0	0	0	0
-	300	0	0	0	0	0	0	0	0	0	0	0	0
(mm)	350	0	0	0	0	0	0	0	0	0	0	0	0
stroke	400	0	0	0	0	0	0	0	0	0	0	0	0
s str	450	0	0	0	0	0	0	0	0	0	0	0	0
X-axis	500	0	0	0	0	0	0	0	0	0	0	0	0
×	550	0	0	0	0	0	0	0	0	0	0	0	0
	600	0	0	0	0	0	0	0	0	0	0	0	0
	650	0	0	0	0	0	0	0	0	0	0	0	0
	700	0	0	0	0	0	0	0	0	0	0	0	0
	750	0	0	0	0	0	0	0	0	0	0	0	0
	800	0	0	0	0	0	0	0	0	0	0	0	0

Y-a	ixis stroke (mm)		3	50		400				
Z-a	xis stroke (mm)	1	00	1:	150 100 150		50			
R-axis	operation range (deg.)	±180	±360	±180	±360	±180	±360	±180	±360	
	50	0	0	0	0	0	0	0	0	
	100	0	0	0	0	0	0	0	0	
	150	0	0	0	0	0	0	0	0	
	200	0	0	0	0	0	0	0	0	
	250	0	0	0	0	0	0	0	0	
2	300	0	0	0	0	0	0	0	0	
stroke (mm)	350	0	0	0	0	0	0	0	0	
oke	400	0	0	0	0	0	0	0	0	
s str	450	0	0	0	0	0	0	0	0	
X-axis	500	0	0	0	0	0	0	0	0	
×	550	0	0	0	0	0	0	0	0	
	600	0	0	0	0	0	0	0	0	
	650	0	0	0	0	0	0	0	0	
	700	0	0	0	0	0	0	0	0	
	750	0	0	0	0	0	0	0	0	
	800	0	0	0	0	0	0	0	0	

Cable Length								
Type	Cable code	Length						
	1L	1m						
Standard	3L	3m						
type	5L	5m						
		Specified length (15m max.)						

Note 1. All-axis standard cable is used. Note 2. The length of the second, third, and fourth axis cable is from the exit of the cable track. A separate robot cable is included for wiring inside the cable track.

Note 3. The standard lengths are 1m, 3m and 5m, but other lengths can be specified in 1m increments up to 15m.

Cable Track

Туре	Model	Reference page	First wiring (X-axis side)	Second wiring (Y-axis side)
Without cable track (cable only)	N		-	-
Cable track S size (inner width: 38mm)	СТ		0	0
Cable track M size (inner width: 50mm)	CTM	See P.136	0	0
Cable track L size (inner width: 63mm)	CTL	See P.136	0	0
Cable track XL size (inner width: 80mm)	CTXL		0	Cannot be selected *1

*1 Only the first wiring can be selected

Applicable Controllers

Controllers are sold separately.

Please refer to each controller page.

Type	Axis configuration	Applicable controllers	Reference page
		PCON-CB/CGB	P-149
	X-axis : WSA14C	PCON-CYB/PLB/POB	Please contact IAI
PM1	Y-axis : SA7R	MCON-C/CG	P-153
	Z-axis	MCON-LC/LCG	P-155
R-axis		MSEL	P-139
PM2		RCON-PC	P-159

* Operation is possible with the high output setting specification. When connecting to the MCON controller, "HIGH OUTPUT SETTING SPECIFICATION" must be selected. Please contact IAI regarding use with the high-output setting disabled.

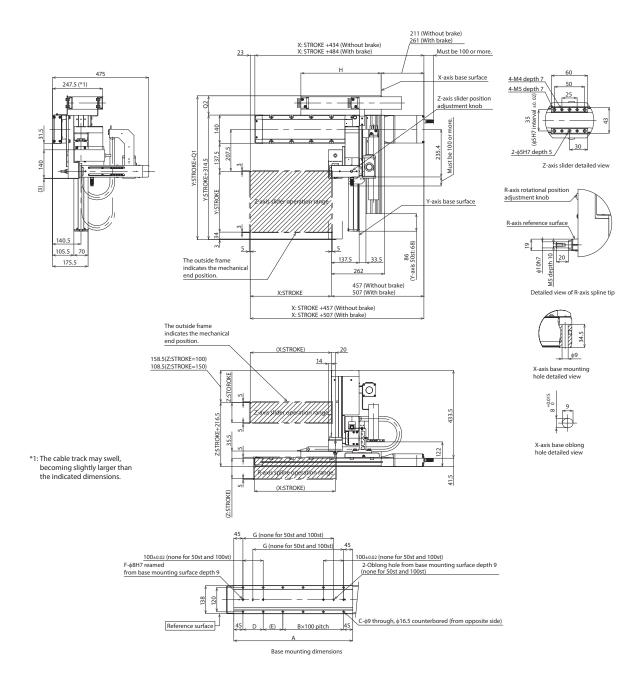
Specifications

ltem	X-axis	Y-axis	Z-axis	R-axis		
Axis configuration	RCP6-WSA14C	RCP6-SA7R	TTPI	(-AZR		
Stroke	50 ~ 800mm (Every 50mm)	50 ~ 400mm (Every 50mm)	100, 150mm	180deg., 360deg.		
Max. speed *1	210mm/s	280mm/s	400mm/s	1,000deg/s *2		
Allowable moment of inertia *2	-	0.01kg⋅m²				
Motor size	56□ 56□ 42□ Stepper motor Stepper motor Stepper motor		42□ Stepper motor			
Ball screw lead	8mm	8mm	12mm	-		
Drive system	Ball screw ¢12mm rolled C10	Ball screw Ball screw Ball screw φ12mm φ12mm φ10mm				
Positioning repeatability	±0.01mm			±0.01 deg.		
Base material	Aluminum					
Ambient operating temperature, humidity	0~40°C, 85% RH or less (non-condensing)					

Options * Please check the Options reference pages to confirm each option.							
Туре	Option code	Reference page	X-axis	Y-axis	Z-axis		
Brake *	В	See P.134	0	0	Standard equipment *		
Cable exit direction (Top)	CJT	See P.134	0				
Cable exit direction (Right)	CJR	See P.134	0	Cannot be selected			
Cable exit direction (Left)	CJL	See P.134	0	Cannot D	selected		
Cable exit direction (Bottom)	CJB	See P.134	0				
Slider cover	CO	See P.134	Cannot b	e selected	0		
Non-motor end specification	NM	See P.135	0	0	0		
Slider section roller specification	SR	See P.135	0	0	Cannot be selected		

* Be sure to specify. * Brake option for X-axis increases the length of the motor unit. Please contact IAI for more information.

*1 The maximum speed may not be reached if the travel distance is short or acceleration is low. Maximum speed may change depending on the stroke. For details, refer to the Maximum Speed by Stroke table on P.137. *2 Angular velocity and acceleration/deceleration differ depending on allowable moment of inertia. Please refer to P.138 for more information.



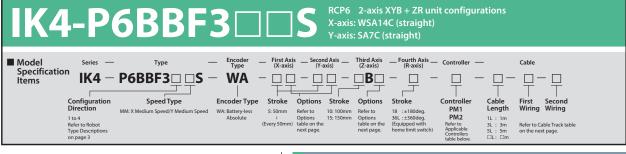
Dimensions

CAD drawings can be downloaded from our website. WWW.intelligentactuator.com

Note 1. The configuration position in the figure is home. Note 2. The diagram shows first and second wirings with cable tracks. Note 3. Refer to P.136 for the details of the cable tracks.

Dimensions by Stroke

X: Stroke	50	100	150	200	250	300	350	400	450	500	550	600	650	700	750	800
A	237	287	337	387	437	487	537	587	637	687	737	787	837	887	937	987
В	0	0	1	1	2	2	3	3	4	4	5	5	6	6	7	7
С	4	4	8	8	10	10	12	12	14	14	16	16	18	18	20	20
D	-	-	100	100	100	100	100	100	100	100	100	100	100	100	100	100
E	147	197	47	97	47	97	47	97	47	97	47	97	47	97	47	97
F	2	2	4	4	4	4	4	4	4	4	4	4	4	4	4	4
G	-	-	198	248	298	348	398	448	498	548	598	648	698	748	798	848
Н	221	246	271	296	321	346	371	396	421	446	471	496	521	546	571	596
Cable track size	CT	CTM	CTL	CTXL												
01	207.5	400 F	4245	442.5												


Q1	397.5	409.5	424.5	442.5			
Q2	83	95	110	128			
* Dimensioner O1 and O2 above an demonstration and the size							

* Dimensions Q1 and Q2 change depending on the size of the cable track.

RoHS

-

Payload by Acceleration

	-		
	A	7.	
2			

MM type: X medium speed/Y medium speed (Unit: kg								
Y-axis stroke (mm) deceleration/ deceleration (G)	50~300 (Every 50mm)	350	400					
0.1	5	3	2					
0.3	3	-	-					

* When X, Y, Z and R axes all have the same acceleration/deceleration.

When there is significant vibration, decrease the speed and acceleration/deceleration as required.

The photograph above shows the configuration direction "1" where all axes have cable tracks. Please refer to P.3 for other configuration directions.

Stroke Y-axis stroke (mm) Z-axis stroke (mm) R-axis operation range (deg.) ±180 ±360 ±180 ±360 ±180 ±360 ±180 ±360 ±180 ±360 ±180 ±360 Ο Ο (mm X-axis stroke Ο \cap Ο Ο \cap Ο

Y-a	ixis stroke (mm)		20	00			2	50		300			
Z-a	ixis stroke (mm)	100		15	50	1	00	150		100		150	
R-axis	operation range (deg.)	±180	±360	±180	±360	±180	±360	±180	±360	±180	±360	±180	±360
	50	0	0	0	0	0	0	0	0	0	0	0	0
	100	0	0	0	0	0	0	0	0	0	0	0	0
	150	0	0	0	0	0	0	0	0	0	0	0	0
	200	0	0	0	0	0	0	0	0	0	0	0	0
	250	0	0	0	0	0	0	0	0	0	0	0	0
2	300	0	0	0	0	0	0	0	0	0	0	0	0
(mm)	350	0	0	0	0	0	0	0	0	0	0	0	0
stroke	400	0	0	0	0	0	0	0	0	0	0	0	0
s str	450	0	0	0	0	0	0	0	0	0	0	0	0
-axis	500	0	0	0	0	0	0	0	0	0	0	0	0
×	550	0	0	0	0	0	0	0	0	0	0	0	0
	600	0	0	0	0	0	0	0	0	0	0	0	0
	650	0	0	0	0	0	0	0	0	0	0	0	0
	700	0	0	0	0	0	0	0	0	0	0	0	0
	750	0	0	0	0	0	0	0	0	0	0	0	0
	800	0	0	0	0	0	0	0	0	0	0	0	0

Y-a	ixis stroke (mm)		3	50		400				
Z-a	xis stroke (mm)	troke (mm) 100			50	10	00	150		
R-axis	operation range (deg.)	±180	±360	±180	±360	±180	±360	±180	±360	
	50	0	0	0	0	0	0	0	0	
	100	0	0	0	0	0	0	0	0	
	150	0	0	0	0	0	0	0	0	
	200	0	0	0	0	0	0	0	0	
	250	0	0	0	0	0	0	0	0	
	300 O 350 O		0	0	0	0	0	0	0	
Lun (0	0	0	0	0	0	0	
stroke (mm)	400	0	0	0	0	0	0	0	0	
s str	450	0	0	0	0	0	0	0	0	
X-axis	500	0	0	0	0	0	0	0	0	
×	550	0	0	0	0	0	0	0	0	
	600	0	0	0	0	0	0	0	0	
	650	0	0	0	0	0	0	0	0	
	700	0	0	0	0	0	0	0	0	
	750	0	0	0	0	0	0	0	0	
	800	0	0	0	0	0	0	0	0	

Cable	Cable Length								
Type	Cable code	Length							
	1L	1m							
Standard	3L	3m							
type	5L	5m							
		Specified length (15m max.)							

Note 1. All-axis standard cable is used. Note 2. The length of the second, third, and fourth axis cable is from

the exit of the cable track. A separate robot cable is included for wiring inside the cable track.

Note 3. The standard lengths are 1m, 3m and 5m, but other lengths can be specified in 1m increments up to 15m.

Cable Track

Туре	Model	Reference page	First wiring (X-axis side)	Second wiring (Y-axis side)
Without cable track (cable only)	N		-	-
Cable track S size (inner width: 38mm)	СТ		0	0
Cable track M size (inner width: 50mm)	СТМ	See P.136	0	0
Cable track L size (inner width: 63mm)	CTL	See P.136	0	0
Cable track XL size (inner width: 80mm)	CTXL		0	Cannot be selected *1

*1 Only the first wiring can be selected

Applicable Controllers

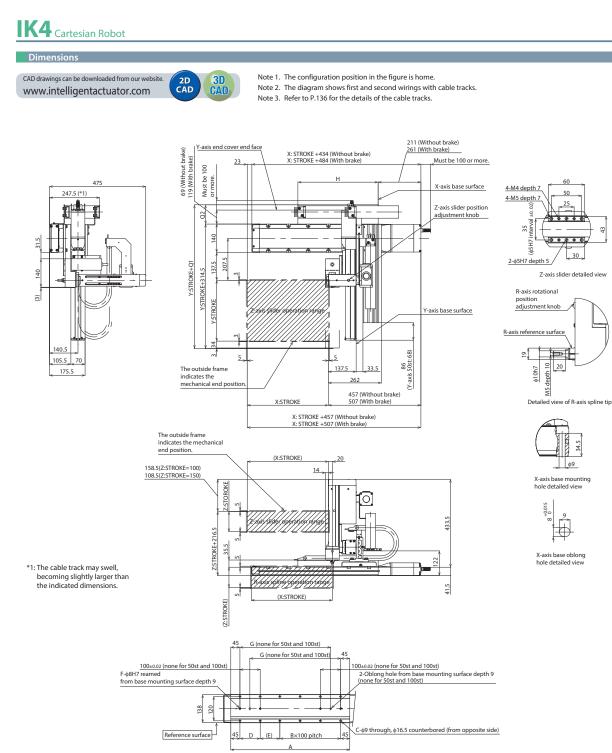
Controllers are sold separately. Please refer to each controller page.

Type	Axis configuration	Applicable controllers	Reference page	
		PCON-CB/CGB	P-149	
	X-axis : WSA14C	PCON-CYB/PLB/POB	Please contact IAI	
PM1	Y-axis : SA7C	MCON-C/CG	P-153	
	Z-axis	MCON-LC/LCG		
	R-axis	MSEL	P-139	
PM2		RCON-PC	P-159	

* Operation is possible with the high output setting specification. When connecting to the MCON controller, "HIGH OUTPUT SETTING SPECIFICATION" must be selected. Please contact IAI regarding use with the high-output setting disabled.

Specifications

ltem	X-axis	Y-axis	Z-axis	R-axis		
Axis configuration	RCP6-WSA14C	RCP6-SA7C	TTPIK	K-AZR		
Stroke	50 ~ 800mm (Every 50mm)	50 ~ 400mm (Every 50mm)	100, 150mm	180deg., 360deg.		
Max. speed *1	210mm/s	280mm/s	400mm/s	1,000deg/s *2		
Allowable moment of inertia *2	-	-				
Motor size	56□ Stepper motor	56□ Stepper motor	42□ Stepper motor	42□ Stepper motor		
Ball screw lead	8mm	8mm	12mm	-		
Drive system	Ball screw ¢12mm rolled C10	Ball screw ¢12mm rolled C10	Ball screw ¢10mm rolled C10	-		
Positioning repeatability	±0.01mm			±0.01 deg.		
Base material	Aluminum					
Ambient operating temperature, humidity	0~40°C, 85% RH or less (non-condensing)					


Туре	Option code	Reference page	X-axis	Y-axis	Z-axis	
Brake*	В	See P.134	0	0	Standard equipment *	
Cable exit direction (Top)	CJT	See P.134	0			
Cable exit direction (Right)	CJR	See P.134	0	Cannot b	coloctod	
Cable exit direction (Left)	CJL	See P.134	0	Cannot b	eselected	
Cable exit direction (Bottom)	CJB	See P.134	0			
Slider cover	CO	See P.134	Cannot b	e selected	0	
Non-motor end specification	NM	See P.135	0	0	0	
Slider section roller specification	SR	See P.135	0	0	Cannot be selected	

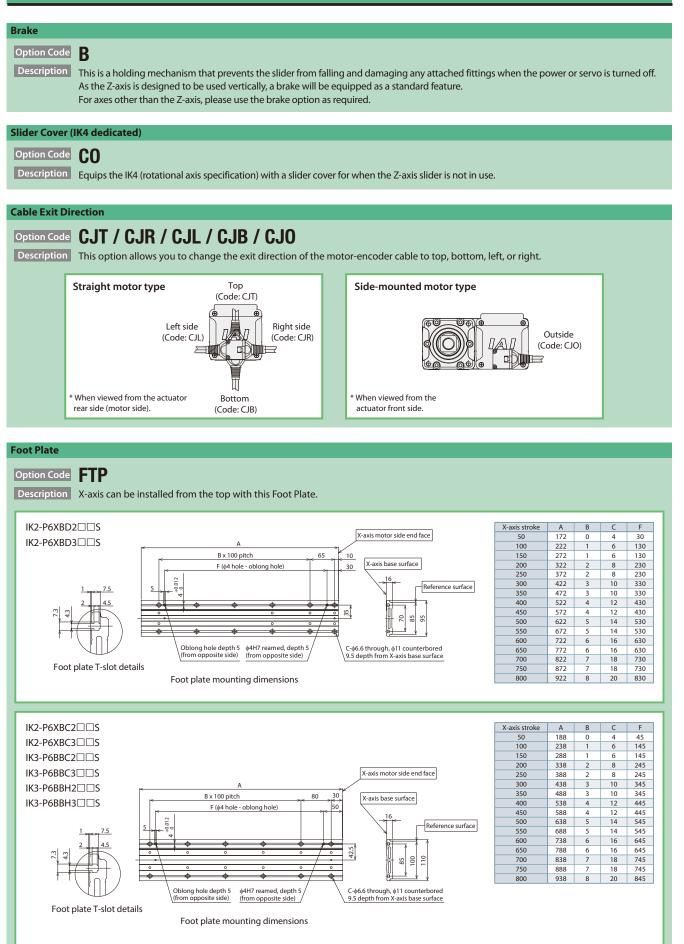
Options * Please check the Options reference pages to confirm each option.

