

2020

Technical Reference/Others

	Allowable Moment	1-179
	Operational Life	1-180
	Caution when Using a guide with a Rod Type	1-182
	Caution when Using a guide with a Slider Type	1-184
	Structure and Principles of Movement of a Single-Axis Robot/	1 106
	Ballscrew Accuracy	1-186
	Intermediate Support Structure (patented)/	1-187
	Types of Robot Feedback ControlBallscrew Accuracy	
	Protection Structure	1-188
	Double Slider Allowable Dynamic Moment/Overhang Load Length	1-189
	Safety Category Support Type	1-193
	Off-board tuning function	1-194
	Actuator Installation Method	1-195
	Actuator Installation Orientation	1-199
	IF Series Motor Installation Orientation	1-203
	RCP4W-SA Installation Orientation	1-204
	Installation Notes (DDA·DDW·RCS3-CT8C·CT4)	1-205
	RCD Rod Type Installation Method	1-206
	Mini rod type rotating stop installation method	1-207
	RCP6W Exterior components Material of each part	1-209
Technical Reference	IXP dust- and splash-proof main materials	
	IXA dust- and splash-proof main materials	1-217
(IAI Products)	Special Specification	1-219
	Overseas Standard	1-221
	Correlation Table by RoHS Order/CE Mark/UL Listed Models	1-223
	Super SEL Language	1-233
	Sample program 1 Rivet stopping device	1-237
	Sample program 2 Palletizing device	1-239
	Basic of sequential control	1-241
	Explanation of Terms	1-259
	Pressing Operation	1-269
	Force Control Function	1-270
	Duty RCS3 / RCS2 (without load cell)	1-284
	Moment selection data RCS3 / RCS2 (without load cell)	1-285
	Duty	1-286
	Guide-Equipped Type	1-291
	Radial Cylinder Allowable Load Mass Selection	1-301
	Gripper Selection Method	1-311
	Rotary Selection Method	1-319
	Hollow type rotary (RCP6-RTFML) selection method	1-324
	DD Motor Selection Method	1-327
	RS series Selection Method	1-329
	Wrist unit (WU) Selection Method/Select Example	1-331

1- 177 Technical Reference

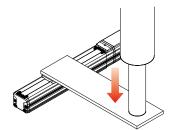
	International System of Unit SI	1-337
	Illustration Method of Geometric Tolerances	1-339
	Normal Tolerance of Processing Dimensions	1-342
	Name and symbol of quantity symbol, unit symbol,	1 2/2
	and chemical element	1-343
	Method of Calculating Properties/	1 244
	Volume/Weight of Metal Material	1-344
	Second Moment of Cross-Section, Other Calculation Method	1-345
	Foundation of Fit Selection	1-346
	Dimensional Tolerance of Used for Most Fit Holes	1-347
	Surface Roughness	1-351
	Diagrammatic Representation of Plane Surface	1-352
	Metric Coarse Thread	1-353
	Metric Fine Thread	1-354
	Unified Coarse Thread/Fine Thread	1-355
	Parallel Thread for Pipe	1-356
	Taper Thread for Pipe	1-357
Tochnical Poforonco (Conoral)	Hardness Conversion Table	1-358
Technical Reference (General)	Hexagon Socket Head Cap Screw	1-359
	Hexagon Socket Set Screw	1-361
	Hexagon Bolt	1-362
	Hexagon Nut	1-363
	Split Pin	1-364
	C type Snap Ring	1-365
	Spring Pin/E Type Snap Ring	1-367
	Spring Calculation	1-368
	Key and Key Groove	1-369
	Surface Treatment	1-371
	Mechanical Materials	1-373
	Deflection Calculation Formula	1-374
	Classification and Features of Plastics	1-375
	Material - Steel	1-377
	Material - Stainless Steel	1-379
	Material - Aluminum Alloy	1-381
	Material - Resin/Rubber	1-383
	Electric Wire	1-385
Discontinued and Replacement Models	Discontinued and Replacement Models	1-387

Allowable Moment

The allowable moment of a single-axis actuator represents the load capability of the built-in linear guide, and there are the 2 types indicated below, the allowable static moment and the allowable dynamic moment.

Static allowable moment

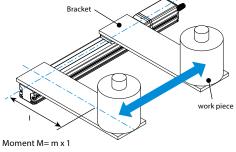
The allowable static moment is an index for damage and is the maximum moment that can be applied to a single-axis actuator at rest.


This index is calculated based on the condition where an indentation is made on the track of the built-in linear guide (basic rated static load) and the durability of used parts. If a moment greater than this value acts on the actuator, movement defects and damages can occur. Since our allowable static moment also takes into account the durability of the parts, it cannot be compared to a moment that is calculated only based on the basic rated static load (static rated moment). The durability of the parts is inspected by testing and analyzing them, so the product can be used safely if the allowable value is not exceeded.

(Cautions on the table type)

Allowable static moment of the table type is the allowable value of the linear guide at right above the guide block.

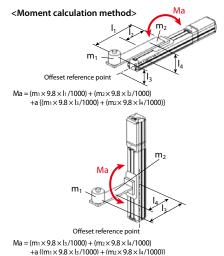
The right above the guide block is right above the allowable moment offset reference position. Refer to individual product pages for the offset reference position. When the point of moment load is located at a distance, excessive deflection and torsion take place on the table, causing potential damages.

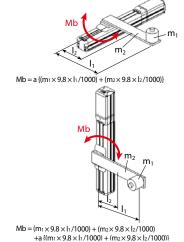

Dynamic allowable moment

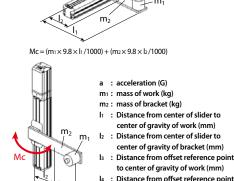
The allowable dynamic moment is an index for service life and is the value through which our standard rated life of a single-axis actuator is calculated. Our company has set the standard rated life of a ROBO Cylinder as 5,000 km and the standard rated life of a single-axis robot as 10,000 km (excludes some models).

This index is calculated based on the condition where the track of the built-in linear guide flakes due to wear (basic rated dynamic load). If a moment greater than this value acts on the actuator, service life can become less than the standard value.

Since our allowable dynamic moment also takes into account the decrease in life due to operating conditions (standard load coefficient), it cannot be compared to a moment that is calculated only based on the basic rated dynamic load (dynamic rated moment). Under normal usage environment, the life can be calculated with a simple formula.


There are 3 directions, Ma (pitching), Mb (yawing), Mc (rolling), on which moments act on a single-axis actuator, and allowable moments are calculated for each direction.




m: Load weight (include work piece and bracket)

I: Load length (he center of gravity including work piece and length)

to center of gravity of bracket (mm)

Operational Life

Operational life of a linear guide represents the total distance that can be traveled, without flaking, by 90% of a group of products that are operated separately under the same conditions. The operational life calculation method is as follows.

Operational life calculation method

Operational life of a linear guide can be calculated with the following formula using the allowable dynamic moment that is determined for each model.

$$L = \left(\frac{C_{M}}{M}\right)^{3} \cdot URL$$

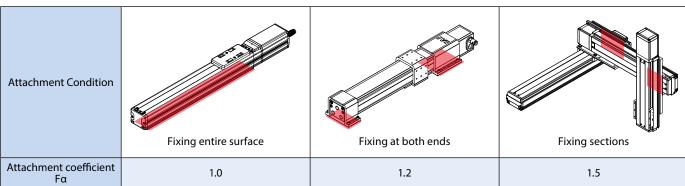
L: Operational Life (km), C_M: Allowable Dynamic Moment (N·m),

M: Acting moment (N·m), URL: Standard rated life (km)

For applications where the operational life may be decreased from vibrations and installation conditions, the operational life is calculated with the following formula.

$$L = \left(\frac{C_{M}}{M} \cdot \frac{f_{WS}}{f_{W}} \cdot \frac{1}{f_{a}}\right)^{3} \cdot URL$$

L: Service Life (km), C_M: Allowable Dynamic Moment (N·m), M: Acting moment (N·m),

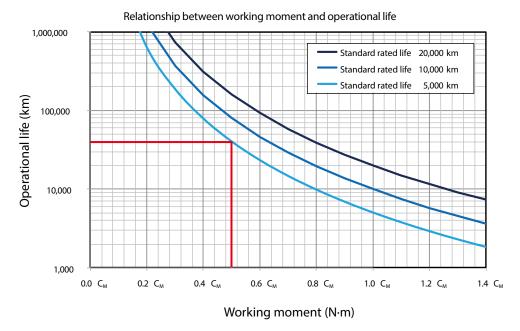

fws: Standard load coefficient, fw: Load coefficient, fa: Attachment coefficient, URL: Standard rated life

The load coefficient f_w is a coefficient for taking into account the decrease in life from operating conditions. The standard load coefficient f_{ws} is a standard value of the load coefficient that is determined for each model. This coefficient is generally 1.2, but in the case that it is not 1.2, it is indicated in the specification of that model. The attachment coefficient f_{α} is a coefficient for taking into account the decrease in life from the attachment condition of the actuator.

Load Coefficient

Operating Condition	Load coefficient fw	Acceleration/Deceleration Guideline
Little vibration/impact, slow operation	1.0-1.5	(Less than 1.0G)
Moderate vibration/impact, sudden braking/acceleration	1.5-2.0	1.0G-2.0G
Large vibration/impact with sudden acceleration/deceleration	2.0-3.0	(Greater than 2.0G)

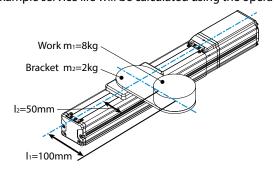
Attachment Coefficient



^{*} As a general rule, please use every tapped hole on the mounting surface.

^{*} Even when mounting the entire surface, please use the attachment coefficients of 1.2 or 1.5 depending on the length of the bolt for fixing.

Operational Life


The formula shows that the service life depends on the acting moment. With a light load, the service life will be longer than the standard rated life. For example, when a moment of $0.5C_M$ (half of the allowable dynamic moment) acts on a model with a standard rated life of 5,000 km, the diagram below shows that the service life becomes 40,000 km, which is 8 times the standard rated life.

* It is assumed that fws=fw and f α =1.0, and C_M indicates allowable dynamic moment.

Example calculation of service life

An example service life will be calculated using the operation conditions below.