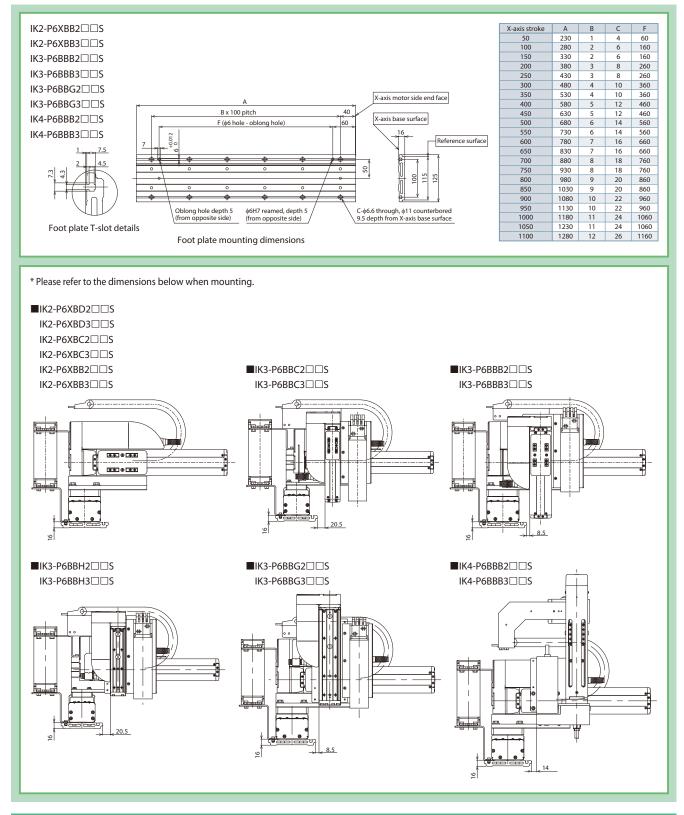
* Outside as standard. Be sure to specify. * Brake option for X- and/or Y-axes increases the length of the motor unit(s). Please contact IAI for more information.

*1 The maximum speed may not be reached if the travel distance is short or acceleration is low. Maximum speed may change depending on the stroke. For details, refer to the Maximum Speed by Stroke table on P.137. *2 Angular velocity and acceleration/deceleration differ depending on allowable moment of inertia. Please refer to P.138 for more information.

Base mounting dimensions

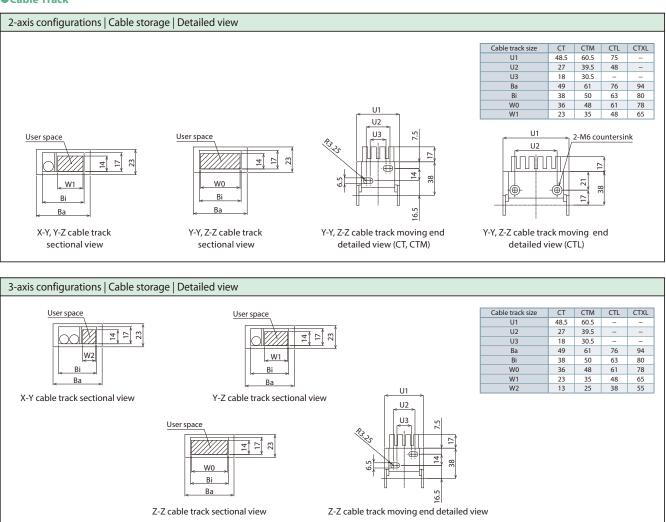
Dimensions by Stroke

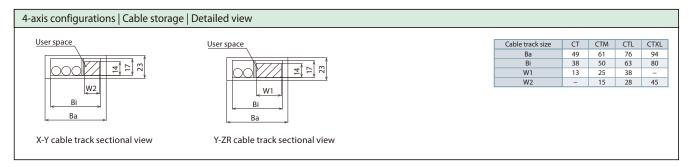

X: Stroke	50	100	150	200	250	300	350	400	450	500	550	600	650	700	750	800
A	237	287	337	387	437	487	537	587	637	687	737	787	837	887	937	987
В	0	0	1	1	2	2	3	3	4	4	5	5	6	6	7	7
С	4	4	8	8	10	10	12	12	14	14	16	16	18	18	20	20
D	-	-	100	100	100	100	100	100	100	100	100	100	100	100	100	100
E	147	197	47	97	47	97	47	97	47	97	47	97	47	97	47	97
F	2	2	4	4	4	4	4	4	4	4	4	4	4	4	4	4
G	-	-	198	248	298	348	398	448	498	548	598	648	698	748	798	848
Н	221	246	271	296	321	346	371	396	421	446	471	496	521	546	571	596


Cable track size	CT	CTM	CTL	CTXL
Q1	397.5	409.5	424.5	442.5
Q2	83	95	110	128

* Dimensions Q1 and Q2 change depending on the size of the cable track.

Cartesian Robot Options


Non-motor End Specification


Option Code NM

Description The normal home position is set by the slider and rod on the motor side, however there is the option for the home position to be on the other side to accommodate variations in equipment layout, etc. (Please note that changing the home position after the actuators are shipped may require the products to be sent back to IAI for re-setting.)

Slider Roller	Specification
Option Code Description	

• Cable Track

Bigger user space is available by ordering as a special specification, if it is insufficient. Please refer to each controller page.

•Cable Length

Cable code	Length	RCP6 2-axis IK2-P6	RCP6 3-axis IK3-P6	RCP6 4-axis IK4-P6
1L	1m	0	0	0
2L	2m	0	0	0
3L	3m	0	0	0
4L	4m	0	0	0
5L	5m	0	0	0
6L	6m	0	0	0
7L	7m	0	0	0
8L	8m	0	0	0
9L	9m	0	0	0
10L	10m	0	0	0
11L	11m	0	0	0
12L	12m	0	0	0
13L	13m	0	0	0
14L	14m	0	0	0
15L	15m	0	0	0

Only models and axes whose maximum speed varies depending on the stroke are listed.

For models and axes not listed below, there is no change in the maximum speed depending on the stroke. Please refer to the product pages. However, the maximum speed may not be reached if the stroke is short or the acceleration is low.

(Unit: mm/s)

(Unit: mm/s)

(Unit: mm/s)

■ IK2-P6XBD1□□S X-axis: SA6R

■ IK2-P6XBD2□□S X-axis: SA6C

```
■ IK2-P6XBD3□□S X-axis: SA6C
```

■ IK2-P6XBD3□□S X-axis:	(Unit: mm/s)	
Stroke	50~750	800
Speed type	(Every 50mm)	(mm)
SS	640	575

■ IK2-P6XBC1□□S X-axis: SA7R

■ IK2-P6XBC2□□S X-axis: SA7C

■ IK2-P6XBC3□□S X-axis: SA7C

Stroke Speed type	50~700 (Every 50mm)	750 (mm)	800 (mm)
MM	280	275	245
НН	560		500
SS	640		

■ IK2-P6XBB1□□S X-axis: SA8R

■ IK2-P6XBB2□□S X-axis: SA8C

■ IK2-P6XBB3□□S X-axis: SA8C

■ IK2-P6XBB3□□S X-axis: SA8C								
Stroke Speed type	50~900 (Every 50mm)	950 (mm)	1000 (mm)	1050 (mm)	1100 (mm)			
MM	300	285	260	235	220			
HH			400					
SS			650					

(Unit: mm/s)

■ IK2-P6XBE1□□S X-axis: WSA16R

■ IK2-P6XBE2□□S X-axis: WSA16C

■ IK2-P6XBE3□□S X-axis: WSA16C

		(
Speed type	50~1050 (Every 50mm)	1100 (mm)
MH	210	205
НН	36	55

■ IK2-P6YBD1□□S Y-axis: SA6R

■ IK2-P6YBD2□□S Y-axis: SA6C

■ IK2-P6YBD3□□S Y-axis: SA6C

Stroke Speed type	50~650 (Every 50mm)	700 (mm)	750 (mm)	800 (mm)
SM SH	800	735	650	575
21				

■ IK2-P6YBI1□□S Y-axis: SA6R

■ IK2-P6YBI2□□S Y-axis: SA6C

■ IK2-P6YBI3□□S Y-axis: SA6C

				(=,=,
Stroke	50~650	700	750	800
Speed type	(Every 50mm)	(mm)	(mm)	(mm)
SH	800	735	650	575

■ IK3-P6BBE1□□S X-axis: WSA16R

■ IK3-P6BBE2□□S X-axis: WSA16C

■ IK3-P6BBE3□□S X-axis: WSA16C (Unit: mm/s) Stroke 50 ~ 1050 1100 (Every 50mm) (mm) Speed Type MHL MHM 210 205 MHH MHS

■ IK4-P6BBB1□□S X-axis: SA8R

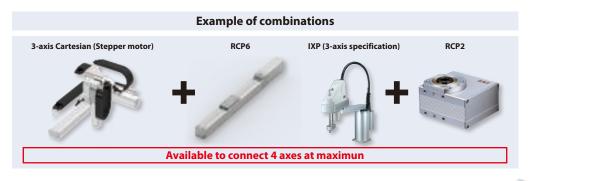
■ IK4-P6BBB2□□S X-axis: SA8C

■ IK4-P6BBB3□□S X-axis: SA8C

■ IK4-P6BBB3□□S X-axis: SA8C									
Stroke Speed Type	50 ~ 900 (Every 50mm)	950 (mm)	1000 (mm)	1050 (mm)	1100 (mm)				
MM	300	285	260	235	220				

R-Axis Allowable Moment of Inertia, and Angular Velocity and Angular Acceleration/Deceleration

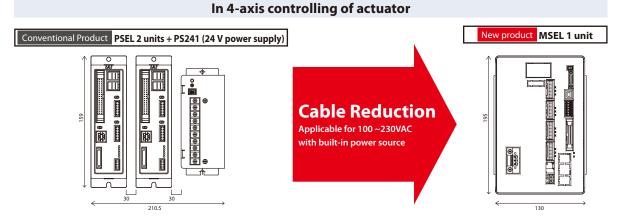
R-axis allowable moment of inertia	Set angular velocity	Set acceleration/deceleration
0.010kg·m ²	300 deg/s	0.10 G (1,000 deg/s ²)
0.008kg·m ²	400 deg/s	0.18 G (1,778 deg/s ²)
0.006kg·m ²	500 deg/s	0.28 G (2,778 deg/s ²)
0.005kg·m ²	600 deg/s	
0.004kg·m ²	800 deg/s	0.30 G (2,940 deg/s ²)
0.003kg·m² or less	1,000deg/s	



Features

Control maximum of 4 axes available with stepper motor mounted ROBO Cylinder

It is also available for interpolation operation, widening the range of possible applications



Available to connect ROBO Cylinders RCP6/RCP5/RCP4

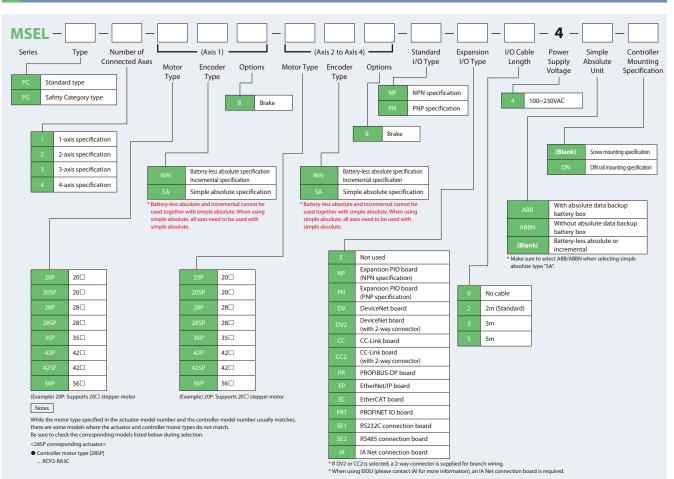
By applying PowerCON, it is now possible to perform interpolation operation with ROBO Cylinders RCP6/RCP5/RCP4, which are applicable for high-output driver, but were not feasible with the program controller PSEL in the past.

Reduced wiring/space saving

Until now, with 4 axes controlled for the actuator, 2 controllers (PSEL) for 2-axis control and a 24 V power supply were required. Using MSEL with a built-in power supply, 4-axis control is possible with 1 controller. As a result, wiring is reduced and space is saved.

Equipped with expansion I/O slot

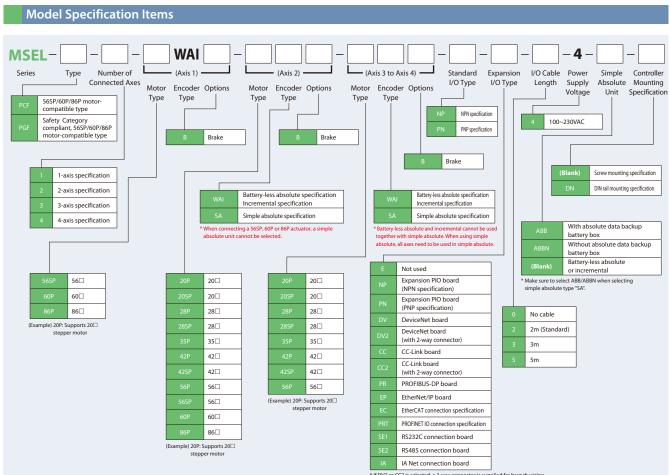
In addition to standard IO (IN 16 points / OUT 16 points), one slot is available as the expansion I/O slot. The expansion I/O is available to select from either a PIO (IN 16 points / OUT 16 points) or one of the various available communication boards.


List of Models

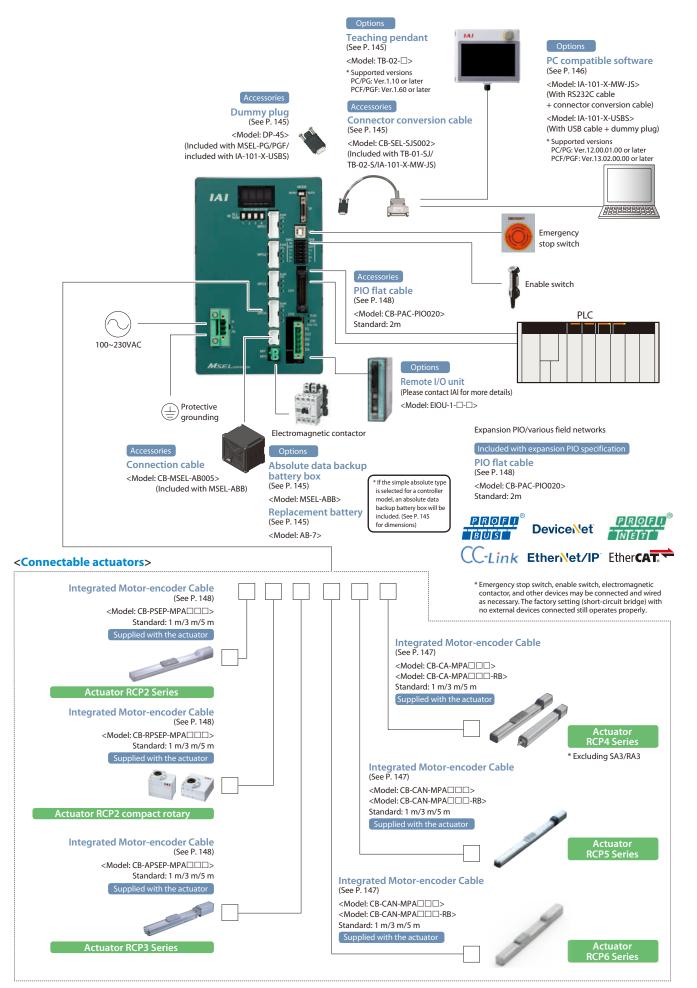
Program controller available for operation of RCP6/RCP5/RCP4/RCP3/RCP2 series actuator. A single unit can handle various forms of control.

Type name		PC	PG		
Туре		Standard type Safety Category type			
External view					
Max. number of controlled as	(es	4			
No. of positions		30,000 poin	ts		
Power supply		Single-phase 100~	-230VAC		
Safety Category		В	3 *1		
Battery-less absolute 1-axis		0			
Incremental	2-axis	0			
	3-axis	0			
Simple absolute	4-axis	0			

*1: To comply with the safety category, the customer will need to install a safety circuit external to the controller.


Model Specification Items

When connecting an actuator with the motor type 56SP, 60P, or 86P.


List of Models								
Type name		PCF			Τ	PGF		
Туре	56SP/60P/86P	motor	-compatible type		S	afety Category compliant,	56SP/60P	/86P motor-compatible type
External view								
Max. number of controlled axes					4			
No. of positions				30,00)0 p	oints		
Power supply			Si	ngle-pha	se 10	00~230VAC		
Safety Category		В					3 *1	
Standard price	1 Base price Number of axes Price 1-axis specification O 2-axis specification O 3-axis specification O	1 2 Base price 565P, 60P, 86P Number of axes Price 1-axis specification + 2-axis specification - 2-axis -						Price Standard price by specification
	4-axis specification O							

*1: To comply with the safety category, the customer will need to install a safety circuit external to the controller.

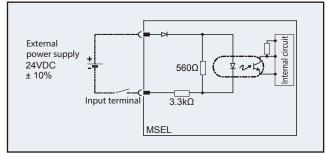
* If DV2 or CC2 is selected, a 2-way connector is supplied for branch wiring. * When using EIOU (please contact IAI for more information), an IA Net connection board is required.

141 MSEL

•	cation item		Description		
Power supply input voltage			Single-phase 100~230 VAC ±10%		
Power supply current			2.9A typ. (100 VAC), 1.4A typ. (200 VAC), 1.2A typ. (230 VAC)		
Power frequency range			50/60Hz ±5%		
Motor type			Stepper motor (servo control)		
Supported encoders			Incremental Encoder/Battery-Less Absolute Encoder		
Data storage device			FlashROM/FRAM		
Number of program steps			9,999		
Number of positions			30,000		
Number of programs			255		
Number of multi-tasks			16		
Operation mode	Serial commu	nication	0		
	Program				
	Communicatio	on method	RS232 (asynchronous communication)		
SIO interface	Baud rate		9.6, 19.2, 38.4, 57.6, 76.8, 115.2kbps		
	Live wire connection	TP port	x		
	connection	USB			
		Number of input points	16 points		
		Input voltage	24VDC ± 10%		
	Input	Input current	7mA/circuit		
	specification	ON voltage	Min.16VDC		
		OFF voltage	Max.5VDC		
		Leak current	Allowable leak current: 1mA max.		
Standard PIO interface		Isolation method	Photocoupler insulation		
		Number of output	16 points		
		Load voltage	24VDC ± 10%		
	Output	Max. current	100mA/1 point, 400mA/8 points (Note 1)		
	specification	Saturated voltage	Max.3V		
		Leak current	Max.0.1mA		
		Isolation method	Photocoupler insulation		
			Expansion PIO NPN specification (16IN/16OUT)		
Applicable expansion I/O interfa	ce		Expansion PIO PNP specification (16IN/16OUT)		
			CC-Link (remote device station), DeviceNet, PROFIBUS-DP, PROFINET IO, EtherCAT, EtherNet/IP, IA Net, RS232C, RS485		
Calendar/clock function	Retention time	e	Approx. 10 days		
	Charging time		Approx. 100 hours (full charge) data retention is possible even if the batteries are not fully charge		
Protection function			Overcurrent, abnormal temperature, fan speed degradation monitoring, encoder disconnection, etc.		
Operating temperature range			0 to 40°C		
Operating humidity range			85% RH max. (no condensation or freezing)		
Installation	Mounting dire	ction	Vertical mounting (exhaust-side top)		
	Mounting met	hod	Screw mounted or DIN rail mounted		
Rush current			15A typ. (100 VAC), 30A typ. (200 VAC): 5ms max. (Ambient temperature 25°C/No cycling of the power)		
Air cooling method			Forced air cooling		
External dimensions			Width 130mm x Height 195mm x Depth 125mm		
Mass			Approx. 1400g		

Note 1: The total load current is 400mA for every eight points from standard I/O No. 316. (The maximum current per point is 100mA.)