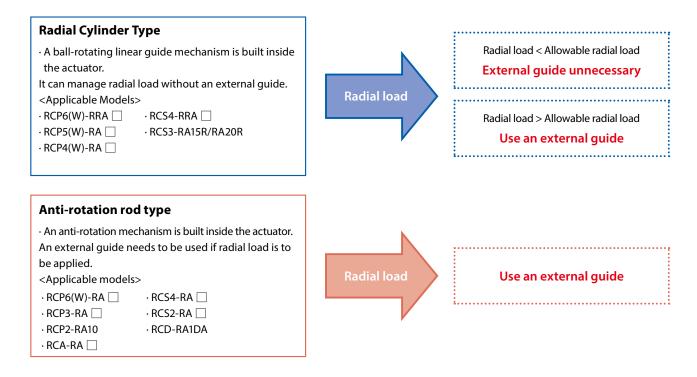
Model	RCP5-SA6C-WA-42P-6				
Installation Condition	Horizontal Installation				
Attachment Condition	Fixing entire surface				
Controller	PowerCON specification				
Acceleration/Deceleration	0.5G				

m₁: mass of work m₂: mass of bracket In: Distance to the center of gravity of the work

l2: Distance to the center of gravity of the bracket

Since moment acting in the Mc direction of the actuator is the dominant one, calculation will be made using the moment acting in the Mc direction. Moment acting in the Mc direction is calculated as follows.

$$M = \left(m_1 \times 9.8 \times \frac{I_1}{1,000} \right) + \left(m_2 \times 9.8 \times \frac{I_2}{1,000} \right) = \left(8 \times 9.8 \times \frac{100}{1,000} \right) + \left(2 \times 9.8 \times \frac{50}{1,000} \right) = 8.82 \text{ N} \cdot \text{m}$$

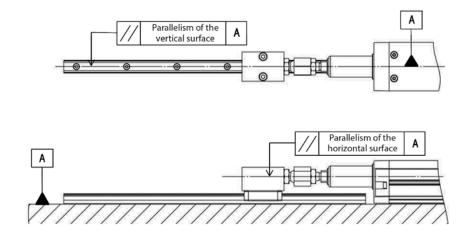

The load coefficient will be 1.25 since acceleration/deceleration is 0.5G. The attachment coefficient will be 1.0 since the attachment condition is fixing the entire surface. For this model, the allowable dynamic moment in the Mc direction is 24.6 N·m, the standard rated life is 5,000km, and the standard load coefficient is 1.2, so the service life is calculated as follows.

$$L = \left(\frac{C_{M}}{M} \cdot \frac{f_{WS}}{f_{W}} \cdot \frac{1}{f_{g}}\right)^{3} \cdot URL = \left(\frac{24.6 \text{ N} \cdot \text{m}}{8.82 \text{ N} \cdot \text{m}} \times \frac{1.2}{1.25} \times \frac{1}{1}\right)^{3} \times 5,000 \text{ km} = 95,980 \text{ km}$$

This shows that the service life for the above operation conditions is 95,980 km.

Caution when Using a Guide with a Rod Type

Rod type actuators are classified into two main categories of "Radial cylinder type" and "Anti-rotation" type. Depending on the type, methods for dealing with radial loads and cautionary notes will be different, as indicated below.


[Caution when using an external guide with a rod type]

· Parallelism of the actuator and the external guide

When using an external guide, if there is a deviation in the level of parallelism between the actuator and the external guide (either the horizontal or vertical surfaces), operation defects or early actuator damage may occur.

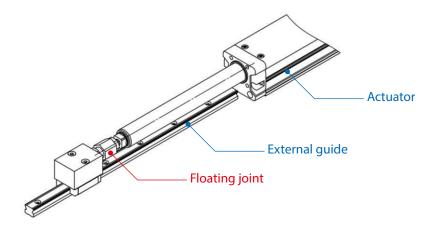
When the external guide is attached, adjustments have to be made to align the actuators and the guides. Then the uniformity of the sliding resistance throughout the entire stroke has to be checked.

This is done by checking the uniformity of the current value through the current monitoring function of the controller.

Caution when Using a Guide with a Rod Type

· External guide mounting method

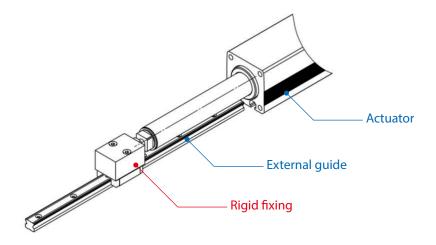
The method for mounting the external guide differs by type.


Even if the parallelism between the guide and the actuator could be adjusted, please be careful as there is a danger of accidental damage of the actuator with the incorrect mounting method.

Radial Cylinder type

For mounting the external guide for a radial cylinder type, a floating joint mount is recommended.

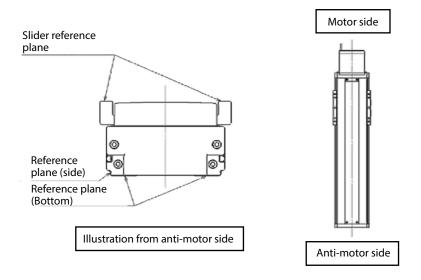
The floating joint compensates for the deviation in the parallelism of the built-in guide and the external guide, and this makes adjustments easy.


With rigid mounting, adjusting the parallelism of the built-in guide and the external guide is difficult, and even a slight deviation causes stress on the guide and can lead to early damaging.

Anti-rotation rod type

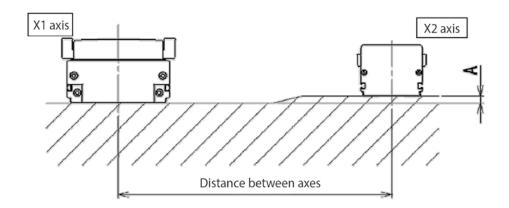
For mounting the external guide for an anti-rotation rod type, rigid mounting is recommended. Since the anti-rotation rod type cannot handle force in the rod rotation direction, it is necessary to regulate the rod rotation direction.

The rod rotation direction is not regulated with the floating joint, so force in the rod rotation direction could be applied to the anti-rotation mechanism during actuator operation, and this could cause early wearing of the anti-rotation mechanism. (There is no problem if it is a floating joint whose direction of rotation is regulated.)



1- 183 Technical Reference

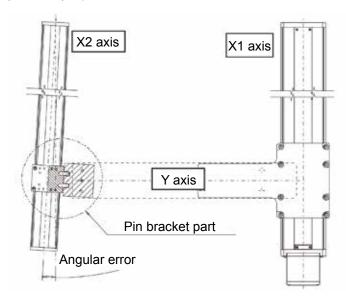
Caution when Using a Guide with a Slider Type


Installation reference surface of X-axis

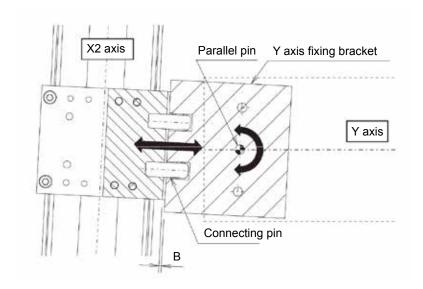
When installing an actuator, please mount by using the reference surface below.

Height of the attaching surface of the X1 and X2 axes

Please keep the height difference of the mounting surfaces for the X1 and X2 axes below 0.05mm per 500mm distance between the axes (measurement A on the diagram below).



Caution when Using a Guide with a Slider Type


Parallelism when X1 and X2 axes are installed

The connection between the X2 axis and the Y axis is a pin bracket structure (*1). The base-installing parallelism of the X1 and X2 axes should be within 2+/-1mm over the entire stroke (measurement B on the diagram below).

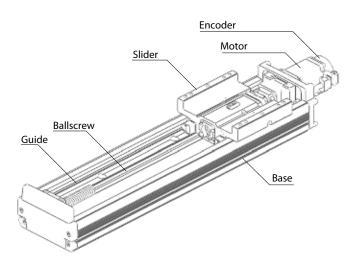
<Gantry assembly top view>

<Pin bracket section details>

*1 Pin bracket structure

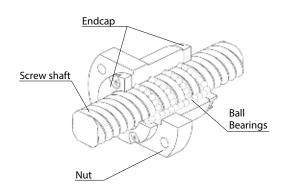
This structure absorbs any parallelism errors between the X1 axis and X2 axis.

- X1 axis and Y axis are rigidly fixed.
- •The Y axis mounting bracket is positioned with the center of the Y-axis using 1 parallel pin, and this allows adjustment in the rotation direction, which makes it possible to absorb the angle deviation between the X1 and X2 axes.
- The Y-axis and the X2-axis are linked with 2 connecting pins, and this allows sliding in the direction of the axes, which absorbs the variations in the distance between the X1-axis slider and the X2-axis slider.


1- 185 Technical Reference

Structure and Principles of Movement of a Single-Axis Robot

The actuator basically has the structure as shown in the figure below.


The ballscrew rotates when the motor rotates, and this causes the slider to move.

The amount of movement and speed are detected by the encoder, positioning is performed by controlling the rotation of the motor (ballscrew).

■ Ballscrew

Since the screw and the slider are in contact with the ball bearings as shown in the figure below, the ballscrew can rotate with less frictional resistance like a bearing.

Ballscrew Accuracy

The lead accuracy of IAI's ball screw is equivalent to the accuracy class C5 or C10 of JIS standard (JIS B 1192).

The accuracy of C10 is defined as \pm 210 μ m for the typical transfer amount error (see figure below) for 300mm.

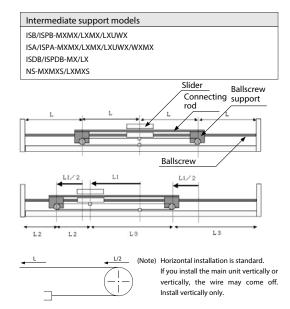
The accuracy of the C5 (the typical transfer amount error and the allowance value of the variation) is as follows.

Note: The numbers in the table below are reference values, and absolute positioning accuracy is not guaranteed.

■ Typical transfer amount error

			Units: µm		
	ms ctive length m)	Typical transfer amount error	Variation		
Over	Below	enoi			
	315	23	18		
315	400	25	20		
400	500	27	20		
500	630	30	23		
630	800	35	25		
800	1000	40	27		
1000	1250	46	30		
1250	1600	54	35		
1600	2000	65	40		
2000	2500	77	46		
2500	3150	93	54		

■ Explanation of terms	Call movement amount (The amount of axial movement when arbitrary rotation is performed according to the lead having no tolerance)
. Screw e	ffective length (mm)
Actual movement amount	cal transfer
1 Standard movement amount:	The amount of movement in the axis direction when a standard lead (lead without tolerance) is rotated an arbitrary number of times.
2 Actual movement amount:	The measured value of actual movement in the axis direction
3 Typical transfer amount:	A straight line representing the trend of the actual movement amount. It is determined by the least squares method from the curve showing the actual moving amount.
4 Typical transfer amount error:	Difference between the typical movement amount and the standard movement amount.
5 Variation:	The maximum width of the actual movement amount curve between two straight lines parallel to the typical movement amount line.


Intermediate Support Structure (Patented)

The intermediate support is an innovative structure that significantly improves the maximum speed of a long stroke type by adding a ballscrew support system that moves with the slider in order to limit the swinging of the ballscrew and increase the critical speed of the actuator.

The structure of the intermediate support is fixed with the ball screw supports fixed at the connecting rod (half the length of the stroke) penetrating the slider through a wire as shown in the right figure.

One end of the wire is fixed on the middle section of the stroke of the base, and is fixed to the slider with the pulley of the ballscrew support.

This mechanism moves the ball screw support by only 1/2 of the slider movement, and the ball screw support always supports the ball screw halfway between the position of the slider and the stroke end, resulting in suppressing the deflection of the ball screw.

Types of Robot Feedback Control

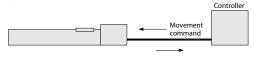
Commanding to do operations in order to check whether the robot is moving as commanded and to correct if there are deviations is called feedback control, and there are a few methods to do this.

IAI's single-axis robots, ROBO Cylinders, ELE Cylinders, SCARA robots, and Cartesian robots use the semi-closed loop control.

This is a general servo control method, and the actuator movement is detected by the encoder and fed back.

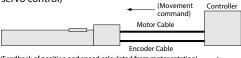
In contrast to this, the open loop control and the full closed loop control have the following characteristics.

Open loop control

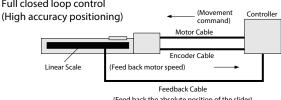

This is a general stepper motor method, and is inexpensive since there is no encoder, but cannot make corrections when there are deviations between the operation commands and the movement because it is not a feedback control.

Full closed loop control

The slider position can be determined accurately because the absolute position of the slider is measured and fed back. (Due to actuator accuracy errors, for semi-closed loop, there will be errors within a set range between the actual actuator position and the position information that is fed back from the encoder.)


Types of feedbacks

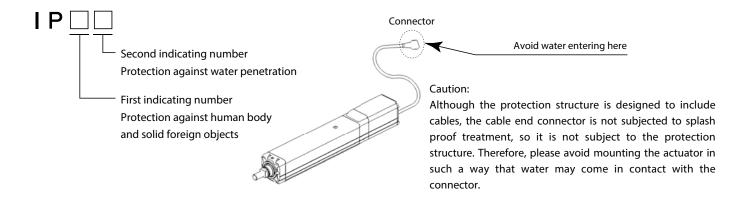
■ Open loop control



No signals that are returned to the controller (It can not be corrected even if the position is shifted.)

Semi-closed control (General servo control)

■ Full closed loop control


(Feed back the absolute position of the slider)

1- 187 Technical Reference

Protection Structure

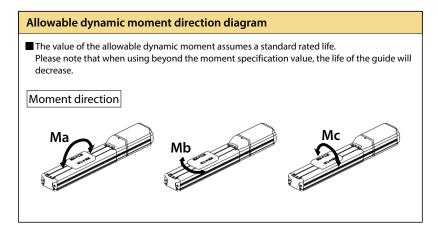
Protection structure refers to the level of protection from water, human body, and solid foreign objects. The the levels indicated below are based on the standards of IEC (International Electrotechnical Commission), JIS (Japanese Industrial Standards), and JEMA (Japan Electrical Manufacturers' Association).

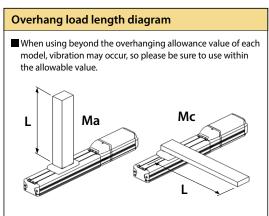
IEC standard

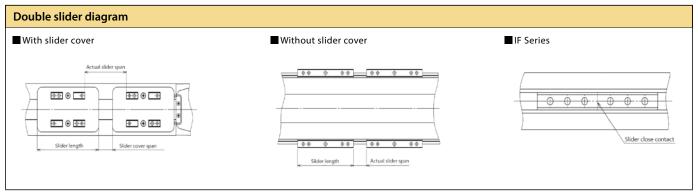
■ Level of protection indicated by the first indicating number

- Leve	er of protection indicated by the first indicating number
First indicating number	Details
0	Unprotected
1	Things like human hands do not touch the internal charging section. (ϕ 50mm) ϕ 50
2	Things like human fingertips do not touch the internal charging section. (ϕ 12mm) ϕ 12
3	Solids such as tools and wires exceeding 2.5 mm Thickness 2.5 in diameter or thickness do not enter.
4	Solids such as tools and wires exceeding 1.0 mm Thickness 1.0 in diameter or thickness do not enter.
5	No harmful effects from dust that enters the inside.
6	Dust does not enter the inside. (Completely prevented)

■ Level of protection indicated by the second indicating number


Second indicating number	JIS standard	Details
0		Unprotected
1	Drip-resistant 1 type	No harmful effect from vertical drips of water
2	Drip-resistant 2 type	No harmful effects from drips of water from angles within 15 degrees of the vertical 15°
3	Rain-resistant type	No harmful effects from drips of water from angles within 60 degrees of the vertical 60°
4	Splash-resistant type	No harmful effects from splashes of water from any direction
5	Jet-resistant type	No harmful effects from direct jets of water from any direction
6	Water-resistant type	No water enters the inside when direct jets of water from any direction hits
7	Immersion type	No water enters the inside when immersed in water under certain conditions
8	Submersion type	It can be used at all times by submerging into water of specified pressure.


Double Slider Allowable Dynamic Moment/Overhang Load Length


Double slider (addition of a second slider carriage)) can be chosen as an option for the following models.

The allowable dynamic moment and the overhang load length vary depending on the span between the sliders.

A representative example follows after the specifications tables, so please use it for reference.

[Double slider specification table]

		Allowable dynamic moment						Overhang load length (mm)	Cleanroom specification	Cleanroom specification	Slider	Slider	Minimum stroke with	
Series name	Type name	Standard rated life (km)	Slider : Actual slider span	Silder Cover		Mb direction (N·m)	Mc direction (N·m)	Ma direction Mb·Mc direction	maximum speed (mm/sec)	suction volume (Nl/min)	mass (kg)	length (mm)	double slider (mm)	
	SA5C(R)		60	6	52.6	75.2	24.1	450	-	ı	0.6	94		
RCP4	SA6C(R)	5000	90	35	106	152	40.0	660	-	-	1	115	50	
	SA7C(R)		90	24	187	268	92.1	690	_	-	1	126		
	SA5C		60	10	52.6	75.2	24.1	450	1000	80	0.6	90		
RCP4CR	SA6C	5000	90	35	106	152	40.0	660	1000	100	1	115	50	
	SA7C		90	22	187	268	92.1	690	1000	140	1	128		
RCA	SA5C(R)	5000	60	6	52.6	75.2	24.1	450	-	-	0.6	94	50	
nCA	SA6C(R)	3000	90	35	106	152	40.0	660	_	_	1	115	30	
RCACR	SA5C	5000	60	10	52.6	75.2	24.1	450	1000	85	0.6	90	50	
NCACK	SA6C	3000	90	35	106	152	40.0	660	1000	90	1	115	30	
RCS3(P)	SA8C(R)	10000	72		174	249	103	1140	_	-	1.5	78	50	
NC33(P)	SS8C(R)	10000	110	30	342	342	148	1350	-	_	2.5	170	30	
RCS3(P)CR	SA8C	10000	84	18	174	249	103	1140	1000	200	1.5	132	50	
nC33(P)Ch	SS8C	10000	110	30	342	342	148	1350	1000	165	2.5	170	30	
	SA5C(R)		60	6	52.6	75.2	24.1	450	-	-	0.6	94		
RCS2	SA6C(R)	5000	90	35	106	152	40.0	660	-	-	1	115	50	
	SA7C(R)		90	24	187	268	92.1	690	-	-	1	126		
	SA5C		60	10	52.6	75.2	24.1	450	1000	85	0.6	90		
RCS2CR	SA6C	5000	90	35	106	152	40.0	660	1000	90	1	115	50	
	SA7C		90	22	187	268	92.1	690	800	110	1	128		

1- 189 Technical Reference

[Double slider specification table]

	_		Allow	able dynamic	moment			Overhang load length (mm)	Cleanroom	Cleanroom	Slider	Slider	Minimum	
Series name	Type name	Standard rated life (km)	Slider spa Actual slider span	n (mm) Slider cover span	Slider cover direction		Mc direction (N·m)	Ma direction Mb·Mc direction	maximum speed (mm/sec)	suction volume (Nl/min)	mass (kg)	length (mm)	stroke with double slider (mm)	
	SXM		minimum 30	-	140	200	125	1050				90	100	
	3XIVI	10000	maximum 90	-	228	325	125	1350	_	_	1.5		100	
	SXL	10000	minimum 30	-	188	269	145	1250	_	_	1.5	110	130	
	JAL		maximum 90	-	286	409	145	1550	_	_		110	150	
	MXM		minimum 35	-	332	475	307	1375	_	_		120	100	
ISB	IVIXIVI	10000	maximum 120	_	561	801	307	1800	_	_	2.5	120	100	
ISPB	MXL	10000	minimum 35	_	481	687	368	1675	-	-	2.5	150	120	
	IVIAL		maximum 120	-	743	1060	368	2100	-	_		150	120	
	LXM		minimum 35	-	481	687	473	1675	-	-		150	100	
	LXIVI	10000	maximum 150	-	845	1210	473	2250	-	-	3.5	130	100	
	LXL		minimum 35	-	616	880	532	1975	_	-	3.5	180	120	
	LXL		maximum 150	-	1010	1450	532	2550	-	-		160	120	
ISA	WXM	10000	minimum 35	-	616	880	739	1975	_	-	4	180	100	
ISPA	WXIVI	10000	maximum 180	-	1130	1610	739	2700	_	-	4		100	
	S		110	46	259	370	125	1050	960	110	1.5	154	100	
IS(P)DB	М	10000	minimum 80	6	448	640	307	1375	1000	100	2.5	194	100	
IS(P)DBCR	IVI		maximum 120	46	561	801	307	1800	1000			194	100	
IS(P)DBCR-ESD			minimum 100	26	678	968	473	1675	1000			.5 224	100	
IS(P)DBCR IS(P)DBCR-ESD	L		maximum 150	76	845	1210	473	2250	1000					
IC(D)DACD	14/	10000	minimum 90	30	683	976	678	2050	1000	100	4.0	220	100	
IS(P)DACR	W	10000	maximum 160	100	922	1320	678	2250	1000	100	4.0	220	100	
IF-SA-60		40000	minimum 45	_	160	229	125	1125	_	_	4.5		400	
IF-SA-100		10000	maximum 60	_	182	260	125	1200	_	_	1.5	90	100	
IF-MA-200		10000	minimum 55	-	382	546	307	1475	_	_	2.5	120	100	
IF-MA-400		10000	maximum 80	_	448	640	307	1600	_	_	2.5	120	100	
FS-12NM FS-12NO		20000	When slider is in close con- tact	-	20.5	18.6	9.1	500	-	-	-	60	-	
FS-12WM FS-12WO		20000	When slider is in close contact	-	27.4	25.4	11.7	600	-	_	_	70	-	
FS-12LM FS-12LO FS12HM		20000	When slider is in close con- tact	- - -	51.9	47	25.4	750	-	-	-	85	-	

■Caution when using double slider

(1) When the double slider option is specified, please calculate the effective stroke length by subtracting the slider length and the slider actual span from the stroke in the model number. When specifying a model number, please specify the total stroke of the actuator, including the extra slider length and slider actual span. Please make sure that the total stroke is greater than the minimum effective stroke with the double slider specification.