PIO Signal Chart

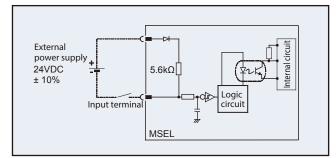

Pin No.	Category	Assignment	Pin No.	Category	Assignment
1A	24V	P24	1B		OUT0
2A	24V	P24	2B		OUT1
3A	-	-	3B		OUT2
4A	-	-	4B		OUT3
5A		INO	5B		OUT4
6A		IN1	6B		OUT5
7A		IN2	7B		OUT6
8A		IN3	8B	Output	OUT7
9A		IN4	9B	Output	OUT8
10A		IN5	10B		OUT9
11A		IN6	11B		OUT10
12A	Input	IN7	12B		OUT11
13A	input	IN8	13B		OUT12
14A		IN9	14B		OUT13
15A		IN10	15B]	OUT14
16A		IN11	16B		OUT15
17A		IN12		-	-
18A		IN13	18B	-	-
19A		IN14	19B	0V	N
20A		IN15	20B	0V	N

Pin Lavouts for Standard PIO Connector/Expansion PIO Connector

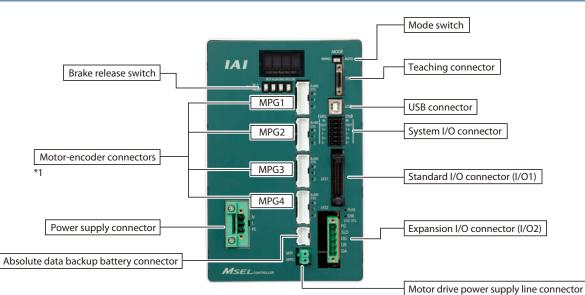
[Input] External input specification (NPN specification)

ltem	Specification
Input voltage	24VDC ±10%
Input current	7mA, 1 circuit
ON/OFF voltage	ON voltage: min. 16.0VDC; OFF voltage: max. 5.0VDC
Insulation method	Photocoupler insulation

* The port numbers in the circuit diagram below are the default port numbers set at time of shipping.
* The allowable leakage current when input is off is 1mA or less.



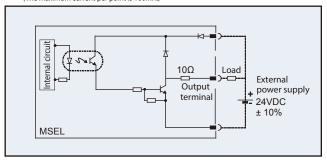
* Please refer to the instruction manual for standard I/O (PNP specification).


Expansion I/O (NPN Specification) Internal Circuit

[Input] External input specification

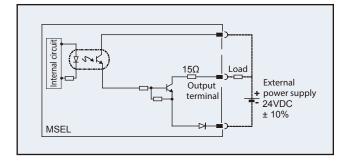
ltem	Specification
Number of input	16 points
Input voltage	24VDC ±10%
Input current	4mA, 1 circuit
ON/OFF voltage	ON voltage: 18VDC min. (3.5mA) OFF voltage: 6VDC max. (1mA)
Insulation method	Photocoupler insulation

Name of Each Component

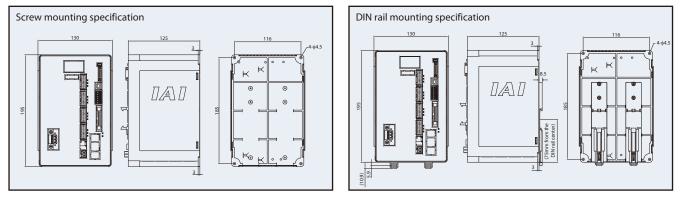


*1: Do not connect a motor to the wrong MPG1, MPG2, MPG3, or MPG4 connector. This may lead to malfunction or failure.

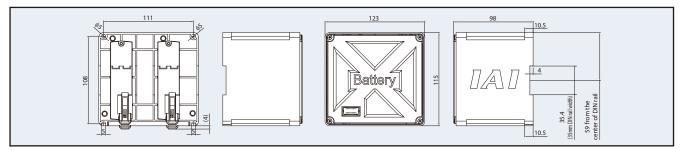
[Output] External output specification (NPN specification)


ltem	Specification	
Load voltage	24VDC ±10%	TD62084
Maximum load current	100mA/1 point, 400mA/8 points (Note)	(equivalent) used
Leakage current	0.1mA max./point	(equivalent) used
Insulation method	Photocoupler insulation	

* The port numbers in the circuit diagram below are the default port numbers set at time of shipping. Note: The total load current is 400mA for every eight points from standard I/O No. 316. (The maximum current per point is 100mA.)



[Output] External output specification


[outbat]	· · · · · · · · · · · · · · · · · · ·
ltem	Specification
Number of output	16 points
Rated load current	24VDC ±10%
Max. current	50mA, 1 circuit
Insulation method	Photocoupler insulation

Controller

Absolute data backup battery box

Options

Teaching pendant

Features A teaching device equipped with functions such as program and position input, trial operation, monitoring, etc.

Model TB-02-

Configuration

Specifications

Rated voltage	24V DC
Power consumption	3.6W or less (150mA or less)
Ambient operating temperature	0 to 40°C
Ambient operating humidity	20~85% RH (no condensation)
Environmental resistance	IP20
Mass	470g (TB-02 unit only)

-0 0

Absolute data backup battery box

Overview If the simple absolute type is selected with the code ABB, the absolute data backup battery box is included with the controller. However, if the battery box is ordered as a separate unit, batteries will not be included, only the box itself. If the battery is needed, please purchase it separately (Model: AB-7).

Model MSEL-ABB (battery sold separately)

External Dimensions See P. 145

* Cable that connects the absolute data backup battery box and MSEL (Model: CB-MSEL-AB005) is included with the box.

Dummy plug

Features Required when operating safety category specification (MSEL-PG/PGF) units or when operated using a USB cable. (MSEL-PG/PGF type, PC software IA-101-X-USBS accessory)

Model DP-4S

Connector conversion cable

Features Converts a teaching pendant or RS232C cable D-sub 25-pin connector to an MSEL teaching connector. (TB-01-SJ, TB-02-S, IA-101-X-MW-JS accessory)

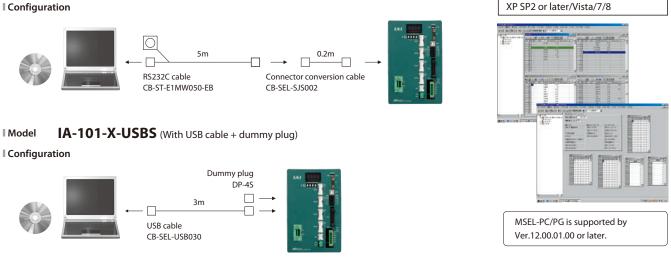
Model CB-SEL-SJS002

Replacement battery

Overview	Replacement battery for the absolute data
	backup battery box.

Model AB-7

* The number of required absolute batteries is the same as the number of axes.


Compatible with Windows

PC compatible software (Windows only)

Features This is start-up support software which comes equipped with functions such as program/position input, trial operation, monitoring, etc. The functions required for debugging have been significantly improved to shorten the start-up time.

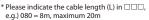
IA-101-X-MW-JS (With RS232C cable + connector conversion cable) Model

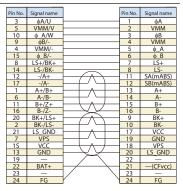
Configuration

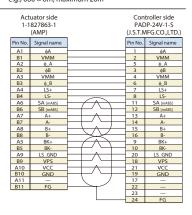
CB-ST-E1MW050-EB cannot be used "when building an enable system using the system I/O connector and an external power supply." or "when building a redundant safety circuit". (The use of CB-ST-A2MW050-EB is required.)

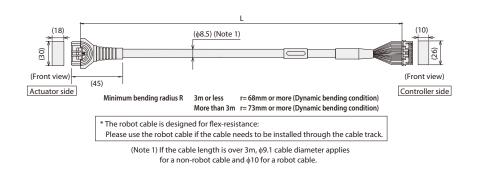
Maintenance Parts

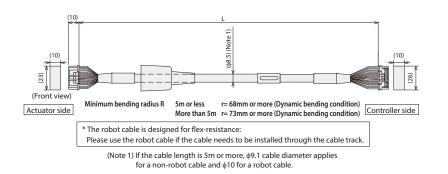
When placing an order for a replacement cable, please use the model name shown below. (* For connectable actuators, please contact IAI for more information.)


Table of compatible cables

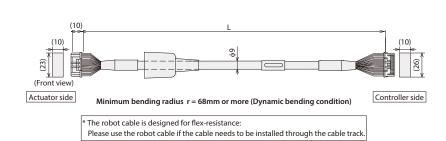

		Model name	Integrated Motor-encoder Cable	Integrated Motor-encoder Robot Cable
1	RCP6/RCP6CR/RCP5/RCP5CR/RCP5W (Models other than (3))		CB-CAN-MPA	CB-CAN-MPA
2	RCP4	SA3/RA3/GR		
3	RCP6/RCP6CR RCP5 RCP5W	SA8/RRA8 RA7 (High thrust specification)/RA8/RA10 WSA16/WRA16	CB-CFA3-MPA	CB-CFA3-MPA - RB
4	(M	RCP4/RCP4CR/RCP4W odels other than (2), (5), (6))	СВ-СА-МРА	CB-CA-MPA
5	RCP4	RA6C (High thrust specification)		CB-CFA2-MPA
6	RCP4W	RA7C (High thrust specification)		
\bigcirc		RCP3		
8	RCP2	GRSS/GRLS/GRST/GRHM/GRHB/SRA4R/ SRGS4R/SRGD4R	_	CB-APSEP-MPA
9		RTBS/RTBSL RTCS/RTCSL	-	CB-RPSEP-MPA
10		GRS/GRM GR3SS/GR3SM		
1	RCP2CR RCP2W	RTBS/RTBSL RTCS/RTCSL/RTB/RTBL/RTC/RTCL/RTBB/ RTBBL/RTCB/RTCBL	СВ-САN-МРАППП	CB-CAN-MPA - RB
(12)	RCP2 RA10/HS8 RCP2CR RA8 RCP2W RA8		CB-CFA-MPA	CB-CFA-MPA 🗆 🗆 -RB
13	RCP2W	SA16C		
14)	۸)	RCP2 Aodels other than (8)~(13))	-	CB-PSEP-MPA
		Model name	PIO fla	at cable
15		PCON-CB-CGB/CFB-CGFB	CB-PAC-I	

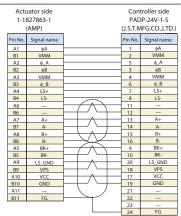


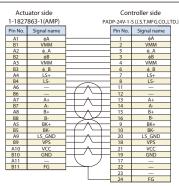


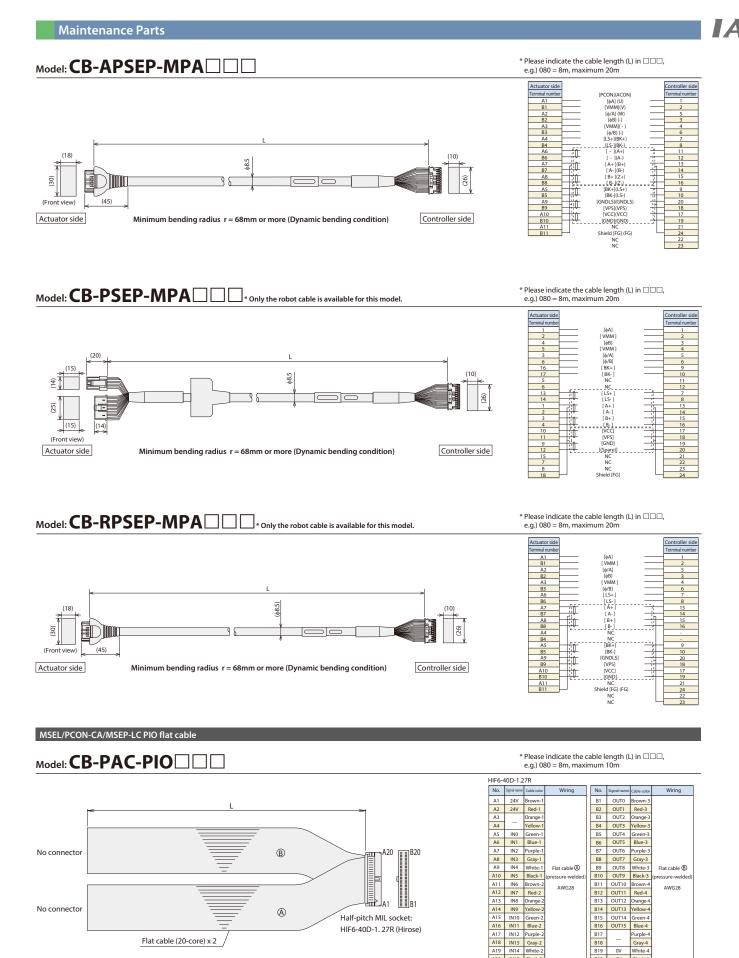


* Please indicate the cable length (L) in $\Box \Box \Box$, e.g.) 080 = 8m, maximum 20m









* Please indicate the cable length (L) in $\Box \Box \Box$, e.g.) 080 = 8m, maximum 20m

* Please indicate the cable length (L) in □□□, e.g.) 080 = 8m, maximum 20m

A20 IN15 Black-

B20 0V Black-4

PCON·CB/CFB

Position Controller for RCP6/RCP5/ RCP4 (PowerCON Applicable) /RCP3/RCP2

Features

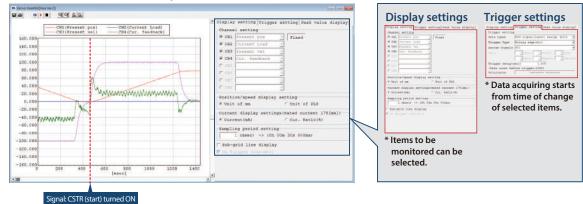
High-resolution battery-less absolute encoder compatible

The RCP6 equipped with a high-resolution battery-less absolute encoder is supported. Since no battery is needed to retain position data, less space is required in the control panel, which in turn leads to lower cost of your equipment. The resolution is increased from 800 pulses /rev to 8,192 pulses/rev.

2 PowerCON Equipped

PowerCON (high-output driver) which can enable the stepper motor to perform at its maximum capacity is now installed. By using PowerCON, the output of the stepper motor is increased by 50%. It contributes to cycle time reduction and productivity improvement.

3 Collision Detection Function Equipped

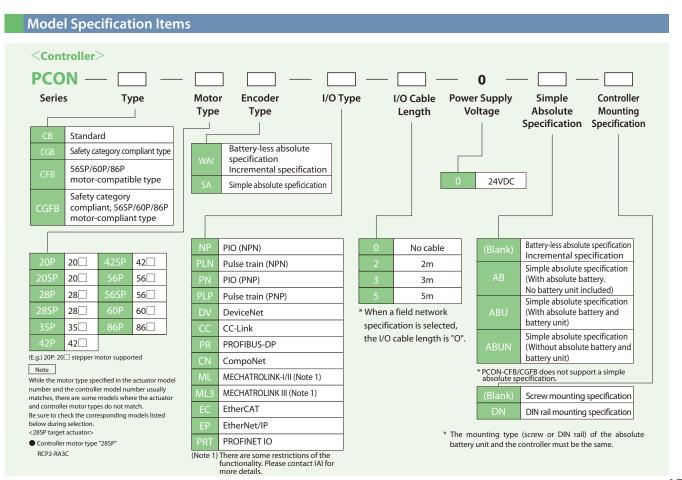

This function stops the operation immediately when the actuator comes into contact with an object. RCP6

The actuator stops without crashing, so that damage to the actuator can be minimized.

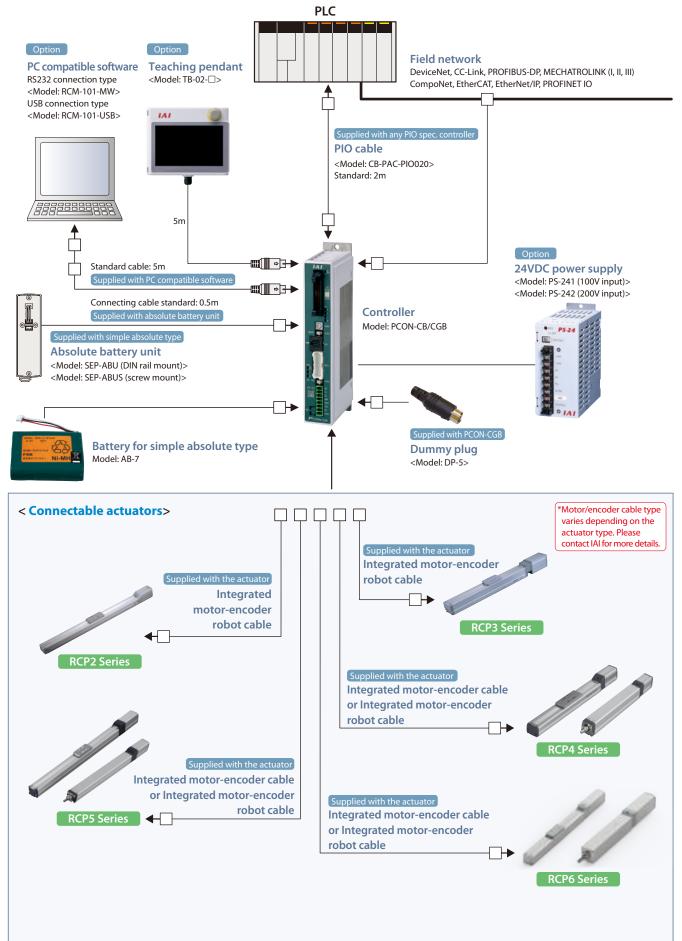
4 Enhanced Monitor Functions

The PC compatible software can display information about the actuator and controller in operation as waveforms. *Information that can be displayed: Command current value, current speed/position, and PIO signals (start, positioning completion, alarm, etc.) Using the trigger function, the end user can specify a particular moment, either a change in PIO signals or a designated moment during the actuator's operation time, to begin displaying the waveforms.

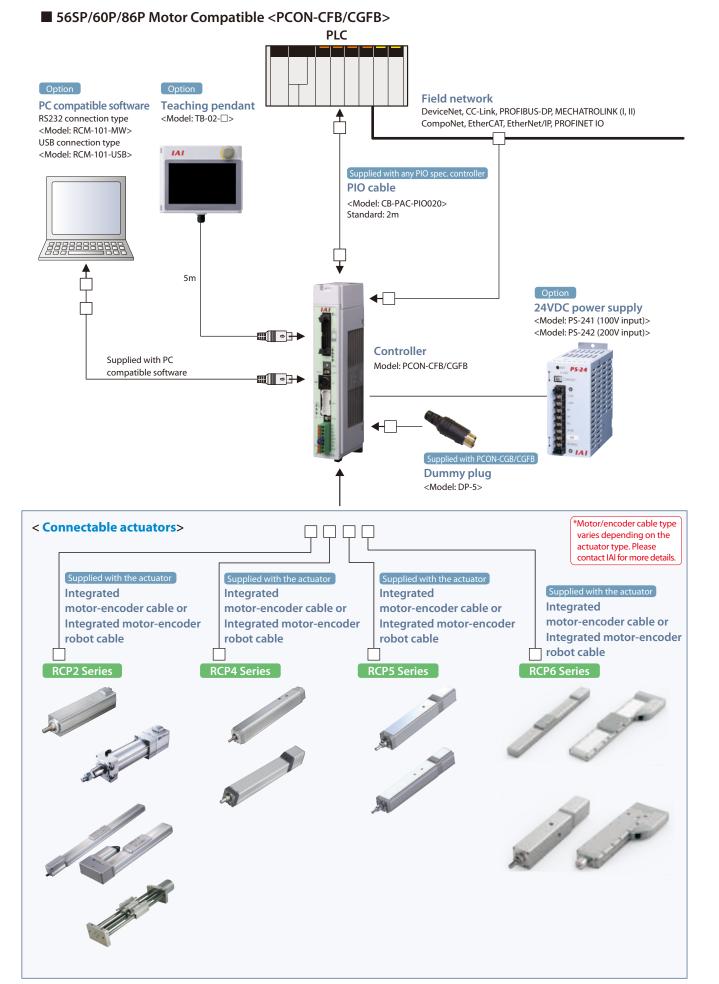
Monitor function screen (example)



List of Models


IAI

М	odel ni	umber	PCON-CB/CGB, CFB/CGFB										
E	xternal	view											
					Field network type								
	l/O type		Pulse- train type	DeviceNet	CC-Link	<u>PROF</u> O® BUS	CompoNet	MECHATROLINK	MECHATROLINK	Ether CAT.	EtherNet/IP	<u>PROFU</u> ® NET	
					DeviceNet	CC-Link	PROFIBUS- DP	CompoNet	MECHATROLINK I, II*1	MECHATROLINK III*1	EtherCAT	EtherNet/IP	PROFINET IO
I/O typ	pe mod	el number	NP/PN	PLN/PLP	DV	CC	PR	CN	ML	ML3	EC	EP	PRT
	Battery-le specifica Incremen	ess absolute tion tal specification	0	0	0	0	0	0	0	0	0	0	0
PCON- CB/CGB	Cincula	With absolute battery	0	0	0	0	0	0	0	0	0	0	0
CD/CGD	Simple absolute spec.	With absolute battery unit	0	-	0	0	0	0	0	0	0	0	0
	spec.	Without absolute battery	0	-	0	0	0	0	0	0	0	0	0
PCON- CFB/CGFB	specificat	iss absolute ion tal specification	0	_	0	0	0	0	0	0	0	0	0


*1MECHATROLINK I/II is treated as an Intelligent I/O and supports only asynchronous commands. MECHATROLINK III is compatible with standard servo profiles.

PowerCON150 <PCON-CB/CGB>

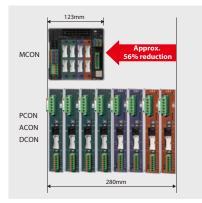
MCON-C/CG

CON Series Position Controller 8-axis type

MCON-LC/LCG CON Series Position Controller PLC function equip

PLC function equipped type

Features


MCON-C/CG, MCON-LC/LCG Common

Saves space and reduces cost

It saves space in the control panel and significantly reduces the total cost by combining 8^{*} controllers into one.

* For MCON-C/CG

Accommodates a wide range of actuators

It corresponds to actuators with battery-less absolute encoders, ultra-compact minicylinders, multi-rotation rotaries and more, expanding the operable actuators from small to large.

In addition, it is equipped with the PowerCON (high-output driver), and achieves maximum speeds 1.5 times higher and maximum load capacities over 2 times higher than conventional models when used in combination with the RCP6/RCP5/RCP4 actuators.

Allows the installation of 7 types of driver boards

- (1) Battery-less absolute/incremental driver boards for stepper motor
- (2) Simple absolute driver board for stepper motor
- (3) Battery-less absolute/incremental driver boards for PowerCON
- (4) Simple absolute driver board for PowerCON
- (5) Battery-less absolute/incremental driver boards for AC servo motor
- (6) Simple absolute driver boards for AC servo motor
- (7) Incremental driver boards for brush-less DC motor

Many useful functions

Servo monitoring in AUTO mode function

- · AUTO mode servo monitoring can now be performed using multiaxis controllers.
- In addition, the monitoring can start from the moment that the condition of a selected signal changes. (Trigger function)

Calendar function

· With the addition of the clock function, the alarm history is displayed with the time of occurrence, making it easier for the alarm to be analyzed.

Smart tuning function

· The optimum acceleration and deceleration are set according to the payload to be carried.

Off-board tuning function (For AC servo motor)

· The optimum gain is set according to the payload.

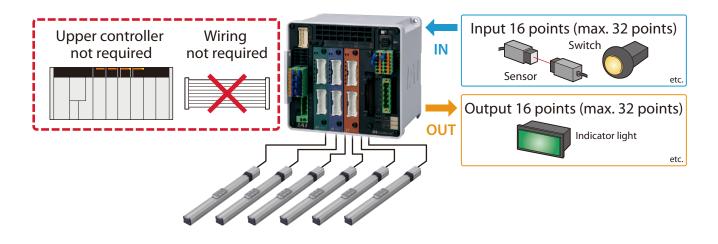
Vibration control function (For AC servo motor)

· It reduces the shaking (vibration) of the workpiece attached to the slider.

Acceleration/deceleration mode specification

· The acceleration and deceleration patterns can be specified from the trapezoid pattern, first-order delay filter and S-shaped motion.

Axis name display function


· The axis name can be displayed in the PC compatible software and touch panel teaching box.

* Some functions cannot be used, depending on the network. Please refer to the instruction manual.

Capable of operating actuators by ladder programs and ON/OFF control of I/O (input and output) signals. Small-scale systems can be controlled by MCON-LC/LCG only. Load on the main PLC can be reduced by performing distributed control using MCON-LC/LCG for each procedure. In addition, it enables easier program simplification and troubleshooting.

* Please refer to the table below for more information about ladder programs.

🛠 LC-LADDER


Features of ladder software

As MCON-LC/LCG can be controlled by ladder programs, those who are familiar with PLC can easily use it. In addition, "Dedicated Commands" for moving the actuator are available within the ladder program, making it even easier to control.

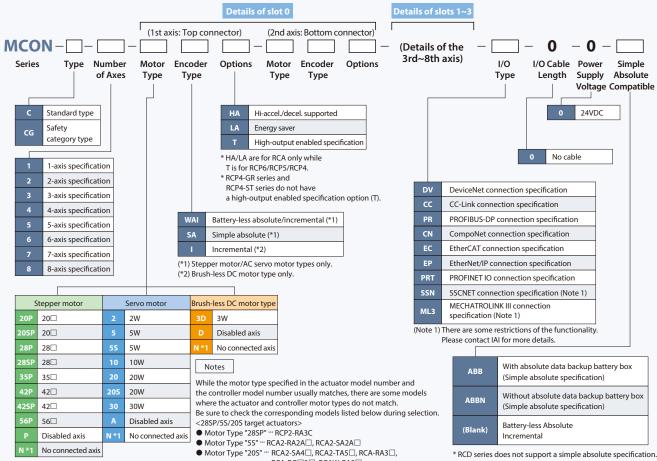
The editing software "LC-LADDER" can be used to easily write, monitor and debug ladder programs.

Program writing

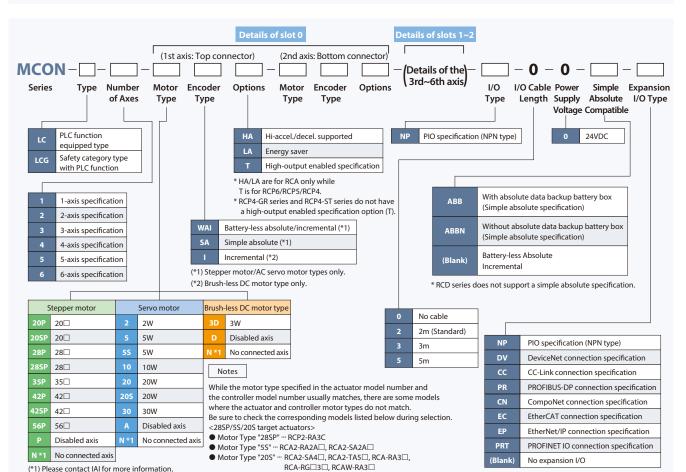
Programs can be written using 27 types of basic command (contact command, output commands, etc.) and 53 types of application command (data comparison, arithmetic, logical, etc.).

Run the program under the specified conditions to check the operation of the program.

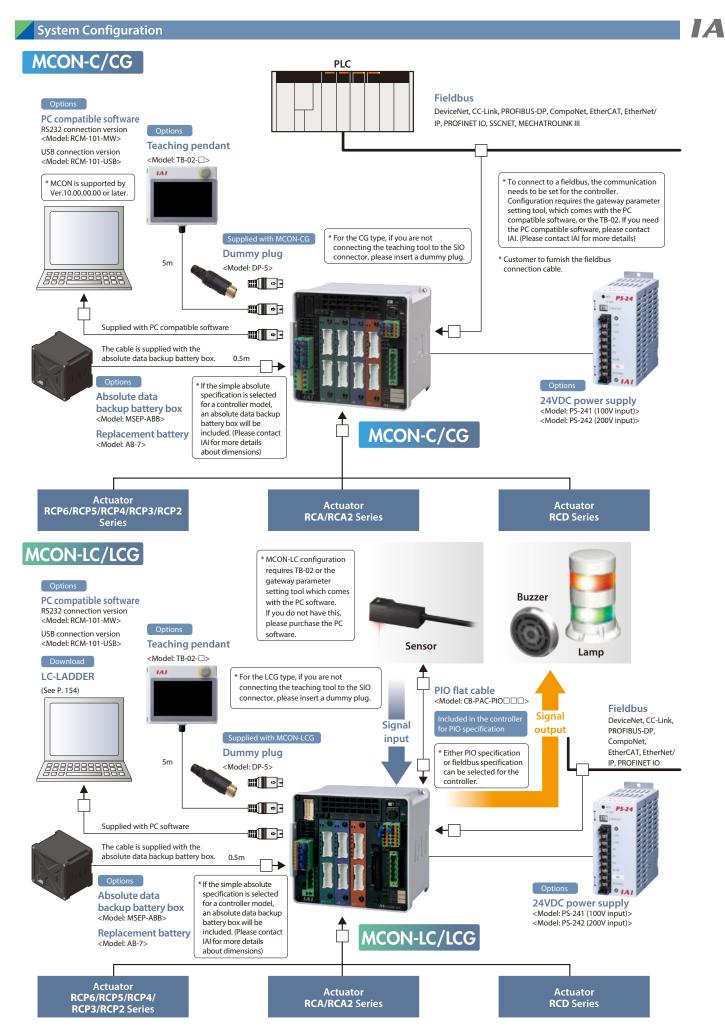
of


Monitoring

The state when the program is run can be checked by respective functions.


You can check the program on a PC (test run) without operating it on the controller.

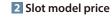
Free * LC ladder can be downloaded for free here: www.intelligentactuator.com/welcome-to-our-members-area/ charge



(*1) Please contact IAI for more information.

RCA-RG□3□, RCAV-RA3□,

155 MCON-C/MCON-LC



Standard Price Table

Calculate the standard price of the MCON controller based on 1 base price by type and add 2 slot model price, 3 quantity of simple absolute, 4 quantity of batteries for simple absolute, 5 I/O type, and 6 expansion I/O type.

1 Base price by type

Select a standard type controller (MCON-C/CG) or PLC function equipped type (MCON-LC/LCG).

÷

Add the price of the slot models specified in the 0~3 slots.

3 Quantity of simple absolute encoders

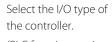
Add the price of the number of axes to be operated by the simple absolute.

+

	1		
Base	price by type		
Description	Model Specification Items	Price	
Standard type	MCON-C	0	_
Safety Category type	MCON-CG	0	
PLC function equipped type	MCON-LC	0	
Safety Category type with PLC function	MCON-LCG	0	

2					
Slot model price (Add the total amount of slots to be used)					
	De	etails of slot	Model Specification Items	Price	
		Battery-less Absolute/ Incremental (For PowerCON)	□PWAIT-N	0	
	1-axis	Simple absolute (For PowerCON)	□PSAT-N	0	
	1-6	Battery-less Absolute/ Incremental (For standard)	□PWAI-N	0	
Stepper motor		Simple absolute (For standard)	□PSA-N	0	
		Simple absolute (For standard) +	□PSA-□PSA	0	
	S	Simple absolute (For standard)			
	2-axis	Battery-less absolute/ Incremental (For standard) + Battery-less abs./ Incremental (For standard)	□PWAI-□PWAI	0	
	1-axis	Battery-less Absolute/ Incremental (For standard)	□WAI-N	0	
		Simple absolute (For standard)	□SA-N	0	
AC servo motor	2-axis	Battery-less absolute/ Incremental (For standard) + Battery-less abs./ Incremental (For standard)	□wai-□wai	0	
	2-	Simple absolute (For standard) + Simple absolute	□SA-□SA	0	
		(For standard)			
Brush-less	1-axis	Incremental (For standard)	3DI-N	0	
DC motor	2-axis	Incremental (For standard) + Incremental (For standard)	3DI-3DI	0	

3				
Quantity of simple absolute encoders				
Number of axes	Price			
1-axis	0			
2-axis	0			
3-axis	0			
4-axis	0			
5-axis	0			
6-axis	0			
7-axis	0			
8-axis	0			


4 Quantity of batteries for simple absolute encoders

Add the total battery price of simple absolute (model: ABB) for applicable axes.

+

+

5 I/O type

(PLC function equipped type "NP" is the only option.

+

6 Expansion I/O type

Select the expansion I/O type of the controller.

(Not required for standard type controllers)

	4		
	Quantity of ba for simpl absolute enc	itteries e oders	
	Number of axes	Price	
	1-axis	0	
+	2-axis	0	+
	3-axis	0	
	4-axis	0	
	5-axis	0	
	6-axis	0	
	7-axis	0	
	8-axis	0	

	F	
	5	
I/O type (NP is of the PLC function	only availabl n equipped t	e for ypes.)
Type	Model Specification Items	Price
PIO specification (NPN specification)	NP	0
DeviceNet connection specification	DV	0
CC-Link connection specification	СС	0
PROFIBUS-DP connection specification	PR	0
CompoNet connection specification	CN	0
EtherCAT connection specification	EC	0
EtherNet/IP connection specification	EP	0
PROFINET IO connection specification	PRT	0
SSCNET connection specification	SSN	0
MECHATROLINK III connection specification	ML3	0

	6		
Expansic (PLC function eq	on I/O type Juipped type	e only)	
Туре	Model Specification Items	Price	
PIO specification (NPN specification)	NP	0	
DeviceNet connection specification	DV	0	
CC-Link connection specification	СС	0	
PROFIBUS-DP connection specification	PR	0	
CompoNet connection specification	CN	0	
EtherCAT connection specification	EC	0	
EtherNet/IP connection specification	EP	0	
PROFINET IO connection specification	PRT	0	

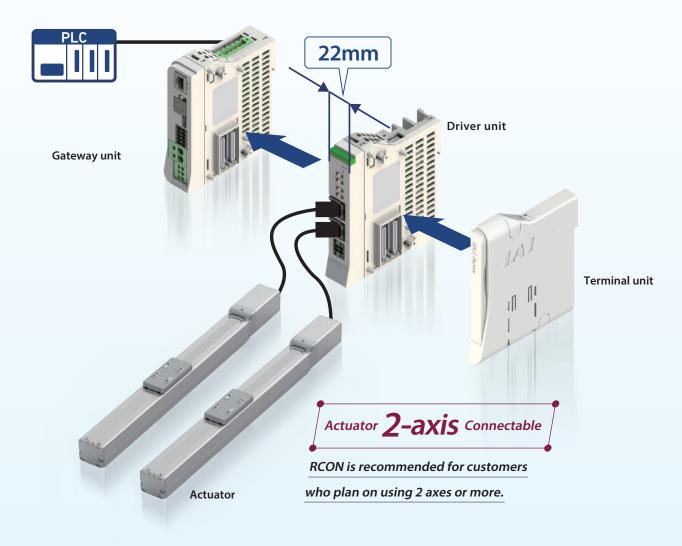
+

Price
Standard price by specification

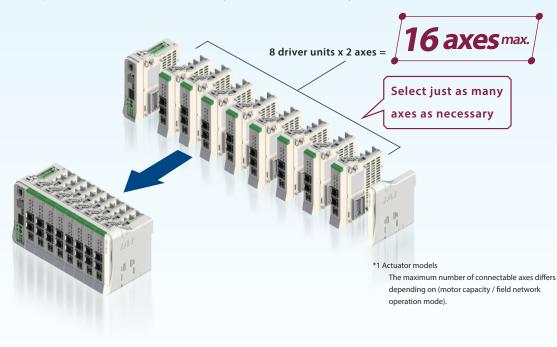
* No need to add **3** and **4** for the battery-less absolute type.

RCON

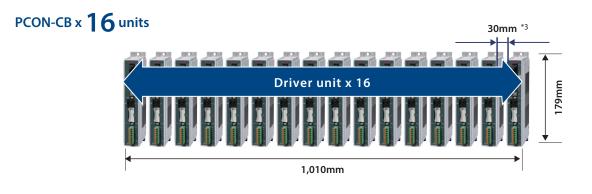
www.intelligentactuator.com


SPACE SAVING

Saves space inside the control panel


RCON is recommended for actuators with two axes or more.

Up to 2 axes of actuators can be connected to one RCON driver unit with 22mm width, making it ideal for saving space in the control panel.


Up to 16 axes¹¹ of actuators can be connected.

There will be no wasted space as driver units can be added in just the amount necessary.

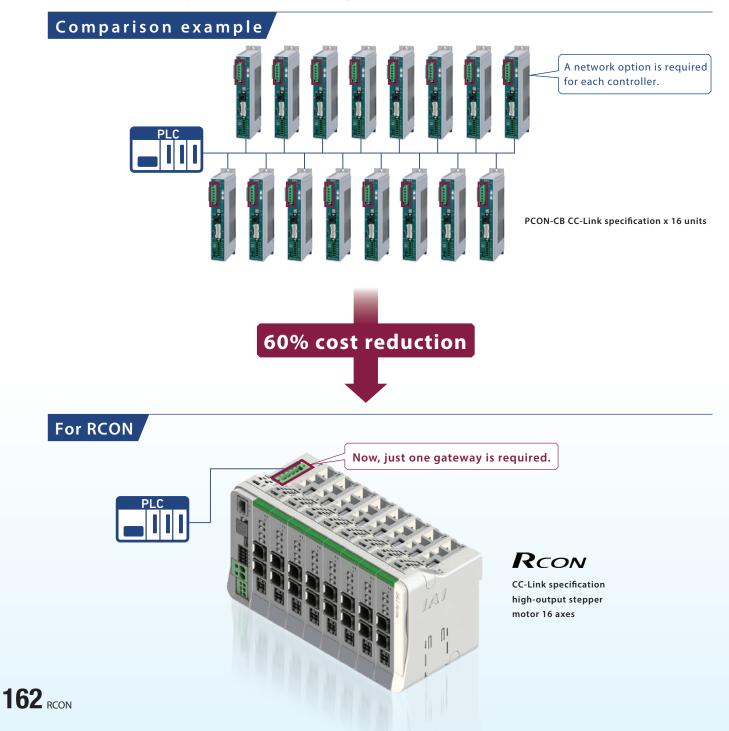
Saves up to 85%¹² of control panel space.