NO.	Actuator form	Stroke length specified in model number
1	Model with slider cover	Greater than "effective stroke" + "slider cover span" + "slider length"
2	Model without slider cover	Greater than "effective stroke" + "actual slider span" + "slider length"

Example RCP4-SA5C (Model with slider cover)

Required stroke: 200mm Slider cover span: 6mm Slider length: 94mm

200mm + 6mm + 94mm = 300mm or greater should be specified

Example RCS3-SA8C (Model without slider cover)

Required stroke: 200mm Actual slider span: 72mm Slider length: 78mm

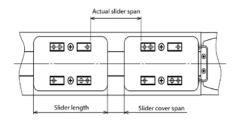
200mm + 72mm + 78mm = 350mm or greater should be specified

(2) The double slider payload quantity is the maximum value obtained by subtracting the slider mass to be added from the catalog specification value.

However, this does not need to be considered for FS.

- (3) Please note that the maximum speed can not be set depending on the stroke.
- (4) For the clean (CR) type double slider specification, the suction amount does not include the influence of piping resistance. Please note that piping resistance is caused by piping length and piping diameter, causing loss of flow rate.

Double Slider Allowable Dynamic Moment/Overhang Load Length


[RCP6 (CR) Double slider specification table]

Series	Type	Lead		Allowable dynamic moment						Overhang load length (mm) Cleanroom suction		*1 Conveying mass	*1 Conveying mass	Slider	Minimum stroke with	
name	name	(mm)	Standard	Slider sp	oan (mm)	Ma	Mb	Mc	Ma direction	volume	mass Compensa-	Compensa-	Compen- sation	length (mm)	double	
			rated life (km)	Actual slider span	Slider cover span	direction (N·m)	direction (N·m)	direction (N·m)	Mb·Mc direction	(Nl/min)	tion value A (kg)	tion value B (kg)	speed (mm/s)	(11111)	slider (mm)	
		10											350			
	SA4C(R)	5	5000	60	24	44.6	63.6	15.7	420	-	0.6	2	215	76	50	
		2.5											105			
		12											320			
	SA6C(R)	6	5000	90	40	106	152	40	630	_	1.2	2	280	110	50	
RCP6(S)		3											140			
		16			20	285	285	145	145 810	- 1.7		7 5	280			
	SA7C(R)	8	5000	70							1.7		140	130	50	
		4											70			
		20		120	35	565	565	237				7		_		
	SA8C(R)	10	5000						1200	_	(*2)	-	-	165	50	
		5											-			
	SA4C	10 5	5000	60	24	44.6	63.6	157	420	60 30	0.6	2	350 215	76	50	
	3A4C	2.5	3000	60	24	44.0	63.6	15.7	420	20	0.6	2	105	76	76 50	
		12								110			320			
	SA6C	6	5000	90	40	106	152	40	630	60	1.2	2	280	110	50	
RCP6(S)	JAOC	3	3000	90	40	100	132	40	030	35	1.2	2	140	110	30	
CR		16								100			280			
	SA7C	8	5000	70	20	285	285	145	810	50	1.7	5	140	130	50	
	5	4	3300	'	20			. 15	210	40		,	70	.50		
		20								170			-			
	SA8C	10	5000	120	35	565	565	237	1200	90	7	-	_	165	50	
		5								40	(*2)		_			

[Double slider unavailable list]

[Double slider	unavanable	iistj				
Series name	Type name	Lead	Double slider can not be selected			
Jenes name	туре патте	(mm)	Horizontal installation	Vertical installation		
	SA4C(R) 16 10	×	×			
	SA4C(K)	10		×		
	SA6C(R)	20	×	×		
DCD6(C)	JAOC(N)	12		×		
RCP6(S)	SA7C(R) SA8C(R)	24	×	×		
		16		×		
		30	×	×		
	3AOC(N)	20		×		
	SA4C	16	×	×		
	3/40	10		×		
	SA6C	20	×	×		
RCP6(S)CR	3,400	12		×		
itel o(s)elt	SA7C	24	×	×		
	3,7,7	16		×		
	SA8C	30	×	×		
	JAUC	20		×		

[Double slider Span diagram]

- *1 In the double slider specification (other than RCP6(CR)-SA8), to obtain the allowable payload of the actuator when traveling at speeds up to the transport mass compensation speed, subtract the value in transport mass compensation weight A from the standard payload rating of the actuator.
 - When traveling at speeds that exceed the conveying mass compensation speed, subtract the value in transport mass compensation weight B from the standard payload rating of the actuator in order to obtain the allowable payload of the actuator.
 - In addition, please refer to the maximum speed specification for the actuator's total stroke (stroke specified in the model number).
- *2 In the double slider specification of RCP6(CR)-SA8, to obtain the allowable payload of the actuator when traveling at any speed within the allowable range, subtract the value in transport mass compensation weight A from the standard payload rating of the actuator.

 Please refer to the maximum speed specification for the actuator's total stroke (stroke specified in the model number).
 - Please calculate the double slider load capacity in the specification table above and "Payload mass table by speed / acceleration" (on each product page). Please check the maximum speed from calculated payload quantity. (Refer to the instruction manual for details)
 - $\bullet \ \, \text{Double sliders can not be selected depending on the lead. Please check "Double slider unavailable list"}.$
 - When selecting double slider specification and reverse homing specification at the same time, please be sure to perform the home return operation after connecting the drive slider and the free slider.

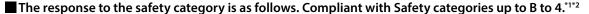
1- 191 Technical Reference

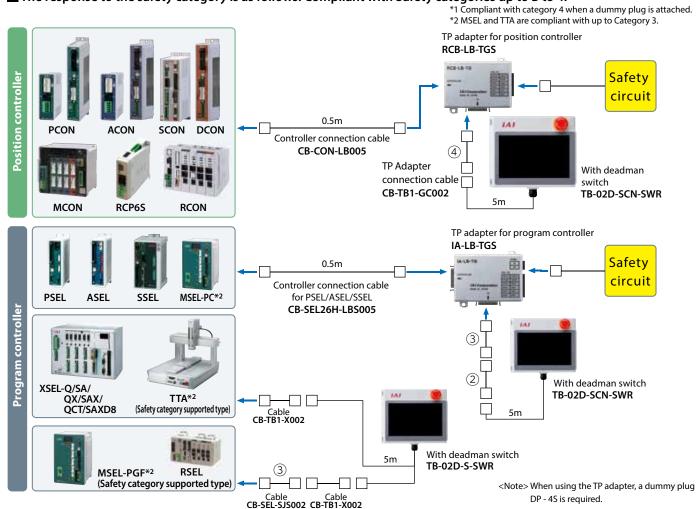
[RCPS4 (CR) Double slider specification table]

Series	Type	Type Lead						Overhang load length (mm) Cleanroom suction		*1 Conveying Slider mass length		Minimum stroke with	
name	name	(mm)	Ctandard	Slider sp	an (mm)	Ma	Mb	Me	Ma	volume (Nl/min)	Compensa- tion value	(mm)	double slider
			Standard rated life (km)	Actual slider span	Slider cover span	direction (N·m)	direction (N·m)	Mc direction (N·m)	direction Mb·Mc direction		(kg)		(mm)
		16											
	SA4C(R)	10	5000	60	24	44.6	63.6	15.7	420	_	1	76	50
	Sitte(ii)	5	3000	00	2.	11.0	03.0	13.7	120			,,,	30
		2.5											
		20											
	SA6C(R)	12	5000	90	40	106	152	40	630	-	2	110	50
		6		50	40	100							
RCS4		3											
	SA7C(R)	24	- 5000	70	20	285	285	145	810	-			50
		16									2	130	
		8											
		4											
		30	5000	0 120	35	565	565 565	237	1200			165	50
	SA8C(R)	20									2.5		
		10 5											
		10								60			
	SA4C	5	5000	60	24	44.6	63.6	15.7	420	30	1	76	50
	3/140	2.5	3000	00	24	14.0	05.0	13.7	420	20		76	50
		12								110			
	SA6C	6	5000	90	40	106	152	40	630	60	2	110	50
RCS4CR		3								35			
		16								100			
	SA7C	8	5000	70	20	285	285	145	810	50	2	130	50
		4								40	-		
		10								120			
	SA8C	5	5000	120	35	565	565	237	1200	50	2.5	165	50

^{*1} In the double slider specification, the transport mass specification value is the value obtained by subtracting the transport mass compensation value from the standard specification transport mass

•The lead not listed in the table does not have a double rider setting. The lead not listed in the table does not have a double rider setting.


Safety Category Supported Type


<Response to safety category for each controller>

To configure the system to be compliant with the safety category (ISO 13849-1), use the touch panel teaching pendant (TB-02D) and the TP adapter (RCB-LB-TGS and IA-LB-TGS).

By changing the wiring of the system I / O connector, it is possible to handle safety category $B \sim 4$ ($B \sim 3$ for some controllers).

Controller type	Safety category	ISO standard	
RCP6S	B ~ 4		
RCON-GWG	B ~ 4		
MCON-C/CG/LC/LCG	B ~ 4		
PCON-CB/CGB/CFB/CGFB	B ~ 4		
ACON-CB/CGB	B ~ 4	ISO13849-1	
DCON-CB/CGB	B ~ 4		
SCON-CB/CGB/CAL/CGAL/LC/LCG	B ~ 4	15013849-1	
RSEL-G	B ~ 4		
SSEL-CS	B ~ 4		
MSEL-PC/PG/PGF	B ~ 3		
XSEL-Q/SA/QX/SAX/QCT/SAXD8	B ~ 4		
TTA	B ~ 3		

1- 193 Technical Reference

Off-board Tuning Function

Increases transfer capability of actuator

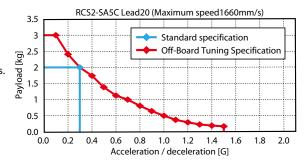
The off-board tuning function improves the payload and acceleration / deceleration by setting the optimum gain automatically according to the load, enabling to increase the payload and shorten the takt time.