Up to about 85% of control panel space can be saved, compared with models that connect a 1-axis actuator to a single driver unit.

*3 Minimum distance required for natural heat dissipation of the controller

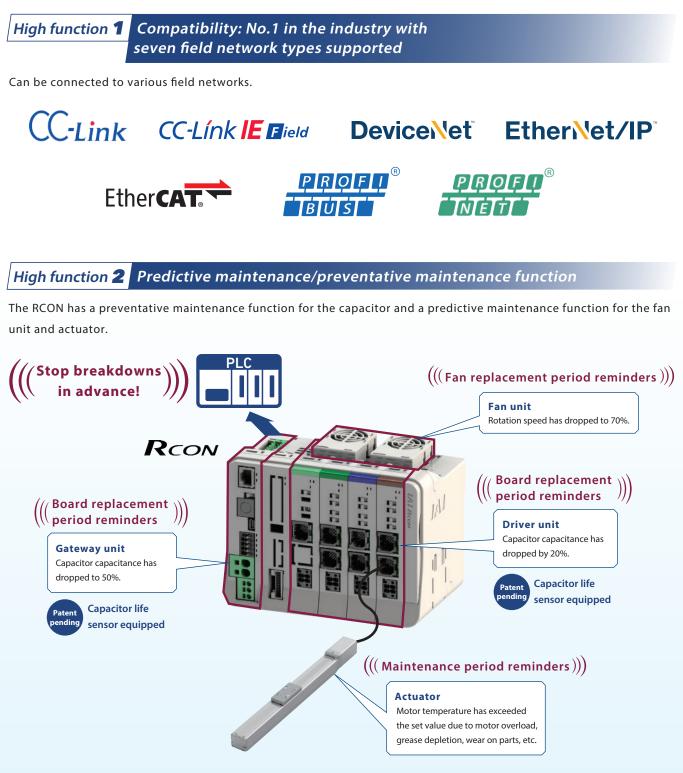
*2 IAI product comparison

RCON x 16-axis connection specification

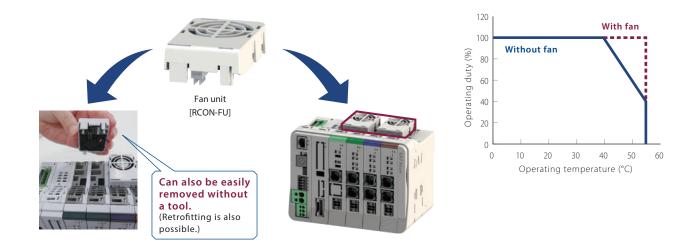


COST REDUCTION

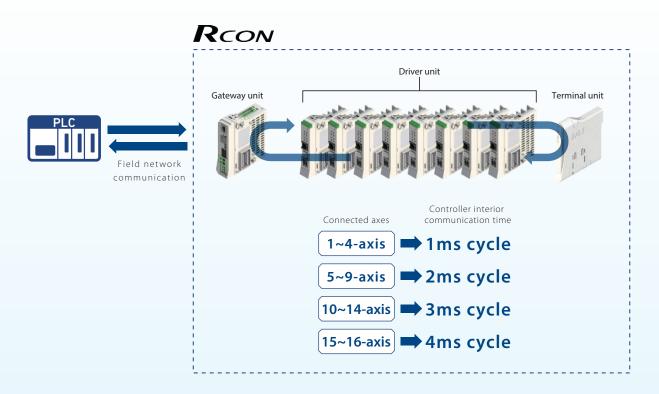
Reduces costs by as much as 60%^{*4}. *4 IAI product comparison


The conventional type ([Comparison example] below) requires network options installed to match the number of controllers.

RCON can control driver units for up to 16 axes of actuators with a single gateway, allowing cost reductions up to 60% or so. It is especially recommended when using multiple axes.


HIGH PERFORMANCE

Seven high-performance functions that only IAI is capable of delivering

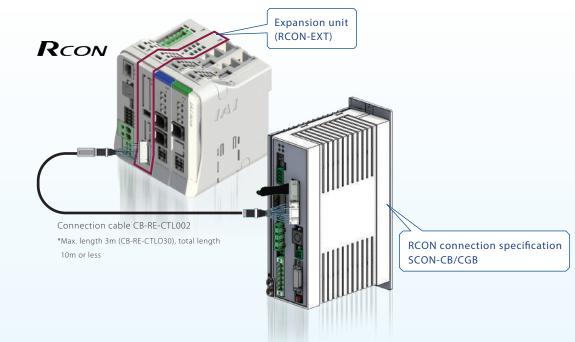

High function 3 Supports controller installation environment temperatures of 0 to 55°C

Install the optional fan unit to enable use in environments of 0 to 55°C without lowering actuator operating duty. (one fan unit can be mounted across a driver unit and a terminal unit)

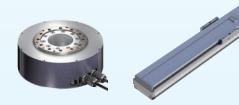
High function **4** Controller interior communication time is 4ms cycle

Controller interior communication time is 4ms even when 16 actuators are connected.

High function 5 No. 1 in the industry for number of supported actuators (332 IAI actuator models^{*}).


Compatible with RCP2/3/4/5/6, RCA/2, RCD, RCL Series

Supports actuators equipped with a Battery-less absolute encoder as well as those with simple absolute and incremental encoders.

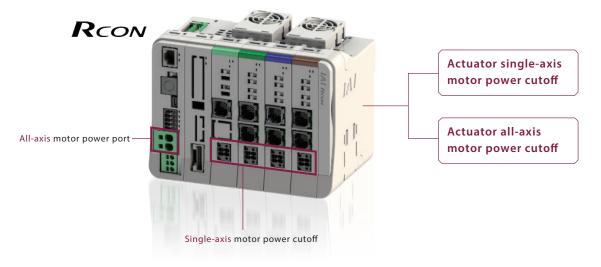


Compatible with RCS2/3/4, IS(D)B, SSPA, LSA, NS, DDA Series

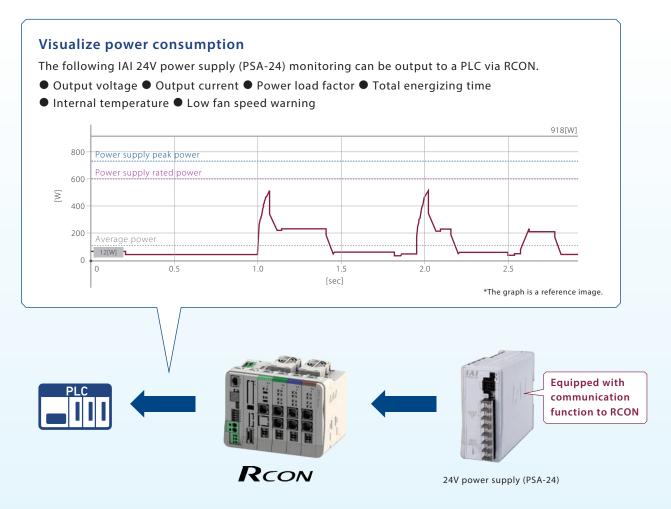
When the SCON's RCON connection specification option (-RC) is selected, it can be connected to the RCON expansion unit (RCON-EXT) to operate an actuator equipped with a large-capacity motor. One RCON-EXT can connect to multiple SCON-CB controllers.

Large-capacity motor equipped actuator

* IAI General Catalog product series / type model

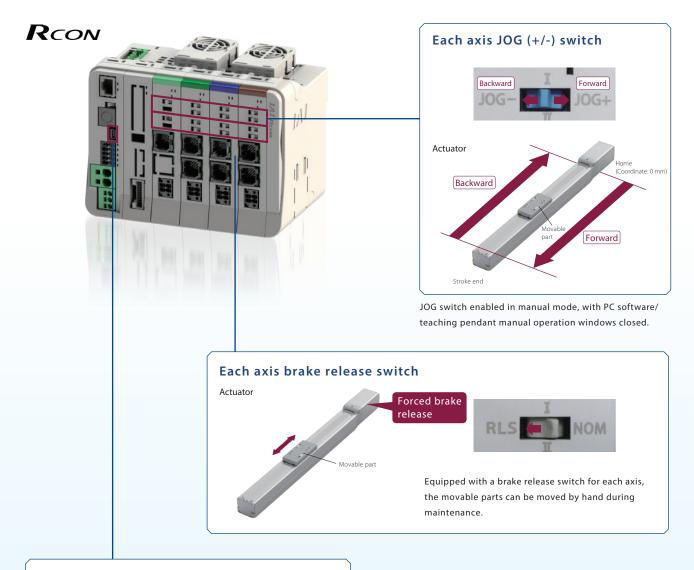

Note that servo press actuator models, LSA-W21H, EC Series, SCARA robots,

TTA, ZR units and Wrist Units are not supported.


* As of December 2018

High function **6** Motor power cutoff method can be selected.

In accordance with customer safety function applications, the motor power (drive source) cutoff method at emergency stop can be selected through the RCON wiring method.



High function **7** Helps visualize equipment with 24V power monitor

Enables easy start-up and maintenance.

Even without a teaching pendant or PC teaching software, each axis can be moved forward/backward.

USB port

Connection to a PC is possible using a **commercial USB cable**.

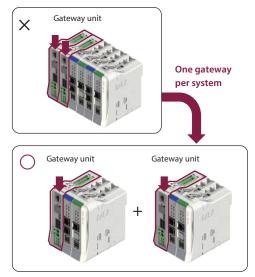
Dedicated cables are not required. *Compatible with miniUSB (mini-B).

The actuator series are classified into two categories according to the table below.

*Note that servo press actuator models, LSA-W21H, EC Series, SCARA robots, TTA, ZR units and Wrist Units cannot be connected.

Step 2 Gateway unit selection

Select the gateway unit model from the network type.


Network type	Gateway unit model	
Device Net [®]	RCON-GW/GWG-DV	<selection examples<="" th=""></selection>
CC-Link	RCON-GW/GWG-CC	Select 1
CC-Línk	RCON-GW/GWG-CIE	
₽₽₽₽₽ ₿ŬŜ	RCON-GW/GWG-PR	-
Ether CAT	RCON-GW/GWG-EC	-
EtherNet/IP	RCON-GW/GWG-EP	-
<u>prof</u> ® Niti	RCON-GW/GWG-PRT	-

* GW: Gateway unit of standard specifications

GWG: Gateway unit of safety category type.

Contact IAI for additional safety category items (teaching pendant/TP adapter/ dummy plug/cable, etc.) Caution

Only one gateway unit can be connected per system. When using two units or more, divide it into two.

16 axes of actuators can be connected to one gateway unit.

Step 3 Driver unit selection

Select the driver unit model number and required number of units according to the series name and motor type of the actuator(s) to be connected to the RCON.

	Actuator R		R con Driver unit			mple>	
Series	Motor type	External view	Number of axes connected to actuator	Model	Classification	Required units	
RCP2	20P, 28P	Stepper motor	2-axis specification	RCON-PC-2	RCP4 RCP2	1	Select 2
RCP3 RCP4 RCP5	35P, 42P 56P		1-axis specification	RCON-PC-1	RCP6	1	Select 2
RCP6	High thrust motor 56SP, 60P 86P		1-axis specification	RCON-PCF-1		-	
RCA	2 5 10	AC servo motor	2-axis specification	RCON-AC-2	RCA2 RCA2	1	Select 2
RCA2 RCL	20, 20S 30	in the	1-axis specification	RCON-AC-1		-	
PCD	3D	DC brush-less motor	2-axis specification	RCON-DC-2		-	
ΝCD	RCD 3D		1-axis specification	RCON-DC-1	RCD	1	Select 2

Step 4 Simple absolute unit selection

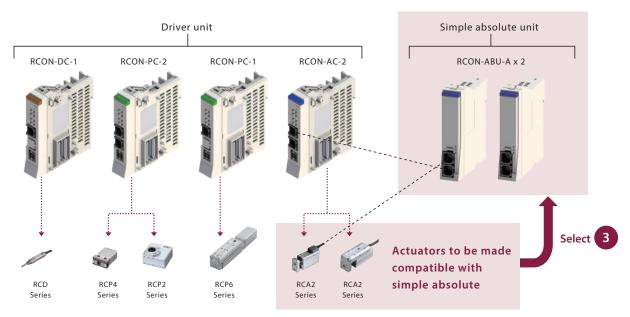
For actuators with simple absolute specification, select simple absolute units (RCON-ABU-A/P) for the required number of axes.

*Connect to the RCON controller using a cable (CB-ADPC-MPA005).

The cable is supplied with the simple absolute unit.

Note: The ambient operating temperature of the simple absolute unit is within the range of 0~40°C.

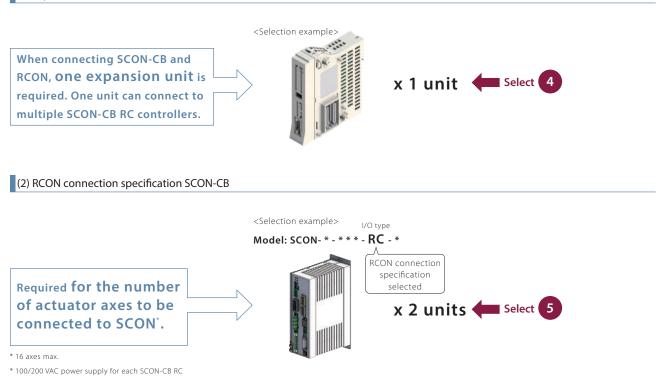
* One simple absolute unit required per axis.


2

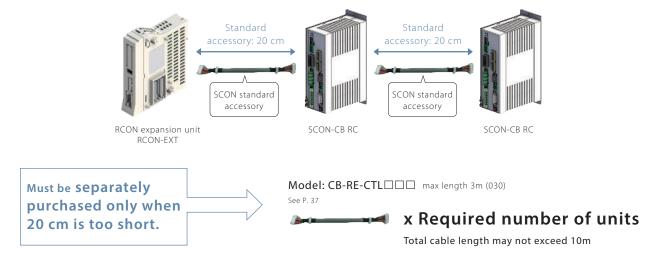
RCON-ABU-A RCON-ABU-P

Simple absolute battery

<Selection example>

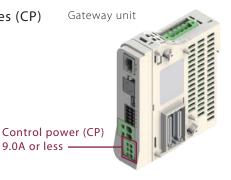

This is an example in which a 2-axis RCA2 Series actuator is selected for simple absolute specification.

Step 5 Expansion unit selection


For actuators to be connected to SCON-CB, select (1) to (3) below.

(1) Expansion unit (Model: RCON-EXT)

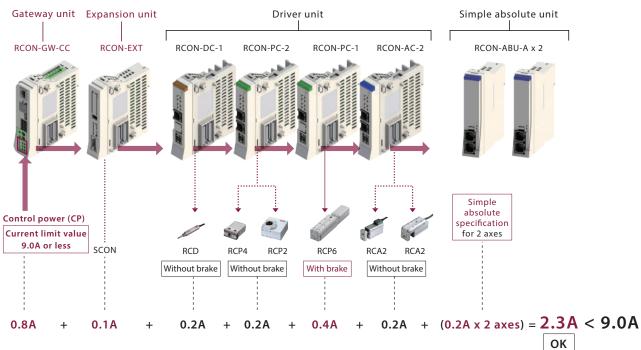
(3) RCON expansion unit to SCON-CB connection cable



Step 6 Calculating various unit control power capacities (CP)

Make sure that the total control power capacity of the various units selected so far is within 9.0A.

How to check


Add up while checking the "Control Power Capacity List" below.

Control Power Capacity List

ltem				
Power supply voltage	24VDC±10%	<selection example=""></selection>		
	Gateway unit (includes terminal unit)		0.8A	x 1 unit
Control power capacity (CP) (Per driver unit)	Driver unit	Brake: No	0.2A	
	(common for all types)	Brake: Yes (1-axis specification)	0.4A	x 1 unit
		Brake: Yes (2-axis specification)	0.6A	
	Expansion unit		0.1A	x 1 unit
	Simple absolute unit (common to all types)		0.2A	x 2 axes

<Selection example>

(Confirmed to be less than 9.0A. If larger than 9.0A, another gateway unit is required.)

Step 7 Calculating various unit motor power capacities (MP)

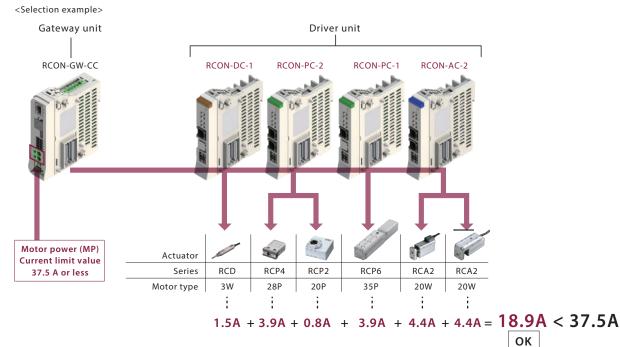
Make sure that the total motor power capacity of the driver units

selected so far is within 37.5A.

How to check

Add up while checking the "Motor Power Capacity List" below. If the maximum current is listed, add the maximum current. If not, add the rated current.

* Do not include the 100/200 VAC power supply to SCON-CB RC.