Supported PC software ver.8.05.00.00 or later

By performing off-boat tuning, the following three effects can be obtained.

- ①By setting the acceleration / deceleration low, it is possible to transfer more than the rated payload.
- ②If the payload is smaller than the rated value, acceleration / deceleration can be increased.
- (3) It is possible to increase the maximum.

Example) The graph at right shows the off-board tuning effect of RCS2-SA5C lead 20.


- ①When lowering the acceleration / deceleration from the rated value from 0.3G to 0.1G, the maximum payload will be increased from 2 kg to 3 kg.
- ②If the payload is low, acceleration / deceleration can be increased up to 1.5 G.
- ③The maximum speed can be increased from the standard 1300 mm/s to 1660 mm/s.

Off-board tuning is effective for combinations of ACON-CB / SCON-CB / MCON / MSCON controllers and actuators listed in the table below.

(The off-board tuning does not support actuators with high acceleration / deceleration specification.)

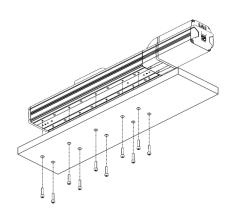
The contents of the effect will differ depending on the actuator model.

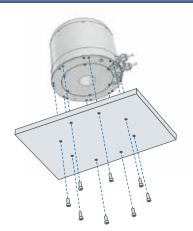
For detailed data on each model, check our website.

Actuator Installation Method

The mounting method varies depending on the model of the actuator. The following table shows the mounting methods for each model. * For mounting using options, refer to each product page.

Classification	Series	Туре	Threaded mounting holes on the bottom of the base	Counterbored through holes on the base	T-slot mounting	Fixed the main unit front	Fixed the main unit side	Fixed the main unit back
		SA4/SA6/SA7	0	0	_	_	_	(side-mounted)
	RCP6(S)	SA8	0	_	_	_	_	(side-mounted)
		WSA	_	0	_	ı	ı	(side-mounted)
	RCP5	BA	_	0	_	_		_
	RCP4	SA	0	0	_	ı	ı	(side-mounted-OP)
	RCP3	SA	0	_	_	_	_	_
	RCA	SA4/SA5	0	△ (*1)	_	-		_
	NCA	SA6	0	_	_	_	_	_
		SA4/SA6/SA7	0	0	_	_	_	(side-mounted)
	RCS4	SA8	0	_	_	_	_	(side-mounted)
		WSA	_	0	_			(side-mounted)
	RCS3/RCS3P	SA8/SS8	0	_	_	_	_	_
	NC33/NC33F	CT8	0		_	_	_	_
Slider Type	2000	SA4/SA5	0	△ (*1)	_	_	_	_
	RCS2	SA6	0	_	_		_	_
		SA7	0	0	_	_	_	_
		SXM/SXL/MXM/ MXL/LXM/LXL	0	0	_	_	_	_
	ISB/ISPB	MXMX/LXMX/	_	0	_			_
		LXUWX						
	SSPA	S/M/L	0	0	_	_	_	_
	ISA	WXM	0	_	_	_	_	_
		WXMX	0	_	_		_	_
	ISDB/ISPDB	S/M/L	0	_	_	_	_	_
		MX/LX	0	_	_			_
	NSA	M/L/W	_	0	_	_	_	_
	NS	All models	_	0	_	_	_	_
	IF	SA/MA	_	0	_	_	_	-
	RCP6(S)	RA	_	_	0	0	_	(side-mounted)
		RRA	0	0		0	_	(side-mounted)
	DCDF	WRA	_	0	(Side)	0	_	(side-mounted)
	RCP5 RCP4	RA10	0	_	_	0		(side-mounted)
	RCP4	RA RA2	0	0	_	0		(side-mounted-OP)
	RCP3	RA10	0			0		_
	RCP2	SR	0	_	_	0	0	0
	RCD	RA			_	1-206		
	NCD	RN/RP	_		_	1-207		(without B)
	RCA2	GS/GD	_	_	_	1-207 —	(4 faces)	(without B)
	INCAZ	SD SD	_		_		(3 faces)	(without b)
Rod Type	RCA	RA	_	_	_	0		(side-mounted)
	nc/	RA	_	_	0	0		(side-mounted)
	RCP4	RRA	0	0	_	Ö	_	(side-mounted)
	I i i	WRA	_	ŏ	(Side)	Ö	_	(side-mounted)
		RA15/RA20		_				0 (0.00
	RSC3	(without load cell)	_	_	_	0	_	_
		RA5	_	_	0	0	_	_
		RN/RP	_	_	_	1-207	_	(without B)
	RCS2	GS/GD	_	_	_		(4 faces)	(without B)
	RC32	SD	_	_	_	_	(3 faces)	_
		RGS/RGD	_	_	0	0	_	_
		SRA/SRGD/SRGS	0	_	_	0	_	0
	EC	TC4/TW4	0	_	_	_	○(TC)	_
	RCP6(S)	TA	0	0	_	_	_	(side-mounted)
	RCP3	TA	0	_	_	_	_	_
Table type	RCA2	TCA/TWA/TFA	0		_	_	_	(without B)
	RCS4	TA	0	Q	_	_	_	(side-mounted)
	RCS3/RCS3P	CTZ5C	0	0	_	_	_	_
	RCS2	TCA/TWA/TFA	0	_	_	_	_	(without B)
	1	S6/S8/S10	0	_	_	_	_	_
Linear servo	LSA	N10/N15	0	_	_	_	_	_
Enfect Servo		W21	0	0	_	_	_	_
	LSAS	N10/N15	0	_	_	_	_	_
		RA4/RA6/RA7	0	0	_	0	_	Q
Servo press	RCS3	RA8/RA10	0	_	_	0	_	0
aci vo piess		RA15/RA20	_	_	_	Q	_	_
	RCS2	RA13	0	_	_	0	_	_

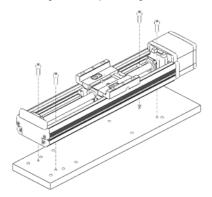

1- 195 Technical Reference

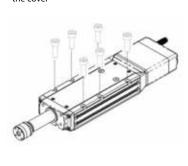

Classification	Series	Туре	Threaded mounting holes	Counterbored through holes	T-slot mounting	Fixed the main unit front	Fixed the main unit side	Fixed the main unit back
		GRST6/GRST7						(side-mounted)
	RCP6	GR7T						— (side-mounted)
Gripper	RCP4	GR			_		-	_
апрреі	RCP2	GR		_	_			_
	RCD	GRSNA	mounting holes on the base of the base on the base of the base on the base of the base	_				
Solenoid	1	SEG/MEG			_	_	0	_
gripper	GRS	SIG/MIG		_	_	_		_
<u> </u>		RTCKSPE/RTCKMPE	Ö	_	_	^a	Ö	_
Rotary chuck	RCP6	RTCKSPI/RTCKMPI	0	_	_	^a	0	_
	RCPO	RTCKSRE/RTCKMRE	0	_	_	_	0	_
		RTCKSRI/RTCKMRI	0	_	_	ı	0	_
	RCP6	RTFML	0		_	_	_	_
Rotary	RCP2	RT		_	_	0	(2 faces)	_
	RCS2	RTC	0		_	_	0	_
Direct drive motor	DDA	LT/LH	0	_	_	_	_	_
Rotation	RS		_	_	_		_	1-198
Stopper cylinder	RCP4	ST	\triangle (Using option)	0	_	_	_	_
Vertical/ Rotation	ZR	S/M	_	_	_	_	_	1-198
·	RCP6CR(S)	SA	0	0	_	_	_	_
		WSA		0	_	ı	_	_
	RCP4CR	SA	0	O	_	_	_	_
	RCP2CR	GR		_	_			_
	ner zen	RT	0		_	_	0	_
	RCA2CR	RN/RP	_		_	1-207		_
		GS/GD	_		_	_		_
		SD			_	_	(3 faces)	_
	RCACR	SA4/SA5		△ (*1)	_	_	_	_
		SA6			_			_
	RCS4CR	SA	0					_
Cleanroom		WSA		O	_		_	_
	RCS3CR	SA/SS						_
		SA/SS						_
	RCS2CR	RN/RP						_
		GS/GD						_
	DDAGD	SD						_
	DDACR	LT/LH						_
	ISDBCR	S/M/L MX/LX						_
	ISPDBCR SSPDACR	S/M/L						_
	ISDACR	W						_
	ISPDACR	WX						
	EC	R6W/R7W						
	LC	RA						(side-mounted)
		RRA4/RRA6/RRA7	_				_	(side-mounted)
	RCP6W	RRA8						(side-mounted)
		WRA						(side-mounted)
	RCP5W	RA10			_			— (side-inodifica)
	RCP4W	SA (1-204)	0	0				_
Dust-proof and		GR			_			_
Dust-proof and splash-proof	RCP2W	RT						
		RN/RP					-	
	RCA2W	GS/GD						
	IICAZVV	SD SD						_
		RN/RP						_
	RCS2W	GS/GD						_
	INCJ2VV	SD						
		1 30		_	_	_	(3 laces)	_
	DDW	LH	\cap	_	_		_	_

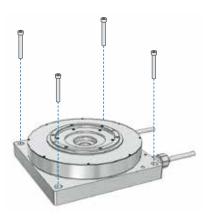
 $^{(*1) \}hspace{1cm} \mathsf{SA4's} \ \mathsf{stroke} \ \mathsf{should} \ \mathsf{be} \ \mathsf{less} \ \mathsf{than} \ \mathsf{200mm} \ \mathsf{stroke} \ \mathsf{and} \ \mathsf{SA5's} \ \mathsf{should} \ \mathsf{be} \ \ \mathsf{less} \ \mathsf{than} \ \mathsf{300mm}.$

Actuator Installation Method

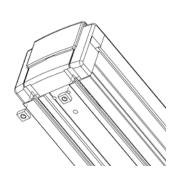
Threaded mounting holes on the bottom of the base

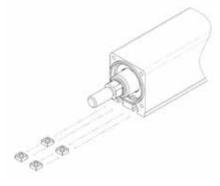


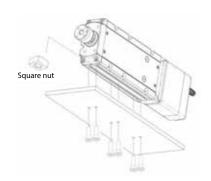

*Refer to the dimensions diagram of the product page for the sizes of the screw holes.


Mounted using the counterbored through holes on the top of the base

Installing from the top removing the cover


Installing from the top without removing the cover





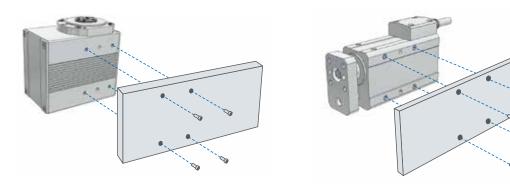
*Refer to the dimensions diagram of the product page for the sizes of the screw holes.

Mounted using the T-slot

*Refer to the dimensions diagram of the product page for the sizes of the T-slots.

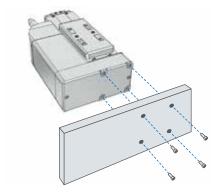
1- 197 Technical Reference

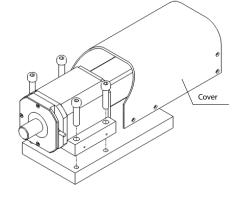
Fixed at the main unit front


It is possible to fix using the tapped holes of the bracket.

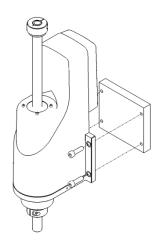
^{*}Refer to the dimensions diagram of the product page for the sizes of the screw holes.

Fixed the main unit side


Actuator side mounting is possible.


^{*}Refer to the dimensions diagram of the product page for the sizes of the screw holes.

Fixed the main unit rear


The side-mounted motor can be fixed using the tap holes on the bracket.

*Refer to the dimensions diagram of the product page for the sizes of the screw holes.

*Refer to the dimensions diagram of the product page for the sizes of the through holes.

Actuator Installation Orientation

Depending on the actuator model, there are Installation orientations that cannot be used or require caution. Please check the details of the Installation orientations of each model on the table below before using.

				(): C	an be installed \triangle :Required da	ily checking X:Can not install
					on Orientation	
Classification	Series	Туре	Horizontal flat plane installation	Vertical installation (*1)	Sideways installation	Ceiling installation
	RCP6(S)	SA/WSA	0	0	△ (*2)	△ (*2)
	RCP5	BA	0	×	△ (*2) (*3)	△ (*2) (*3)
	RCP4	SA	0	0	(Only for strokes less than 1000mm) $\triangle \ (*2)$	(Only for strokes less than 1000mm) $\triangle \ (*2)$
	NCF4	SA2	0	X	× (*2)	× (*2)
	RCP3	SA3	0	<u> </u>	0	
	1.013	SA4/SA5/SA6	0	0	△ (*2)	△ (*2) △ (*2)
	RCA	SA S	0	0	△ (*2) △ (*2)	△ (*2) △ (*2)
	RCS4	SA/WSA	0	0	△ (*2) △ (*2)	△ (*2) △ (*2)
	11034	SA SA	0	0		
	RCS3/	SS	0	0	△ (*2)	△ (*2)
	RCS3P	CT8	0	X		\(\times_{\tau}\)
		SA4	0	0	X	
	RCS2	SA5/SA6SA7	0	0	ł	<u> </u>
		SXM/SXL/MXM/			△ (*2)	<u>△</u> (*2)
	ISB/ISPB	MXL/LXM/LXL MXMX/LXMX/	0	0	(*6)	○(*7) △(*7)
Slider Type	CCDA	LXUWX	0	×	X	(Only for strokes less than 1300mm)
	SSPA	S/M/L	0	0	<u>(*6)</u>	<u>(*7)</u>
	ISA	WXM	0	0	(*6)	(*7) (Only for strokes less than 1300mm)
		WXMX	0	×	×	(*7) (Only for strokes less than 1300mm)
	ISDB/ISPDB	S/M/L	0	0	△ (*2)	△ (*2)
	1300/13100	MX/LX	0	X	X	×
	NSA	MXMS/MXMM/ LXMS/LXMM/ WXMS/WXMM	0	×	×	×
		SXMX/SXMM/ MXMS/MXMM/ LXMS/LXMM	0	×	×	(*8) (Only for strokes less than 1600mm)
	NS	SZMS/SZMM/ MZMS/MZMM/ LZMS/LZMM	×	0	×	×
		MXMXS/LXMXS	0	X	X	X
	IF	SA/MA	0	×	X	○ (*7)
	RCP6(S)	RA/RRA/WRA	0	0	0	0
	RCP5	RA	0	0	0	0
	RCP4	RA (*10)	0	0	0	0
	RCP3	RA2	0	0	0	0
	RCP2	RA/SR	0	0	0	0
	RCD	RA	0	0	0	0
		RN/RP/GS/GD	0	0	0	0
Rod Type	RCA2	SD	0	<u>(*11)</u>	Ō	Ö
	RCA	RA	0	0	Ö	Ö
	RCS4	RA/RRA/WRA	Ö	Ö	Ö	Ö
	RCS3	RA15/RA20 (without load cell)	0	0	0	0
	RCS2	RA/RN/RP/GS/ GD/SR/RG	0	0	0	0
	1	SD (*12)	0	(*11)	0	0

Classification	Series	Туре	Horizontal flat plane installation	Vertical installation (*1)	Can be installed	Ceiling installation
	RCP6(S)	TA (*13)		(1)	0	0
	RCP3	TA	Ŏ	Ö	Ö	Ŏ
Table	RCA2	TCA/TWA/TFA	Ö	Ö	0	Ö
Туре	RCS4	TA	Ö	Ö	0	0
	RCS3/RCS3P	CTZ5C	0	0	×	×
	RCS2	TCA/TWA/TFA	0	0	0	0
		S6/S8/S10	0	X	0	×
Linear	LSA	N10/N15	0	X	×	×
servo		W21	0	X	×	×
	LSAS	N10/N15	0	X	X	X
Servo	RCS3	RA4/RA6/RA7/ R8/R10	0	0	0	×
press		RA15/RA20	0	0	×	×
	RCS2	RA13	0	0	0	0
	RCP6	GRST6/GRST7	0	0	△ (*2)	△ (*2)
		GR7T	0	0	0	0
Gripper	RCP4	GR	<u> </u>	<u> </u>	0	0
	RCP2	GR	<u> </u>	0	Q	Q
	RCD	GRSNA	<u> </u>	0	0	0
Solenoid	GRS	SEG/MEG	<u> </u>	0	0	0
gripper		SIG/MIG	<u> </u>	0	0	0
		RTCKSPE/RTCKMPE	0	0	0	0
Rotary	RCP6	RTCKSPI/RTCKMPI	<u> </u>	0	0	0
chuck	1.0.0	RTCKSRE/RTCKMRE	0	0	0	0
		RTCKSRI/RTCKMRI	0	0	0	0
_	RCP6	RTFML				
Rotary	RCP2	RT	<u> </u>	<u> </u>	0	0
	RCS2	RTC		0	0	X
Direct drive motor	DDA	LT/LH	0	0	0	0
Rotation	RS		<u> </u>	0	0	0
Stopper cylinder	RCP4	ST	×	(Only rod up)	×	×
Vertical/ Rotation	ZR	S/M	×	(Refer to 1-202)	×	×
	RCP6CR(S)	SA/WSA	0	0	△ (*2) (*9)	△ (*2) (*9)
	RCP4CR	SA	Ö	Ö	△ (*2) (*9)	△ (*2) (*9)
		GR	Ö	Ö	0	0
	RCP2CR	RT	Ö	Ö	Ö	Ö
	RCACR	SA	0	Ō	△ (*2) (*9)	△ (*2) (*9)
	DCAGCD	RN/RP/GS/GD	Ö	Ö	0	0
	RCA2CR	SD	Ö	O(*11)	0	Ö
	RCS4CR	SA/WSA	0	0	△ (*2) (*9)	△ (*2) (*9)
	RCS3CR	SA/SS	Ō	Ō	△ (*2) (*9)	△ (*2) (*9)
Cl		SA/SS	Ö	Ō	△ (*2) (*9)	△ (*2) (*9)
Cleanroom	RCS2CR	RN/RP/GS/GD	0	0		0
		SD (*12)	Ö	<u>(*11)</u>	Ö	0
	DDACR	LT/LH	Ö	0	0	0
	ISDBCR/	S/M/L	0	0	(*2) (Only for strokes less than 400mm)	(Only for strokes less than 400mm)
	ISPDBCR	MX/LX	0	0	X	X
	SSPDACR	S/M/L	0	_		_
	ISDACR/	w	0	0	(*2) (Only for strokes less than 400mm)	(Only for strokes less than 400mm)
	ISPDACR	WX	0	X	X	×
	RCP6W	RA/RRA/WRA		Ô	Ô	Ô
	RCP5W	RA	$\frac{\circ}{\circ}$	0		Ö
	RCP4W	SA	<u></u>	X	(*5)	(*5)
		GR		Ô	0(3)	0 0
Dust-	RCP2W	RT	<u>0</u>	0	0	Ö
proof and		RN/RP/GS/GD	<u>0</u>	<u> </u>	0	Ö
splash-	RCA2W	SD SD	$\overline{}$	O(*11)		Ö
proof		RN/RP/GS/GD	<u>O</u>	0(11)		0
	RCS2W	SD (*12)	<u> </u>	<u>(*11)</u>		0
	1611/4 ((68)11/4	S/M/L	<u> </u>	X	X	X
	ISWA/ISPWA	1.5/IVI/I	()	X		X

Regarding Actuator Installation Orientation

Cautions about installation orientation

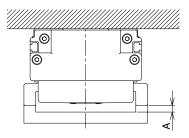
- (*1) In the case of vertical installation, please install so that the motor is on top, if possible.

 During normal operation, there is no problem when mounting the actuator with the motor on the bottom, but when the motor stops for a long period of time, the grease can separate chemically and the base oil can flow into the motor unit, causing malfunctions on rare occasions.
- (*2) Although it is possible to install the actuator sideways, in that case there is a possibility of slack and slippage in the stainless sheet. When continuing to be used this way, malfunctions like broken stainless sheets may occur. Therefore, please perform daily inspections, and make adjustments if the stainless sheet is slack or displaced.
- (*3) Sideways and ceiling installation for the RCP5 belt types are options.
 It is not possible to install the horizontal/ceiling specifications in a sideways orientation.
 It is not possible to install the sideways specification in the horizontal or ceiling orientations.
 Please do not install in a slanted or vertical orientation since it will cause operation failures.
- (*4) If RCS3 SA8C / SA8R is used in a sideways / ceiling installation, the screw cover may bend and interfere with the slider installation. Therefore, please keep the distance between the slider mounting surface and the work as shown in the table below.

Stroke	Distance between slider mounting surface and work	3 3 T
At least 400mm, less than 800 mm	At least 5mm	09
At least 800mm, less than 1100 mm	At least 7mm	[Sideways installation]
At least 1100mm (for custom order)	At least 10mm	[Sideways installation]

- (*5) Optional mounting bracket is required when RCP4W slider type is used in a sideways and ceiling orientation.