Motor Power Capacity List

Motor power (MP) 37.5 A or less

	Actuator/driver unit				Max. current			
ltem		Series	Motor type		Rated current	When energy- saving is set		<selection example></selection
		RCP2	CP2 20P/20SP/28P	Without	0.8A	-	-	x 2 axes
		RCP3	28P*	PowerCON	1.9A	-	-	
	Stepper motor RCON-PC	RCP4 RCP5	28P/35P/42P/ 42SP/56P	Without PowerCON	1.9A	-	-	
		RCP6	42517501	With PowerCON	2.3A	-	3.9A	x 1 axis
	Stepper motor RCON-PCF	RCP2 RCP4 RCP5 RCP6	56SP/60P/ 86P	Without PowerCON	5.7A	-	-	
Motor power capacity (MP)		RCA RCA2	5W	Standard / Hi-accel./decel.	1.0A	-	3.3A	
(Per 1-axis)			10W		1.3A	2.5A	4.4A	
\ actuator /			20W	Standard / High	1.3A	2.5A	4.4A	x 2 axes
	AC servo motor RCON-AC		20W(20S)	accel/decel / Energy saving	1.7A	3.4A	5.1A	
			30W		1.3A	2.2A	4.0A	
			2W		0.8A	-	4.6A	
		RCL	5W	Standard / Hi-accel./decel.	1.0A	-	6.4A	
			10W		1.3A	-	6.4A	
	DC brush-less motor RCON-DC	RCD	3W	Standard	0.7A	-	1.5A	x 1 axis

* Applicable models: RCP2-RA3, RCP2-RGD3

Step 8 Fan unit selection

If the controller installation environment may exceed 40°C, a fan unit will be required. (Up to 55°C)

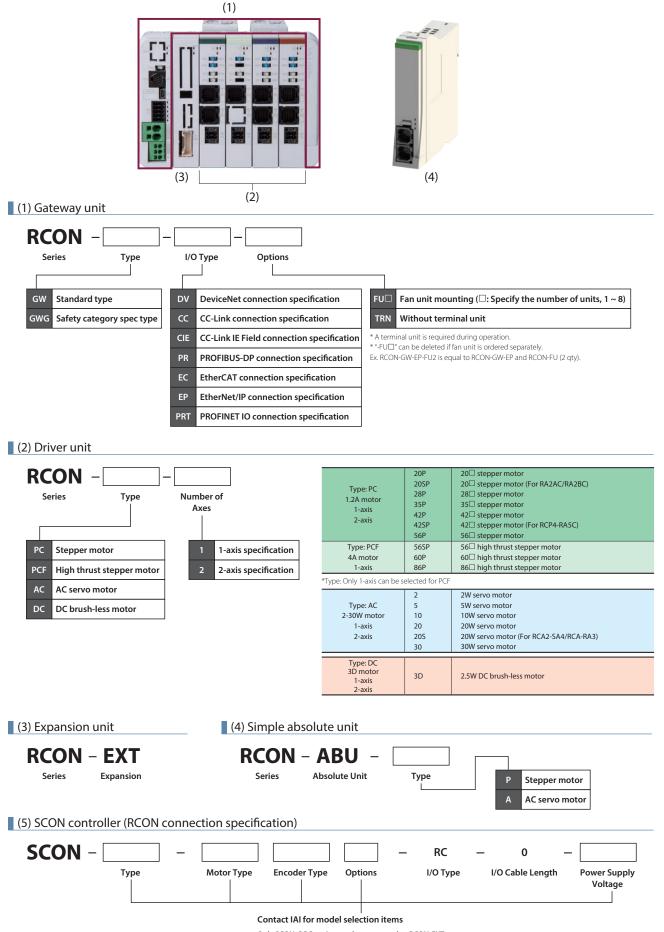
The number of fan units is the total number of driver units divided by 2.

If the total number of driver units is an odd number, add 1 to the total number and divide it by 2 (The last fan will connect to the last driver card and the terminal unit).

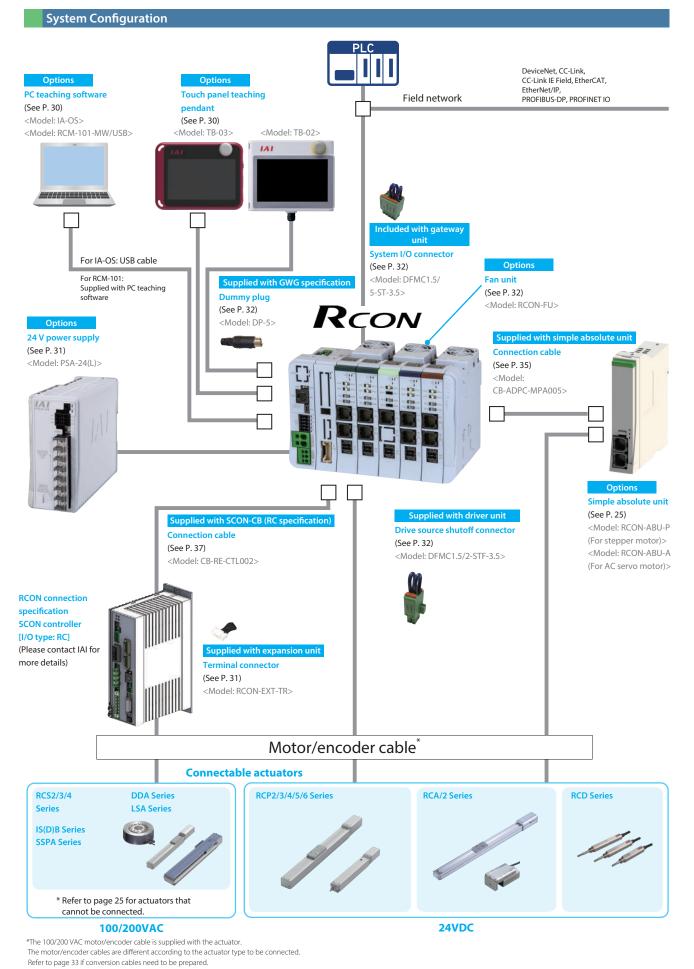
When ordering, be sure to specify the gateway unit model.

<Selection example>

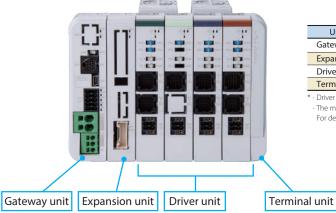
Fan unit [RCON-FU]


Note: The ambient operating temperature of the simple absolute unit is within the range of $0{\sim}40^\circ$ C even when a fan unit is installed.

Step 9 Unit models to be ordered


Order using the model name for each unit.

<selection example=""></selection>	Gateway unit (2 fan units included) [RCON-GW-CC-FU2]	6
	Expansion unit [RCON-EXT]	المراجد الجد الجد المراجع
	Driver unit [RCON-DC-1]	
RCON-	Driver unit [RCON-PC-2] ·····2	
	Driver unit [RCON-PC-1] ·····2	
	Driver unit [RCON-AC-2] ·····2	
	Simple absolute unit [RCON-ABU-A] x 2 ······3	5 5 3 3
	RCON connection specification SCON [SCON-*-***-RC] x 2	


See pages 33 to 34 for applicable cables for each actuator.

Only SCON-C RC option can be connected to RCON-EXT.

The RCON has a modular configuration. Connect each unit under the following conditions.

Unit name	Number of connected units	Location
Gateway unit	1	Placed at far left
Expansion unit	1	Placed to right of gateway unit
Driver unit	16 axes max.*	Placed to left of terminal unit
Terminal unit	1	Placed at far right

* · Driver units can be rearranged.

The maximum number of connectable axes varies depending on the operation mode. For details, refer to "Maximum number of connectable axes (page 26)".

Unit name and single product model number list

	Product name	Model	Reference page	
	DeviceNet connection specification	RCON-GW/GWG-DV	P. 20	
	CC-Link connection specification	RCON-GW/GWG-CC	P. 20	
	CC-Link IE Field connection specification	RCON-GW/GWG-CIE	P. 21	
Gateway unit (GWG: Safety category type)	PROFIBUS-DP connection specification	RCON-GW/GWG-PR	P. 21	
(and, surely category type)	EtherCAT connection specification	RCON-GW/GWG-EC	P. 22	
	EtherNet/IP connection specification	RCON-GW/GWG-EP	P. 22	
	PROFINET IO connection specification	RCON-GW/GWG-PRT	P. 23	
Firmen elen unit	For SCON-CB connection	RCON-EXT	P. 25	
Expansion unit	Terminal connector (for SCON-CB)	RCON-EXT-TR	P. 32	
	Stepper motor 1-axis specification	RCON-PC-1		
	Stepper motor 2-axis specification	RCON-PC-2		
	High thrust stepper motor 1-axis specification	RCON-PCF-1		
Driver unit	AC servo motor 1-axis specification	RCON-AC-1	P. 24	
	AC servo motor 2-axis specification	RCON-AC-2		
	DC brush-less motor 1-axis specification	RCON-DC-1		
	DC brush-less motor 2-axis specification	RCON-DC-2		
Terminal unit	Included with gateway unit	RCON-GW-TR	P. 25	
Simple absolute unit	For RCON-PC	RCON-ABU-P	P. 25	
(1-axis specification)	For RCON-AC	RCON-ABU-A	P. 25	
Fan unit	One for every two driver units	RCON-FU	P. 32	

ltem	Specifications				Details page		
Power supply voltage	24VDC ±10%					-	
Power supply current	Differs with system cor	Differs with system configuration				P.19	
Number of axes controlled	1 to 16 axes *For maxir	num axes, refer to "Maximum	number of connecta	ble axes"		P. 26	
		Incremental 800					
	Stepper motor	Dattana lara Alarah ta	RCP4/RCP5		800		
		Battery-less Absolute			8192		
		Incremental	DC A		800		
Encoder resolution [pulse/r]	AC servo motor	Battery-less Absolute	KCA	RCA		-	
(P	AC SELVO INOLOI	Incremental	RCA2-***N/N/	۹	1048		
		incremental	Excluding RC/	A2-***N/NAN	800		
	DC brush-less motor	Incremental	RCD-RA1R/GF	SN	400		
		incremental	RCD-RA1DA/0	GRSNA	480		
Supported field networks	DeviceNet, CC-Link, CC EtherCAT, EtherNet/IP,	-Link IE Field, PROFIBUS-DP, PROFINET IO					
Configuration units	Gateway unit, driver ur simple absolute unit	nit, expansion unit,				P. 20	
	Trachi	Communication method	RS485				
	Teaching port	Communication speed	9.6/19.2/38.4/57.6	/115.2/230.4kbps	5		
SIO interface	LICP port	Communication method	USB			-	
	USB port Communication speed 12Mbps				1		
Emergency stop/Enable operation	Collective system support with gateway unit STOP signal input, equipped with connectors capable of shutting off the drive power supply to individual axes of each driver unit			-			
Data recording device	Position data and parameters are saved in non-volatile memory (Unlimited rewrites)				-		
Calendar function	Retention function: About 10 days Charging time: About 100 hours				-		
Safety category compliance	B (The safety category specification supports up to category 4 external circuits)				-		
Protection functionality	Overcurrent, abnorma	l temperature, encoder discon	nection, overload			-	
Preventative/predictive maintenance function	Low electrolytic capacitor capacity and low fan rotation speed				-		
Ambient operating temperature	0~55°C *0~40°C for simple absolute units				-		
Ambient operating humidity	85% RH or less, non-co	ndensing				-	
Operating atmosphere	Avoid corrosive gas an	d excessive dust				-	
Vibration resistance		Amplitude: 0.075mm, Frequer time: 10 minutes Number of sv	-	leration: 9.8m/s2		-	
Shock resistance	Drop height: 800mm	1 corner, 3 edges, 6 faces				-	
Electric shock protection mechanism	Class III					-	
Degree of protection				-			
Insulation withstanding voltage	500VDC 10MΩ			-			
		PowerCON: No		5.	0W		
	RCON-PC	PowerCON: Yes		8.	0W		
Generated heat (per unit)	RCON-PCF	PowerCON: No		19	0.2W	-	
	RCON-AC	Standard / High accel/dece	l / Energy saving	4.	5W		
	RCON-DC Standard 3.0W						
Cooling method	Natural cooling and forced cooling by fan unit (option)			-			
Connections between each unit	Unit connection method			-			
Installation/mounting method	ng method DIN rail (35mm) mounting			-			
Regulations/standards	CE Marking, UL Certific	ation (planned), RoHS				-	

Based on the connection configuration, make sure for each unit that the calculated results for control power and motor power do not exceed the current limit value for selection calculation.

Item	Current limit value
Control power	9.0A or less
Motor power	37.5A or less

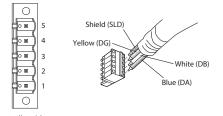
 * Do not include the power supply to SCON-CB RC.

Power supply capacity by unit

Item				Specifications			
Power supply voltage	24VDC±10%						
Control power capacity (per unit)	Gateway unit (includes terminal unit)				0.8A		
			Brake: No		0.2A		
	Driver unit (common for all types)		Brake: Yes (1-axis specification)		0.4A		
			Brake: Yes (2-axis specification)		0.6A		
	Expansion unit				0.1A		
	Simple absolute unit (common to all types)				0.2A		
		Actuator/driver unit				Max. current	
		Series	Motor type		Rated current	When energy- saving is set	
	Stepper motor/ RCON-PC	RCP2 RCP3	20P/20SP/28P	- Without PowerCON	0.8A	-	-
Motor power capacity			28P*		1.9A	-	-
		RCP4 RCP5 RCP6	28P/35P/42P/ 42SP/56P	Without PowerCON	1.9A	-	-
				With PowerCON	2.3A	-	3.9A
	Stepper motor/ RCON-PCF	RCP2 RCP4 RCP5 RCP6	56SP/60P/86P	Without PowerCON	5.7A	-	-
(per 1-axis actuator)	AC servo motor/ RCON-AC	RCA RCA2	5W	Standard / Hi-accel./decel.	1.0A	-	3.3A
			10W		1.3A	2.5A	4.4A
			20W	Standard / High accel/decel / Energy saving	1.3A	2.5A	4.4A
			20W(20S)		1.7A	3.4A	5.1A
			30W		1.3A	2.2A	4.0A
		RCL	2W	Standard / Hi-accel./decel.	0.8A	-	4.6A
			5W		1.0A	-	6.4A
			10W		1.3A	-	6.4A
	DC brush-less motor/ RCON-DC	RCD	3W	Standard	0.7A	-	1.5A

• For operation patterns where acceleration/deceleration operation is performed simultaneously on all axes, and where operating duty is 100%: Motor power must be calculated at the maximum current value. (If the maximum current is not listed, calculate with the rated current.)

Gateway Unit


Features It is used to connect a 24V power supply and a teaching tool to the RCON. (The GWG specification is for the safety category spec type.)

Gateway unit DeviceNet connection specification

Power 24VDC ±10% Control power 0.8A Ambient operating temperature & humidity 0~55°C, 85% RH or less, non-condensing Operating atmosphere Avoid corrosive gas and excessive dust Degree of protection IP20 Mass 155g $W30mm \times H115mm \times D95mm$ External dimensions Connector Cable connector model (manufacturer) Remarks Standard System I/O Cable side DFMC1.5/5-ST-3.5 accessories Standard Cable side MSTB2.5/5-STF-5.08 AUM (Phoenix Contact) Network accessories Controller side MSTBA2.5/5-GF-5.08 AU (Phoenix Contact)

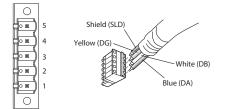
Model: RCON-GW/GWG-DV

Connector for network

Controller side connector top view

Network connection cable

Specifications


Specifications

Pin No.	Signal name (color scheme)	Description	Compatible wire diameter
1	V- (black)	Power supply cable - side	
2	CAN L (blue)	Signal data Low side	
3	-	Drain (shield)	DeviceNet dedicated cable
4	CAN H (white)	Signal data High side	
5	V+ (red)	Power supply cable + side	

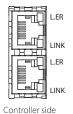
Gateway unit CC-Link connection specification

Connector for network

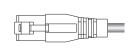
Model: RCON-GW/GWG-CC

Specific	ations				
Power			24VDC ±10%		
Control power			0.8A		
Ambient operating temperature & humidity			0~55°C, 85% RH or less, non-condensing		
Operating atmosphere			Avoid corrosive gas and excessive dust		
Degree of protection			IP20		
Mass			154g		
External dimensions			W30mm × H115mm × D95mm		
Connector		Cable connector model (manufacturer)		Remarks	
System I/O	Cable side	DFMC1.5/5-ST-3.5		Standard accessories	
Network	Cable side	MSTB2.5/5-STF-5.08 AU (Phoenix Contact) With $110\Omega/130\Omega$ terminal resistor		Standard accessories	
	Controller side	MSTB2.5/5-GF			

Network connection cable


Pin No.	Signal name (color scheme)	Description	Compatible wire diameter
1	DA (blue)	Signal line A	
2	DB (white)	Signal line B	
3	DG (yellow)	Digital ground	CC-Link
4	SLD	Connects the shield of shielded cables (5-pin FG and control power connector 1-pin FG connected internally)	dedicated cable
5 FG		Frame ground (4-pin SLD and control power connector 1-pin FG connected internally)	

Controller side connector top view


Gateway unit CC-Link IE Field connection specification

Connector for network

connector top view

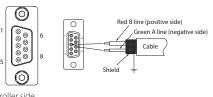
Specifications
Specifications

Model: RCON-GW/GWG-CIE

Model: RCON-GW/GWG-PR

To be prepared by the customer

specifications					
Power			24VDC ±10%		
Control pow	ver		0.8A		
Ambient op	erating temp	erature & humidity	0~55°C, 85% RH or less, r	non-condensing	
Operating a	tmosphere		Avoid corrosive gas and	excessive dust	
Degree of p	rotection		IP20		
Mass			165g		
External dim	External dimensions		W30mm × H115mm × D95mm		
Conn	ector	Cable connector	model (manufacturer)	Remarks	
System I/O	Cable side	DFMC1.5/5-ST-3.5		Standard accessories	
Natural	Cable side	Ethernet ANSI/TIA/ higher shielded 8P	To be prepared by the customer		
		EIA-568-B Category 5e or 8C modular plug (RJ45)			


Network connection cable

Pin No.	Signal name	Description	Compatible wire diameter
1	TP0+	Data 0+	
2	TP0 -	Data 0-	
3	TP1 +	Data 1+	
4	TP2 +	Data 2+	For the Ethernet cable, use a straight
5	TP2-	Data 2-	STP cable of Category 5e or higher.
6	TP1-	Data 1-	
7	TP3 +	Data 3+	
8	TP3 -	Data 3-	

Gateway unit PROFIBUS-DP connection specification

Connector for network

Controller side connector top view

	Power			24VDC ±10%	
	Control pow	ver		0.8A	
	Ambient op	erating temperat	ture & humidity	0~55°C, 85% RI	H or less, non-condensing
Operating atmosphere				Avoid corrosive gas and excessive dust	
Degree of protection		IP20			
Mass				158g	
	External dim	iensions		W30mm × H11	5mm × D95mm
Connector Cable connector (manuf		ector model acturer)	Remarks		
	System I/O Cable side DEMC1 5/5-ST-			3 5	Standard accessories

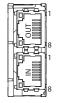
9-pin D sub connector (male)

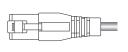
Controller side 9-pin D sub connector (female)

Network connection cable

Cable side

Network


Specifications


Pin No.	Signal name	Description	Compatible wire diameter
1	NC	Not connected	
2	NC	Not connected	
3	B-Line	Signal line B (RS-485)	
4	RTS	Transmission request	
5	GND	Signal GND (insulation)	PROFIBUS-DP dedicated cable (Type A: EN5017)
6	+5V	+5 V output (isolated)	
7	NC	Not connected	
8	A-Line	Signal line A (RS-485)	
9	NC	Not connected	

Gateway unit EtherCAT connection specification

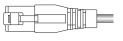
Connector for network

Controller side connector top view

Specific	ations		Mod	el: RCON-GW/GWG-EC
Power			24VDC ±10%	
Control pow	/er		0.8A	
Ambient op	erating temperatu	ure & humidity	0~55°C, 85% RH or less,	non-condensing
Operating at	tmosphere		Avoid corrosive gas and	excessive dust
Degree of p	rotection		IP20	
Mass			152g	
External dim	External dimensions		W30mm × H115mm × D95mm	
Cor	nnector	Cable connect	or model (manufacturer)	Remarks
System I/O	Cable side	DFMC1.5/5-ST	-3.5	Standard accessories
Network	Cable side 5 or higher Shielded 8P8C		/TIA/EIA-568-B Category C modular plug (RJ45)	To be prepared by the customer
Network	Controller side	Ethernet ANSI/TIA/EIA-568-B Category 5 or higher Shielded 8P8C modular jack (RJ45)		