 When installing ceiling-mounted and sideways with a different bracket, splash-proof performance can not be guaranteed, so please be sure to use the correct optional bracket.
- (*6) Oil separated from the grease may drip from the opening on the side of the actuator.


 There is a possibility that parts dropped from the inside of the equipment will enter the opening of the actuator side face.

 If necessary, please attach protective parts.
- (*7) Since ceiling mounting a screw cover type actuator may cause the screw cover to bend and interfere with the work, please install the work away from the top of the slider.

The distance A from the slider mounting surface is as follows.

Series	Stroke	Distance A
ISB/ISPB	At least 600mm, less than 1000mm	At least 5mm
ISA/ISPA	At least 1000mm, less than 1300mm	At least 10mm
SSPA	At least 800mm, less than 1500mm	At least 5mm
	At least 900mm, less than 1400mm	At least 5mm
IF	At least 1400mm, less than 2100mm	At least 10mm
I IF	At least 2100mm, less than 2400mm	At least 15mm
	At least 2400mm, less than 2500mm	At least 20mm

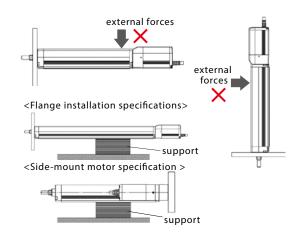
See P1-204 for the mounting posture in case an optional bracket is used.

(*8) When the NS actuators are suspended from the ceilings, the cable track may hang and become damaged. If a cable track support is installed, ceiling mounting becomes possible. For the standard cable track specifications for the LXMSA and LXMMA, ceiling mounting is not possible, because the cable wiring box sticks out about the cable track. When using the LXMSA or LXMMA with ceiling mounting, please use the extended cable track option.

Туре	Cable track support size (units: mm)
SXMSA, SXMMA	89
MXMSA, MXMMA	109
LXMSA, LXMMA (Expanded bare OP)	155

(*9) There may be cases where maintaining cleanroom class 10 can not be maintained if slack or slippage occurs in the stainless sheet, when installing in a in sideways and ceiling mount. Therefore, please perform daily inspections, and make adjustments if the stainless sheet is slack or displaced.

1-201 Technical Reference


- (*10) Motor types 42SP, 56SP are models for vertical installation only.
- (*11) There are two ways to mount the slide unit type: mounting the main unit and mounting the guide bracket. Beware that vertical mounting is not possible when brackets are used.
- (*12) When brackets are used for mounting, payload will be reduced by 1.5kg.
- (*13) There are two ways to mount the slide unit type: mounting the main unit and mounting the guide bracket. Please note that vertical mounting is not possible when mounting the bracket.

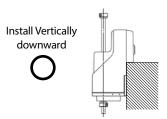
<Installing the guide bracket> Guide bracket Guide bracket Guide bracket Guide bracket

<Caution when installing a rod type>

When installing a front housing and a flange (option), please make sure no external force acts on the actuator. (malfunctions and parts damages can occur from external force). When there will be external forces or if the actuator is going to be combined with something like a Cartesian robot, please use the mounting holes on the actuator to secure it.

Please install a support block when front installing or back installing an actuator in a horizontal orientation. Depending on the installation condition and operating conditions, it may cause damage to the actuator due to vibration. When external force is applied to the actuator or when using the actuator in combination with an orthogonal robot etc, please use the mounting holes on the actuator to secure it.

<Caution when installing a RCS3 rod type>

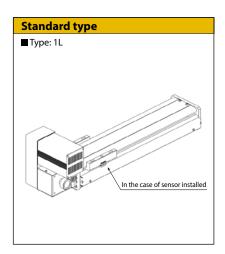

Customer's tooling is to be installed on the load cell.

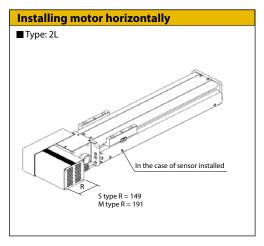
Please provide guides to the outside so that radial load and moment load will not be applied to the load cell.

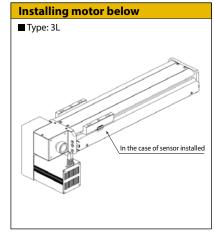
When using the reversing bracket mounting holes, depending on the installation condition and operating conditions, damage or malfunction of parts may occur due to external force, bending moment, vibration. Please secure the base frame main body with a supporting base etc.

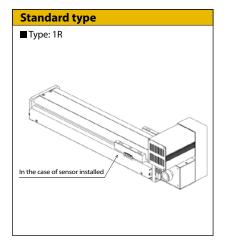
<ZR mounting orientation>

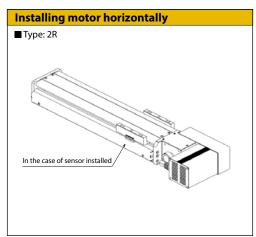
The ZR series can only be used for vertical downward installation.

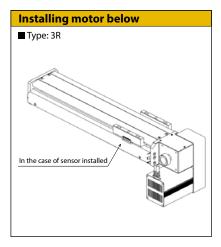

IF Series Motor Installation Orientation


Depending on the installation condition of the actuator, the positions of the motor and sensors can be changed to 6 types as shown below.


This makes it possible to change the motor position according to the installation environment.


Where the motor is installed horizontally or below, the position of the motor will be lower than the slider so there is no work interference.


In addition, when attaching the creep sensor (C) and the origin limit switch (L) as an option, when the motor installing direction is L, they are mounted as standard (on the right side as viewed from the motor side, symbols C and L). R they are mounted to the reverse side (on the left side as viewed from the motor side, symbols CL and LL).



1-203 Technical Reference

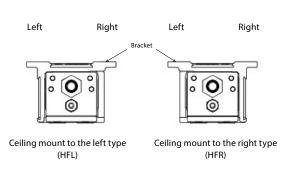
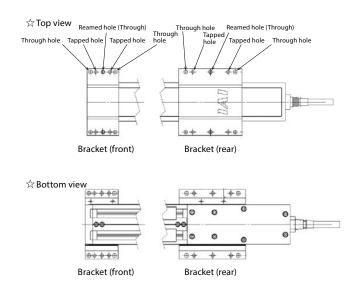
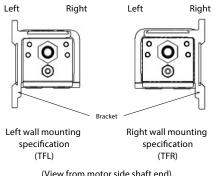

RCP4W-SA Installation Orientation

Illustration when optional ceiling mounting is selected (Model TFL/HFR).

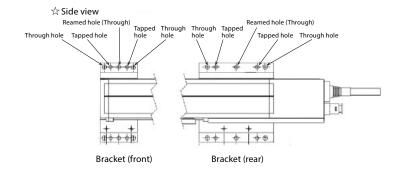

When the optional ceiling installation (Model HFL / HFR) is selected, or when lateral wall installation (Model TFL / TFR) is selected, the direction of the actuator body is horizontal. Please refer to the following for installation orientation.

RCP4W-SA Ceiling installation specification

Installing with the bracket option for ceiling mounting (Model HFL/HFR).

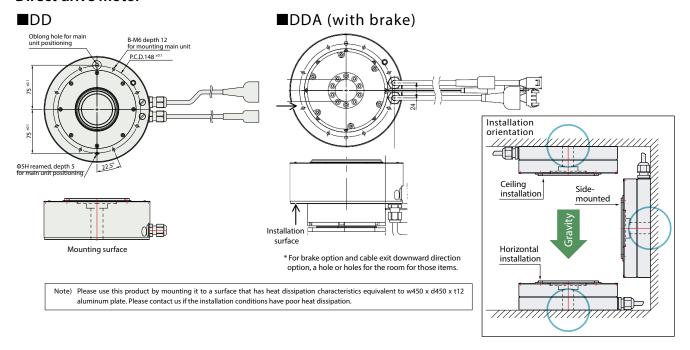


(View from motor side shaft end)

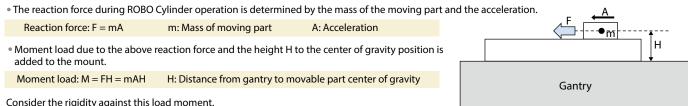


RCP4W-SA Wall installation specification

Installing with the bracket option for wall mounting (Model TFL / TFR).



(View from motor side shaft end)


Caution for Installation (DD·DDA·DDW·RCS3-CT8C·CT4)

Direct drive motor

■RCS3-CT8C

Secure the high-speed type ROBO Cylinder by preparing a sufficiently rigid rack and mount it so that the gantry does not move when operating the ROBO Cylinder.

Consider the rigidity against this load moment.

CT4

■Installation gantry

- The mounting surface shall be a machined plane or flat plane of equivalent accuracy. The flatness shall be within 0.05 mm/m.
- The frame shall have a structure that allows the robot to be installed horizontally.
- The frame on which the robot is installed receives a large reactive force. The table to the right shows the maximum instantaneous reactive force (rough guide) received by each axis when the axis moves at the maximum speed and maximum acceleration carrying 1 kg of load. Provide a frame of sufficient rigidity. Secure the frame to the floor, etc., using anchor bolts, etc., so that the CT4 will not move as a result of robot operation.

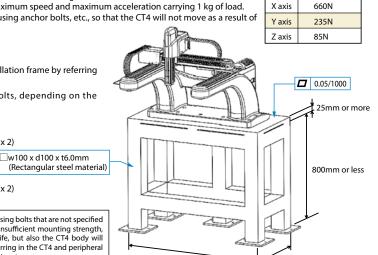
Make sure the natural frequency of the frame is 75 Hz or more.

to this example. Use the hexagonal head bolt, as described below, for the mounting bolts, depending on the installation frame material. Use high-strength bolts of ISO-10.9 or more.

<When the gantry base material is steel>

Applicable bolt: M10 x 40

(effective engagement length: 10 or more), Applicable washer: M10 (10.5 x 18 x 2)


Tightening torque: 60 N·m <When the gantry base material is aluminum>

Applicable bolt: M10 x 50 (effective engagement length: 20 or more), Applicable washer: M10 (10.5 x 18 x 2)

Tightening torque: 60 N·m

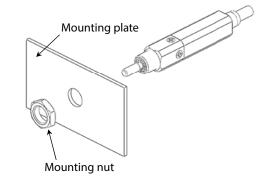
Please use the specified bolt. Please be careful in selecting the bolt length. Using bolts that are not specified or bolts of inappropriate length will cause the tapped holes to break and insufficient mounting strength, which will cause abnormal noise / vibration, breakdown and shortened life, but also the CT4 body will move. There is a danger of causing serious accidents such as breaking occurring in the CT4 and peripheral parts, including the payload, as well as the possibility for death or serious injury to occur.