Network connection cable

Specifications


Pin No.	Signal name	Description	Compatible wire diameter
1	TD +	Transmit data +	
2	TD -	Transmit data -	
3	RD +	Receive data +	
4	-	Not used	For the Ethernet cable, use a straight
5	-	Not used	STP cable of Category 5 or higher.
6	RD -	Receive data -	
7	-	Not used	
8	-	Not used	

Gateway unit EtherNet/IP connection specification

Connector for network

Controller side connector top view

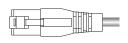
Power 24VDC ±10% Control power 0.8A Ambient operating temperature & humidity 0~55°C, 85% RH or less, non-condensing Operating atmosphere Avoid corrosive gas and excessive dust Degree of protection IP20 Mass 156g External dimensions $W30mm \times H115mm \times D95mm$ Connector Cable connector model (manufacturer) Remarks DFMC1.5/5-ST-3.5 System I/O Cable side Standard accessories Ethernet ANSI/TIA/EIA-568-B Category To be prepared by the Cable side 5 or higher Shielded 8P8C modular plug (RJ45) customer Network Ethernet ANSI/TIA/EIA-568-B Category Controller side 5 or higher Shielded 8P8C modular jack (RJ45)

Network connection cable

Network connection cable					
Pin No.	Signal name	Description	Compatible wire diameter		
1	TD +	Transmit data +			
2	TD -	Transmit data -			
3	RD +	Receive data +			
4	-	Not used	For the Ethernet cable, use a straight		
5	-	Not used	STP cable of Category 5 or higher.		
6	RD -	Receive data -			
7	-	Not used			
8	-	Not used			

Model: RCON-GW/GWG-EP

Model: RCON-GW/GWG-EC



Gateway unit PROFINET IO connection specification

Connector for network

Controller side connector top view

Specific	ations		Mod	el: RCON-GW/GWG-PRT
Power			24VDC ±10%	
Control pow	ver		0.8A	
Ambient op	erating temperat	ure & humidity	0~55°C, 85% RH or less	, non-condensing
Operating a	tmosphere		Avoid corrosive gas and	d excessive dust
Degree of p	rotection		IP20	
Mass			158g	
External dim	ensions		W30mm × H115mm × D95mm	
Con	nector	Cable connecto	r model (manufacturer)	Remarks
System I/O	Cable side	DFMC1.5/5-ST-	3.5	Standard accessories
Network	Cable side	5 or higher	TIA/EIA-568-B Category modular plug (RJ45)	To be prepared by the customer
Network	Controller side	5 or higher	TIA/EIA-568-B Category modular jack (RJ45)	

Network connection cable

Pin No.	Signal name	Description	Compatible wire diameter
1	TD +	Transmit data +	
2	TD -	Transmit data -	
3	RD +	Receive data +	
4	-	Not used	For the Ethernet cable, use a straight
5	-	Not used	STP cable of Category 5 or higher.
6	RD -	Receive data -	
7	-	Not used	
8	-	Not used	

Driver Unit

Features A controller unit for actuator control. Up to two axes can be connected to a single unit.

Compatible motor capacity

Driver unit for RCP series connection

A driver unit for stepper motor connection. Can be connected to all RCP series actuators.

Driver unit for RCA series connection

A driver unit for AC servo motor connection. Can be connected to all RCA series actuators.

RCON-PC-1		1-axis connection	1.2A	
RCON-PC-2	2-axis connection		(□20/28/35/42/56)	
RCON-PCF-1	1-axis	connection *For high thrust	4A (□56/60/86)	
Specifications				
Power		24VDC ±10%		
Control power		(Without brake) 0.2A (With brake, 1-axis specification) 0.4A (With brake, 2-axis specification) 0.6A		
Ambient operating temper & humidity	rature	(Without fan) 0~40°C (With fan) 0~55°C, 85% RH or less, non-condensing		
Operating atmosphere		Avoid corrosive gas and excessive dust		
Degree of protection		IP20		
Mass		(1-axis specification) 175g (2-axis specification) 180g		
External dimensions		W22.6mm × H115mm × D95mm		
Accessories		Drive source shutoff connector (DFMC1.5/2-STF-3.5)		

Туре

Model

Model		Туре	Compatible motor capacity	
RCON-AC-1		1-axis connection	2W - 30W	
RCON-AC-2		2-axis connection	200 - 5000	
Specifications				
Power		24VDC ±10%		
Control power		(Without brake) 0.2A (With brake, 1-axis specification) 0.4A (With brake, 2-axis specification) 0.6A		
Ambient operating temper & humidity	ature	(Without fan) 0~40°C (With fan) 0~55°C, 85% RH or less, non-condensing		
Operating atmosphere		Avoid corrosive gas and excessive dust		
Degree of protection		IP20		
Mass		(1-axis specification) 175g (2-axis specification) 180g		
External dimensions	External dimensions		5mm	
Accessories		Drive source shutoff connec	tor (DFMC1.5/2-STF-3.5)	

Driver unit for RCD series connection

A driver unit for DC brush-less motor connection. Can be connected to all RCD series actuators.

Model	Туре		Compatible motor capacity	
RCON-DC-1		1-axis connection	- 3W	
RCON-DC-2		2-axis connection		
Specifications				
Power		24VDC ±10%		
Control power		(Without brake) 0.2A (With brake, 1-axis specification) 0.4A (With brake, 2-axis specification) 0.6A		
Ambient operating temperature & humidity		(Without fan) 0~40°C (With fan) 0~55°C, 85% RH or less, non-condensing		
Operating atmosphere		Avoid corrosive gas and excessive dust		
Degree of protection		IP20		
Mass		(1-axis specification) 175g (2-axis specification) 180g		
External dimensions		W22.6mm × H115mm × D95mm		
Accessories		Drive source shutoff connector (DFMC1.5/2-STF-3.5)		

Other Units

Expansion unit

SCON-CB/CGB can be connected to operate an actuator with 200V motor.

Model				
RCON-EXT				
Specifications				
Power 24VDC ±10%				
Control power	0.1A			
Ambient operating temperature & humidity	0~55°C, 85% RH or less, non-condensing			
Operating atmosphere	Avoid corrosive gas and excessive dust			
Degree of protection	IP20			
Mass	96g			
External dimensions	W22.6mm × H115mm × D95mm			
Accessories Terminal connector				
Actuators that cannot be connected				

Servo press type, LSA-W21, SCARA robots, TTA, ZR units, Wrist Units

Terminal unit

A terminal resistor for returning RCON serial communication and input/output signals. (Supplied as an accessory with the gateway unit.)

N 11			
Model			
RCON-GW-TR			
Specifications			
Power 24VDC ±10%			
Control power 0.8A			
Ambient operating temperature & humidity	0~55°C, 85% RH or less, non-condensing		
Operating atmosphere	Avoid corrosive gas and excessive dust		
Degree of protection	IP20		
Mass 48g			
External dimensions	W12.6mm × H115mm × D95mm		

Simple absolute unit

This unit is to be connected when using an actuator with incremental specification as absolute specification.

* One unit per axis with simple absolute.

Model	Туре	Compatible motor
RCON-ABU-P	For RCP series connection	Stepper motor
RCON-ABU-A	For RCA series connection	AC servo motor

Specifications

Power	24VDC ±10%
Control power	0.2A
Absolute battery model	AB-7
Battery voltage	3.6V
Charging time	Approx. 72 hours
Ambient operating temperature & humidity	0~40°C, 85% RH or less, non-condensing
Operating atmosphere	Avoid corrosive gas and excessive dust
Degree of protection	IP20
Mass	271g (including 173g for absolute battery)
External dimensions	W22.6mm×H115mm×D95mm
Accessories	Cable (CB-ADPC-MPA005)

Field Network Operation Modes

The field network control operation mode can be selected from the following control modes. Data required for operation (target position, speed, acceleration, push current value, etc.) are written by a connected PLC or other host controller into the specified addresses.

Operation mode	Description	Overview
Direct numerical control mode	This mode allows designating the target position, speed, acceleration/deceleration, and current limit value for pushing numerically. Also, it is capable of monitoring the present position, present speed, and the command current value with 0.01mm increments.	PLC Target position Positioning width Speed, acceleration/deceleration Pushing percentage Control signal Current position Motor current (command value) Alarm code Status signal
Simple direct mode	Can modify any of the stored target positions by numerical value. Also allows monitoring of the present position numerically with 0.01mm increments.	PLC Communication Via a field network
Positioner 1 mode	Registers up to 128 points of position data, and can stop at the registered position. Also allows monitoring of the present position numerically with 0.01mm increments.	Present position Completed position No. Status signal
Positioner 2 mode	Registers up to 128 points of position data, and can stop at the registered position. This mode does not allow monitoring of the present position. This mode has less in/out data transfer volume than the Positioner 1 mode.	PLC Communication via a field network Completed position No. Status signal Actuator
Positioner 3 mode	Registers up to 128 points of position data, and can stop at the registered position. This mode does not allow monitoring of the present position. This mode has less in/out data transfer volume than the Positioner 2 mode, and controls travel with the minimum of signals.	PLC Communication via a field network Control signal Completed position No. Status signal
Positioner 5 mode	Registers up to 16 points of position data, and can stop at the registered position. This mode has less in/out data transfer volume and fewer positioning tables than the Positioner 2 mode, and allows monitoring of the present position numerically with 0.1mm increments.	PLC Communication via a field network Present position Completed position No. Status signal

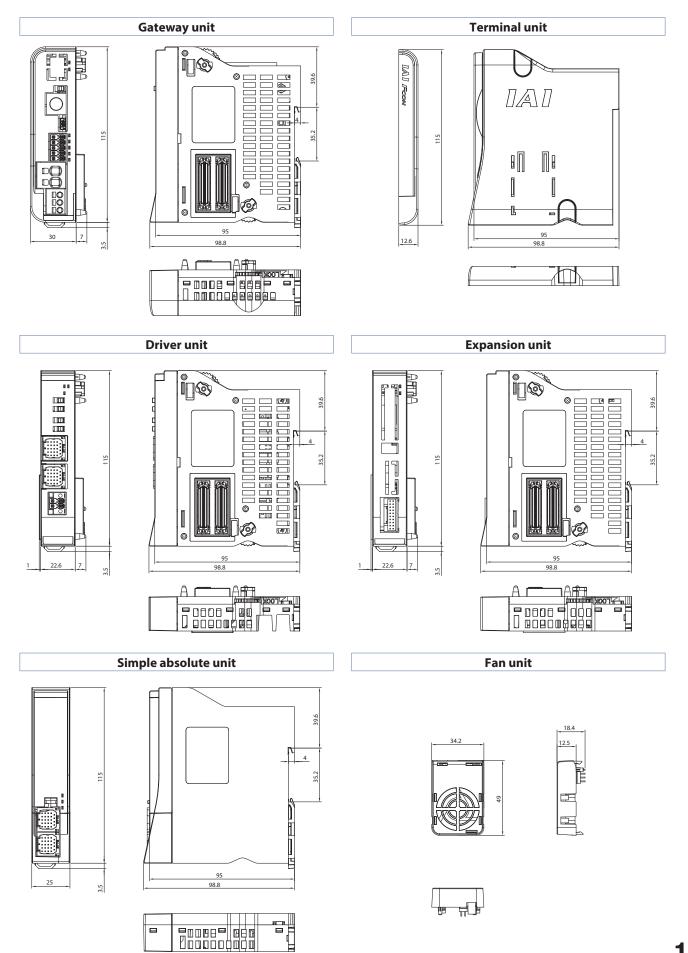
* No remote I/O mode available.

Maximum number of connectable axes

Operation mode Field network	Direct numerical control mode	Simple direct mode	Positioner 1 mode	Positioner 2 mode	Positioner 3 mode	Positioner 5 mode
DeviceNet	8-axis	16-axis	16-axis	16-axis	16-axis	16-axis
CC-Link	16-axis	16-axis	16-axis	16-axis	16-axis	16-axis
CC-Link IE Field	16-axis	16-axis	16-axis	16-axis	16-axis	16-axis
PROFIBUS-DP	8-axis	16-axis	16-axis	16-axis	16-axis	16-axis
EtherCAT	8-axis	16-axis	16-axis	16-axis	16-axis	16-axis
EtherNet/IP	8-axis	16-axis	16-axis	16-axis	16-axis	16-axis
PROFINET IO	8-axis	16-axis	16-axis	16-axis	16-axis	16-axis

	Direct numerical control mode	Simple direct mode	Positioner 1 mode	Positioner 2 mode	Positioner 3 mode	Positioner 5 mode
Number of positioning points	Unlimited	128 points	128 points	128 points	128 points	16 points
Home return motion	0	0	0	0	0	0
Positioning operation	0	0	Δ	Δ	Δ	Δ
Speed, acceleration/ deceleration settings	0	Δ	Δ	Δ	Δ	Δ
Different acceleration and deceleration settings	×	Δ	Δ	Δ	Δ	Δ
Pitch feed (Incremental)	0	Δ	Δ	Δ	×	Δ
JOG operation	Δ	Δ	Δ	Δ	×	Δ
Position data writing	×	×	0	0	×	×
Push-motion operation	0	\bigtriangleup	Δ	Δ	Δ	Δ
Speed changes while traveling	0	Δ	Δ	Δ	Δ	Δ
Pausing	0	0	0	0	0	0
Zone signal output	△ (2 points)	\triangle (2 points)	△ (2 points)	△ (2 points)	 (1 point)	△ (2 points)
Position zone signal output	×	Δ	Δ	Δ	×	×
Overload warning output	0	0	0	0	×	0
Vibration control (Note 1)	×	Δ	Δ	Δ	Δ	Δ
Present position reading (Note 2) (Resolution)	(0.01mm)	(0.01mm)	(0.01mm)	×	×	(Note 3) (0.1mm)

* \bigcirc : Direct setting is possible, \triangle : Position data or parameter input is required, x: The operation is not supported.

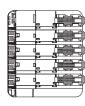

Note 1: This function is limited to the AC servo motor specification.

Note 2: The resolution when connecting a SCON controller to control a DDA motor is 0.001 degree (0.01 degree for positioner 5 mode only).

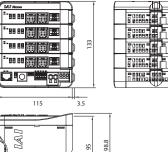
Note 3: The maximum output value in positioner 5 mode is 3,276.7mm (327.67 degrees for DDA motor).

To control the actuator in an operation range exceeding the maximum value, select a different operation mode.

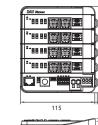
External Dimensions

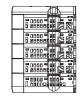


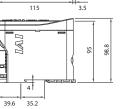
Unit combination examples


Driver units x 4, with fan

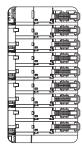
Driver units x 4, without fan

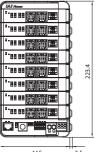


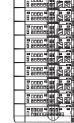


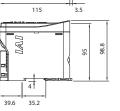


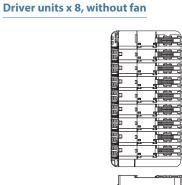
-

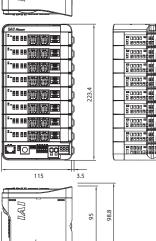

6 I




133


Driver units x 8, with fan



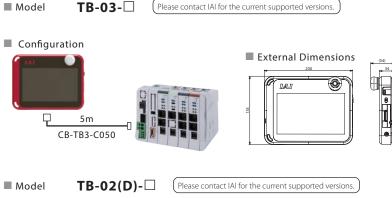

4

39.6 35.2

4

35.2

39.6

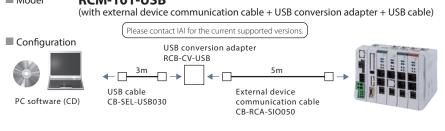


Options

Touch Panel Teaching Pendant

Features A teaching device equipped with functions such as position teaching, trial operation, and monitoring.

Specifications


- opeemeations	
Rated voltage	24VDC
Power consumption	3.6W or less (150mA or less)
Ambient operating temperature	0 to 40°C
Ambient operating humidity	20~85% RH (Non-condensing)
Environmental resistance	IPX0
Mass	670g (TB-03 unit only)
Charging method	Wired connection with dedicated AC adapter/controller
Wireless connection	Bluetooth4.2 class2

Specifications

Rated voltage	24VDC
Power consumption	3.6W or less (150mA or less)
Ambient operating temperature	0 to 40°C
Ambient operating humidity	20~85% RH (Non-condensing)
Environmental resistance	IP20
Mass	470g (TB-02 unit only)

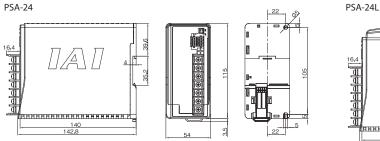
PC Teaching Software (Windows only)

Features Start-up support software which comes equipped with functions such as position teaching, trial operation, and monitoring. Supported Windows versions: 7/8/8.1/10 A complete range of functions needed for making adjustments contributes to shortened start-up time. Model IA-OS Please contact IAI for the current supported versions. Configuration USB cable (to be prepared by the user) 1.41 PC software (CD) Model RCM-101-MW (with external device communication cable + RS232 conversion unit) Please contact IAI for the current supported versions. Configuration RS232 conversion adapter RCB-CV-MW 5m ← 🗅 External device 0.3m PC software (CD) communication cable CB-RCA-SIO050 Model RCM-101-USB

24 V Power Supply

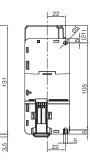
- Overview A power supply the same height as RCON which can be easily installed on control panels.
 It can be connected to RCON to monitor power status.
- Model PSA-24 (Without fan) Model PSA-24L (With fan)

* Non-IAI power supply can be used for RCON.


Specifications Table

•					
ltem	Specifications				
item	100VAC input	200VAC input			
Power input voltage range	100VAC~230VAC ±10%				
Input power supply current	3.9A or less	1.9A or less			
Power capacity	Without fan: 250VA With fan: 390VA	Without fan: 280VA With fan: 380VA			
Inrush current *1	Without fan: 17A (typ) With fan: 27.4A (typ)	Without fan: 34A (typ) With fan: 54.8A (typ)			
Generated heat	28.6W	20.4W			
Output voltage range *2	24VDC	±10%			
Continuous rated output	Without fan: 8.5A (204W), with fan: 13.8A (330W)				
Peak output	17A(408W)				
	86% or more	90% or more			
Parallel connection *3	Max.: 5	5 units			

*1 The pulse width of flowing inrush current is less than 5 ms.


- *2 In order to enable parallel operation, this power supply can vary the output voltage according to the load. Therefore, the power supply unit is dedicated for IAI controllers.
- *3 Parallel connection cannot be used under the following conditions.
 Parallel connection of PSA-24 (specification without fan) and PSA-24L (specification with fan)
 - Parallel connection with a power supply unit other than this power supply
- Parallel connection with PS-24

External Dimensions

Fan unit

Overview An option for forced cooling of the driver unit. 1 fan unit to be mounted per 2 driver units.

Model RCON-FU

Dummy plug

Overview Required for the safety category specification (GWG).

Model DP-5

* This plug is included with RCON-GWG.

Overview A connector for emergency stop input, operation mode switching input from exterior, etc.

Model DFMC1.5/5-ST-3.5

Drive source shutoff connector

Overview A drive source shutoff input connector.

Model DFMC1.5/2-STF-3.5

Terminal connector

Overview Required as a terminal resistor when connecting SCON.

Model RCON-EXT-TR

* This connector is included with RCON-EXT.

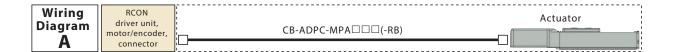
Replacement battery

Overview A replacement battery for the simple absolute unit.

Model AB-7

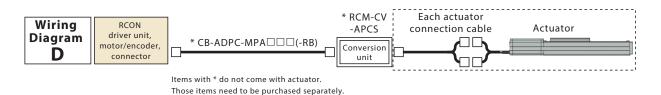
* For RCON-ABU-P & RCON-ABU-A.

When placing an order for a replacement cable, please use the model number shown below.


Table of compatible cables

No.		Actuator	Applicable controller	RCON connection cable (Note 2) (-RB: Robot cable)	RCM-CV-	Wiring
NO.	Series	Target type	symbol	Each actuator connection cable	APCS	diagram
(1)	RCP6 RCP6CR RCP6W	Other than high thrust type (Note 1)	Р5	CB-ADPC-MPA	-	A
(2)	RCP5 RCP5CR RCP5W	High thrust type (Note 1)	P6	CB-ADPC-MPA CB-CAN-AJ002 (conversion cable)	-	В
(3)		Gripper (GR*), ST4525E, SA3/RA3	P5	CB-ADPC-MPA	-	A
(4)	RCP4 RCP4CR RCP4W	High thrust type ^(Note 1)	P6	CB-ADPC-MPA (-RB) CB-CAN-AJ002 (conversion cable)	-	В
(5)		Other than (3), (4)	P5	CB-ADPC-MPA C-RB) CB-CAN-AJ002 (conversion cable)	-	В
(6)	RCP3		P5	CB-RCAPC-MPA	-	с
(7)		RCP2 rotary compact type (standard type) RCP2-RTBS/RTBSL/RTCS/RTCSL	P5	CB-ADPC-MPA (-RB) [CB-RPSEP-MPA]	Required	D
(8)		RCP2CR (clean room type), RCP2W (dust-proof/splash-proof type) Rotary (RT*) of above types GRS/GRM/GR3SS/GR3SM of above types	Ρ5	CB-ADPC-MPA	-	A
(9)	RCP2 RCP2CR RCP2W	GRSS/GRLS/GRST/GRHM/GRHB of all types (standard / clean room / dust-proof/splash-proof) Short type (RCP2 only) RCP2-SRA4R/SRGS4R/SRGD4R	Ρ5	CB-RCAPC-MPA□□□(-RB)	-	с
(10)		High thrust type (Note 1)	P6	CB-ADPC-MPA (-RB) [CB-CFA-MPARB]	Required	D
(11)		Other than (7) to (10)	P5	CB-ADPC-MPA (-RB) [CB-PSEP-MPA]]	Required	D
(12)	RCA2/RCA2	2CR/RCA2W, RCL	A6	CB-RCAPC-MPA	-	С
(13)	RCA RCACR	Short type (RCA only) RCA-SRA4R/SRG54R/SRGD4R	A6	CB-RCAPC-MPA	-	С
(14)	RCACR	Other than (13)	A6	CB-ADPC-MPA (-RB) [CB-ASEP2-MPA]	Required	D
(15)	RCD	RCD-RA1DA, RCD-GRSNA	D6	CB-ADPC-MPA	-	A

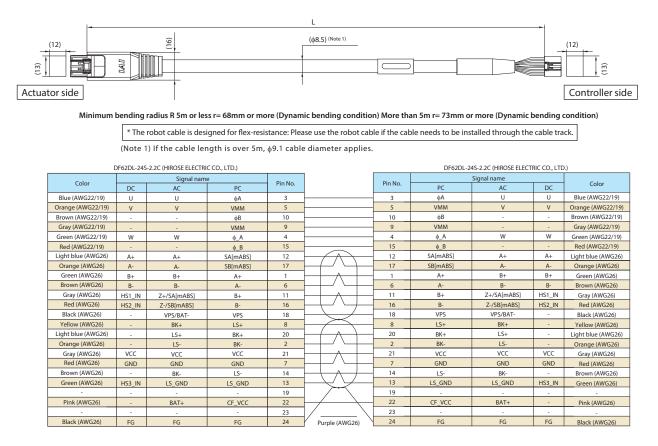
Note 1: An actuator that uses a high thrust stepper motor (56SP, 60P, 86P)


Note 2: Up to 20m from each driver unit to the actuator, with or without the conversion unit.

Note that the maximum length from the D driver unit to the RCD actuator will be 10 m.

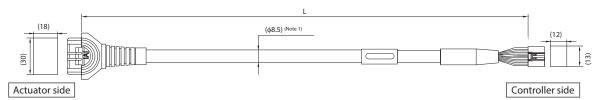
Wiring Diagram B	RCON driver unit, motor/encoder, connector	CB-ADPC-MPA□□□(-RB)	* Conversion cable CB-CAN-AJ002	Actuator	Ĩ
-------------------------------	---	---------------------	------------------------------------	----------	---

Cables in dash lines (-----) come with actuators if the applicable controller designation for RCON (P5/P6/A6/D6) are selected in the actuator model #.


- Non High-Thrust Stepper	:[P5]
- High-Thrust Stepper	:[P6]

- High-Thrust Stepper : [P6]24V Servo : [A6]
- Brush-less DC Servo : [D6]

Ex.

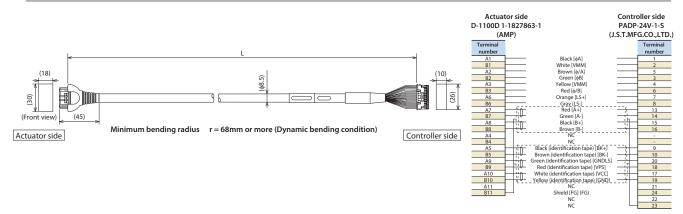

RCP6-SA4C-WA-35P-5-50-P5-5S:	\rightarrow	CB-ADPC-MPAO30 ("S"=3m) cable comes with actuator	[Wiring Diagram A]
RCP6-SA8C-WA-56SP-5-50-P6-S: (High-Thrust Type)	\rightarrow	CB-ADPC-MPA030 ("S"=3m) cable comes with actuator but CB-CAN-AJ002 cable needs to be purchased separately	[Wiring Diagram B]
RCP6-SA4C-WA-35P-5-50-P3-S:	\rightarrow	P3 is not for RCON type cable CB-ADPC-MPA030 ("S"=3m) cable required for RCON connection	
RCA-SA6C-WA-20-5-50-A6-S:	\rightarrow	 "S" 3m cable between RCM-CV-APCS and actuator comes with actuator. Add two more items: RCM-CV-APCS CB-ADPC-MPA (-RB) Shortest non-flex cable is CB-ADPC-MPA002 (200mm) 	[Wiring Diagram D]

Contact IAI for details.

Model CB-RCAPC-MPA

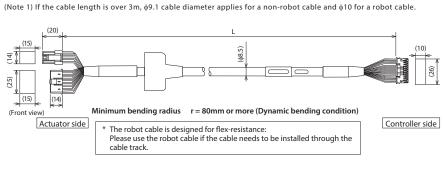
* Please indicate the cable length (L) in $\Box\Box\Box$, e.g.) 030 = 3m, maximum 20m

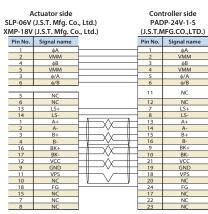
Minimum bending radius R 3m or less r= 68mm or more (Dynamic bending condition) More than 3m r= 73mm or more (Dynamic bending condition)

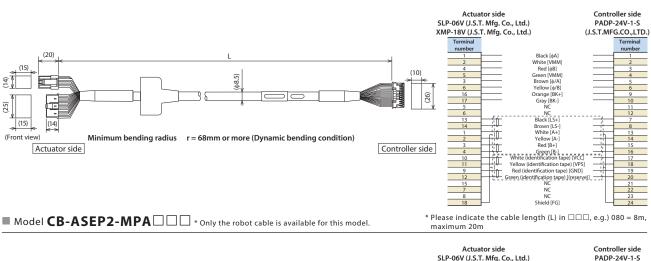

* The robot cable is designed for flex-resistance: Please use the robot cable if the cable needs to be installed through the cable track.

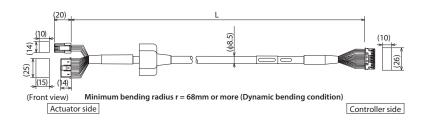
⁽Note 1) If the cable length is over 3m, ϕ 9.1 cable diameter applies.

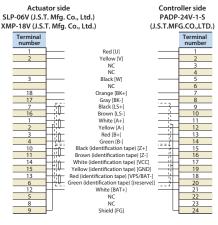
1-1827863-1(AMP)							DF62DL-24	4S-2.2C (HIROSE ELECT	RIC CO., LTE	0.)
Color	Signal name			Pin No.		Pin No.	Signal name			C 1
Color	DC	AC	PC	PILINO.		PITINO.	PC	AC	DC	Color
Blue (AWG22/19)	U	U	φA	A1	A1		φA	U	U	Blue (AWG22/19)
Orange (AWG22/19)	V	V	VMM	B1		5	VMM	V	V	Orange (AWG22/19)
Brown (AWG22/19)	-	-	φB	B2		10	φB	-	-	Brown (AWG22/19)
Gray (AWG22/19)	-	-	VMM	A3		9	VMM	-	-	Gray (AWG22/19)
Green (AWG22/19)	W	W	φ_A	A2		4	φ_A	W	W	Green (AWG22/19)
Red (AWG22/19)	-	-	φ_B	B3 A6 B6	~	15	φ_B	-	-	Red (AWG22/19)
Light blue (AWG26)	A+	A+	SA[mABS]		-	12	SA[mABS]	A+	A+	Light blue (AWG26)
Orange (AWG26)	A-	A-	SB[mABS]			17	SB[mABS]	A-	A-	Orange (AWG26)
Green (AWG26)	B+	B+	A+	A7		1	A+	B+	B+	Green (AWG26)
Brown (AWG26)	B-	B-	A-	B7		6	A-	B-	B-	Brown (AWG26)
Gray (AWG26)	HS1_IN	Z+/SA[mABS]	B+	A8		11	B+	Z+/SA[mABS]	HS1_IN	Gray (AWG26)
Red (AWG26)	HS2_IN	Z-/SB[mABS]	B-	B8		16	В-	Z-/SB[mABS]	HS2_IN	Red (AWG26)
Black (AWG26)	-	VPS/BAT-	VPS	B9		18	VPS	VPS/BAT-	-	Black (AWG26)
Yellow (AWG26)	-	BK+	LS+	A4		8	LS+	BK+	-	Yellow (AWG26)
Light blue (AWG26)	-	LS+	BK+	A5	-(20	BK+	LS+	-	Light blue (AWG26)
Orange (AWG26)	-	LS-	BK-	B5		2	BK-	LS-	-	Orange (AWG26)
Gray (AWG26)	VCC	VCC	VCC	A10		21	VCC	VCC	VCC	Gray (AWG26)
Red (AWG26)	GND	GND	GND	B10		7	GND	GND	GND	Red (AWG26)
Brown (AWG26)	-	BK-	LS-	B4		14	LS-	BK-	-	Brown (AWG26)
Green (AWG26)	HS3_IN	LS_GND	LS_GND	A9	$- \forall \forall +$	13	LS-GND	LS-GND	HS3_IN	Green (AWG26)
-	-	-	-	A11		19	-	-	-	-
-	-	-	-	-		22	CF_VCC	BAT+	-	Gray (AWG26)
-	-	-	-	-		23	-	-	-	-
Black (AWG26)	FG	FG	FG	B11	Purple (AWG26) Pink (AWG26)	24	FG	FG	FG	Black (AWG26)

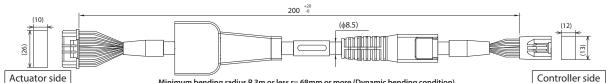

Model **CB-RPSEP-MPA** • Only the robot cable is available for this model.


* Please indicate the cable length (L) in □□□, e.g.) 080 = 8m, maximum 20m

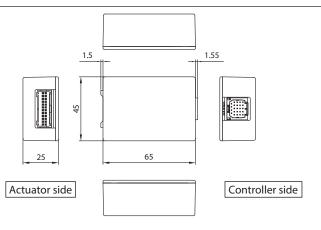

* Please indicate the cable length (L) in □□□, e.g.) 080 = 8m, maximum 20m





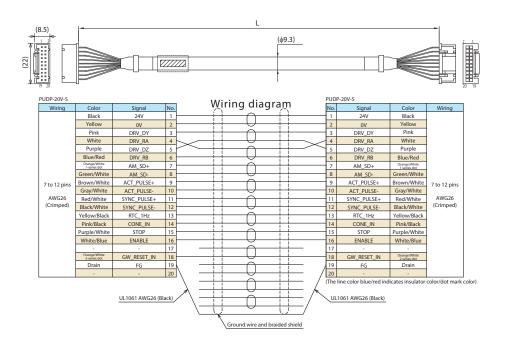

■ Model **CB-PSEP-MPA** □ □ * Only the robot cable is available for this model.

* Please indicate the cable length (L) in □□□, e.g.) 080 = 8m, maximum 20m



Minimum bending radius R 3m or less r= 68mm or more (Dynamic bending condition) **Connection Diagram**

Controller side


		1-1827863-1	(Amplifier)			9	DF62E	-24EP-2.2C (HIRC	DSE ELECTRIC CO	., LTD.)	
	Signal name			Calu			Signal name				
Pin No.	PC	AC DC		Color		Pin No.	PC	AC	DC	Color	
A1	φA	U	U	Blue (AWG22)		3	φA	U	U	Blue (AWG22)	
B1	VMM	V	V	Orange (AWG22)		5	VMM	V	V	Orange (AWG22)	
B2	φB	-	-	Brown (AWG22)		10	φB	-	-	Brown (AWG22)	
A3	VMM	-	-	Gray (AWG22)		9	VMM	-	-	Gray (AWG22)	
A2	φ_A	W	W	Green (AWG22)		4	φ_A	W	W	Green (AWG22)	
B3	ф_В	-	-	Red (AWG22)		15	φ_B	-	-	Red (AWG22)	
A6	SA[mABS]	A+	A+	Light blue (AWG26)		12	SA[mABS]	A+	A+	Light blue (AWG26)	
B6	SB[mABS]	A-	A-	Orange (AWG26)	\vdash \leftarrow \leftarrow \vdash	17	SB[mABS]	A-	A-	Orange (AWG26)	
A7	A+	B+	B+	Green (AWG26)		1	A+	B+	B+	Green (AWG26)	
B7	A-	B-	B-	Brown (AWG26)		6	A-	B-	B-	Brown (AWG26)	
A8	B+	Z+/SA[mABS]	HS1_IN	Gray (AWG26)		11	B+	Z+/SA[mABS]	HS1_IN	Gray (AWG26)	
B8	B-	Z-/SB[mABS]	HS2_IN	Red (AWG26)	$\vdash \vdash \lor \lor \vdash$	16	B-	Z-/SB[mABS]	HS2_IN	Red (AWG26)	
B9	VPS	VPS/BAT-	-	Black (AWG26)	\vdash	18	VPS	VPS/BAT-	-	Black (AWG26)	
A4	LS+	BK+	-	Yellow (AWG26)	$\vdash \frown$	8	LS+	BK+	-	Yellow (AWG26)	
A5	BK+	LS+	-	Light blue (AWG26)		20	BK+	LS+	-	Light blue (AWG26)	
B5	BK-	LS-	-	Orange (AWG26)	$\vdash \vdash \checkmark \lor \vdash \vdash$	2	BK-	LS-	-	Orange (AWG26)	
A10	VCC	VCC	VCC	Gray (AWG26)		21	VCC	VCC	VCC	Gray (AWG26)	
B10	GND	GND	GND	Red (AWG26)	$\vdash \vdash \checkmark \lor \vdash \vdash$	7	GND	GND	GND	Red (AWG26)	
B4	LS-	BK-	-	Brown (AWG26)		14	LS-	BK-	-	Brown (AWG26)	
A9	LS_GND	LS_GND	HS3_IN	Green (AWG26)	$-\chi y +$	13	LS_GND	LS_GND	HS3_IN	Green (AWG26)	
A11	-	-	-	-		19	-	-	-	-	
B11	FG	FG	FG	Black (AWG26)	└── _{Center}	22	CF_VCC	BAT+	-	Gray (AWG26)	
					Interposition	23	-	-	-	-	
					merposition \	24	FG	FG	FG	Black (AWG26)	

Model RCM-CV-APCS

Model CB-RE-CTL

* Please indicate the cable length (L) in $\Box\Box\Box$, e.g.) 080 = 8m, maximum 10m

IAI America will select all RCON required items if the following information is provided by the customer.

Q1.	Fieldbus type
Q2.	Global type/non-global type
Q3.	Full actuator mode number of all axes (1st axis to max. 16th axis)
Q4.	Duty cycle in %
Q5.	Max. temperature of RCON installation location
Q6.	Does the quantity of IAI power supplies PSA-24(L) need to be calculated?
Q7.	Is any actuator purchased for non-RCON controllers? If so, which axes?
Q8.	Does any actuator require a simple absolute unit? If so, which axes?
Q9.	For global type gateway unit (RCON-GWG), what safety category level is required? Is safety category required during both AUTO and MANUAL modes, or only during AUTO mode?

Catalog No. CE0248-2.5A (2020APR)

IAI America, Inc.

USA Headquarters & Western Region (Los Angeles): 2690 W. 237th Street, Torrance, CA 90505 (800) 736-1712 Midwest Branch Office (Chicago): 110 E. State Pkwy, Schaumburg, IL 60173 (800) 944-0333 Southeast Branch Office (Atlanta): 1220 Kennestone Circle, Suite 108, Marietta, GA 30066 (678) 354-9470 Www.intelligentactuator.com

JAPAN Headquarters: 577-1 Obane, Shimizu-ku, Shizuoka-shi, Shizuoka, 424-0103, JAPAN The information contained in this product brochure may change without prior notice due to product improvements.

IAI Industrieroboter GmbH

Ober der Röth 4, D-65824 Schwalbach am Taunus, Germany IAI (Shanghai) Co., Ltd. Shanghai Jiahua Business Center A8-303, 808, Hongqiao Rd., Shanghai 200030, China

IAI Robot (Thailand) Co., Ltd. 825 Phairojkijja Tower 7th Floor, Debaratana Rd., Bangna Nuea, Bangna, Bangkok 10260, Thailand