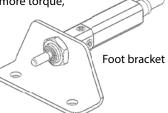
900mm

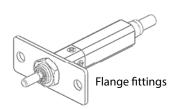
Axis

500mm

Reactive force

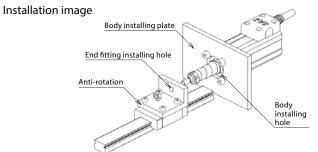

RCD Rod Type Installation Method


■ RCD series Installation method


- The installation hardware is a structure with sufficient rigidity so that vibration exceeding 0.3 G is not transmitted.
- Please set up a space where maintenance work can be done. Fit and fix the main body into the through hole (ϕ 10) of a smooth plate with a thickness of 1 to 3 mm. The installation posture can be either horizontal installation or vertical installation.
- The base of the body of the male thread (m10×1.0) is a tolerance h8, so please use it as an in-row.
- When tightening with the attached mount nut etc., the maximum tightening torque should be 9.0 N · m. If it is tightened with more torque, breakage may occur.

The following general-purpose products can be used for foot brackets and flange fittings.

For foot brackets and flange fittings, please contact the manufacturer directly.

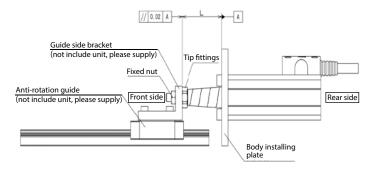

Mini Rod Type Anti-Rotation Installation Method

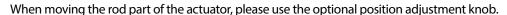
■ Thin and small rod type anti-rotation

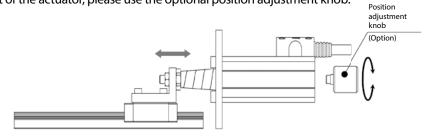
In the following models, there is no anti-rotation of the ball screw inside the main body, so be sure to set the anti-rotation on the outside when using. When installing the anti-rotation, please install according to the following installation conditions. If you operate in a state where the anti-rotation mechanism is not installed, the ball screw idles, the rod does not move back and forth, and the rotation speed of the encoder and the actual movement distance can not be matched and the position may be misaligned.

Applicable model

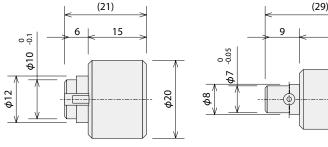
RCA2-RN3NA / RN4NA / RP3NA / RP4NA / RCA2CR / W-RN3NB / RN4NB / RP3NB / RP4NB / RCS2-RN5N / RP5N / RCS2CR / W-RN5NB / RP5NB / EC-RP4



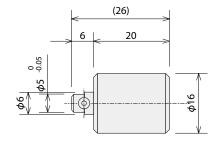

Please do not connect the tip of the actuator rod and the anti-rotation with the floating joint.


Radial load due to eccentricity is applied to the screw shaft, leading to malfunction of the actuator and premature failure.

Installation method, condition


the body installing hole of the fixed plate and the coaxial level of the tip bracket installing hole of the guide side brackets should be within 0.05 mm. The degree of parallelism should be within 0.02 mm.

<Position adjustment knob>



For 5 Series Model number: RCS2-AK-R5

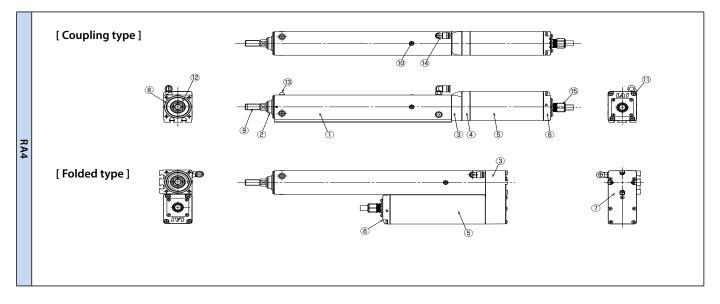
919

20

For 4 Series Model number: RCA2-AK-R4

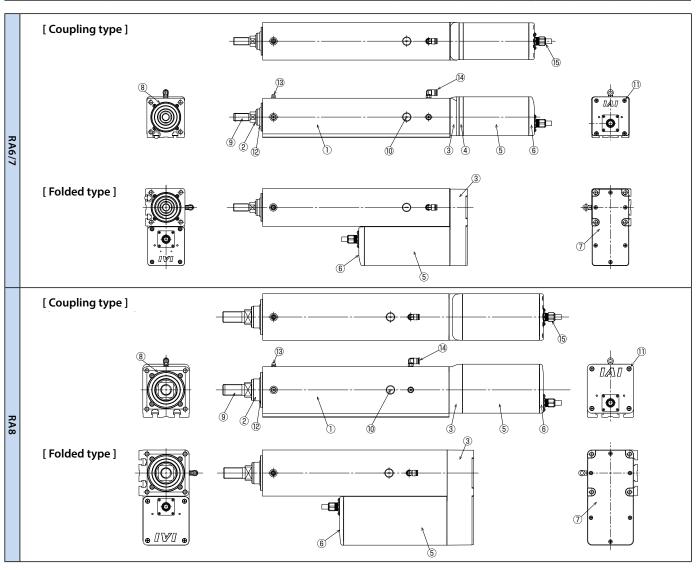
For 3 Series
Model number: RCA2-AK-R3

1-207 Technical Reference


MEMO

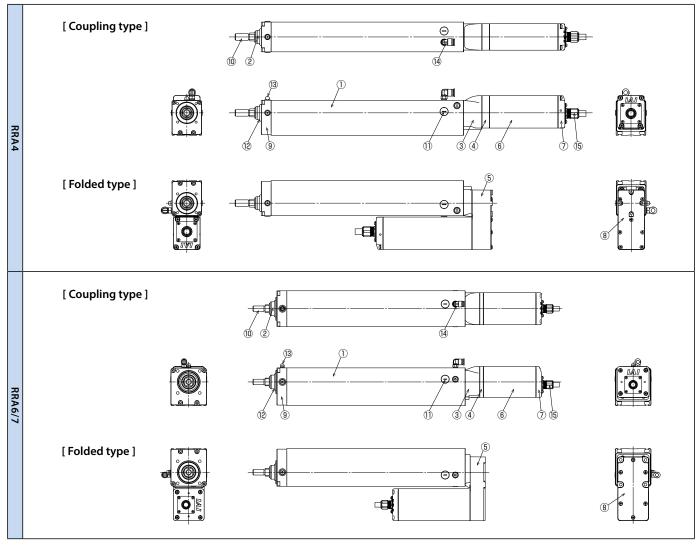
RCP6W Exterior Components Material of each part

RCP6W-RA4


	Name		Material	Processing	Finishing	RA4C	RA4R
	① Body frame		Aluminum extruded material	White alumite		0	0
	② Rod		Aluminum drawing material	Hard alumite	Buffing finish	0	0
	③ Rear bracket		Aluminum die cast	Design surface coating		0	0
	Motor bracket		Aluminum die cast	Design surface coating		0	
	⑤ Motor cover		Aluminum extruded material	White alumite		0	0
	6 End cover		Aluminum die cast	Design surface coating		0	0
m	7 Pulley cover		Stainless steel				0
Exterior	8 Rod seal housing IP		Aluminum	White alumite		0	0
ᇹ	Tip bracket		Stainless steel			0	0
	① Cap		Stainless steel			0	0
3	1 Bolts and screws of the exterior part		Stainless steel			0	0
po	12 Dust seal		Rubber (NBR)			0	0
components	③ Grease nipple		Brass (C3604)	Electroless nickel plating		0	0
ıts	(4) Intake and exhaust p	port	Resin (PBT, POM), Brass Nickel plating processing			0	0
	(C) A structure solution	Cable ground	Rubber (NBR) Resin (PBT, POM), Brass Nickel plating processing			0	0
	⑤Actuator cable	Cable Sheath	Vinyl chloride (PVC)			0	0
	Hexagon nut		Stainless steel			0	0
	Square nut		Stainless steel			0	0
	Each part gasket		Rubber (NBR)			0	0

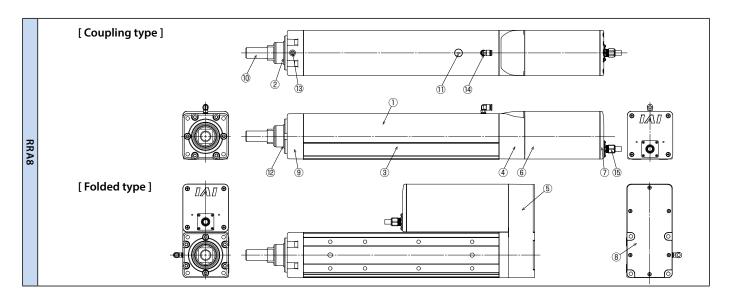
1-209 Technical Reference

RCP6W-RA6/RA7/RA8


	Name		Material	Processing	Finishing	RA6C	RA6R	RA7C	RA7R	RA8C	RA8R
Exterior components	① Body frame		Aluminum extruded material	White alumite		0	0	0	0	0	0
	② Rod		Aluminum drawing material	Hard alumite	Buffing finish	0	0	0	0	0	0
	③ Rear bracket		Aluminum die cast	Design surface coating		0	0	0	0	0	0
	④ Motor bracket		Aluminum die cast	Design surface coating		0		0			
	⑤ Motor cover		Aluminum extruded material	White alumite		0	0	0	0	0	0
	⑥ End cover		Aluminum die cast	Design surface coating		0	0	0	0	0	0
	⑦ Pulley cover		Stainless steel				0		0		0
	8 Rod seal housing IP		Aluminum	White alumite		0	0	0	0	0	0
	Tip bracket		Stainless steel			0	0	0	0	0	0
	① Cap		Stainless steel			0	0	0	0	0	0
	1 Bolts and screws of the exterior part		Stainless steel			0	0	0	0	0	0
	① Dust seal		Rubber (NBR)			0	0	0	0	0	0
	③ Grease nipple		Brass (C3604)	Electroless nickel plating		0	0	0	0	0	0
	(4) Intake and exhaust port		Resin (PBT, POM), Brass Nickel plating processing			0	0	0	0	0	0
	⑤Actuator cable	Cable ground	Rubber (NBR) Resin (PBT, POM), Brass Nickel plating processing			0	0	0	0	0	0
		Cable Sheath	Vinyl chloride (PVC)			0	0	0	0	0	0
	Hexagon nut		Stainless steel			0	0	0	0	0	0
	Square nut		Stainless steel			0	0	0	0	0	0
	Each part gasket		Rubber (NBR)			0	0	0	0	0	0

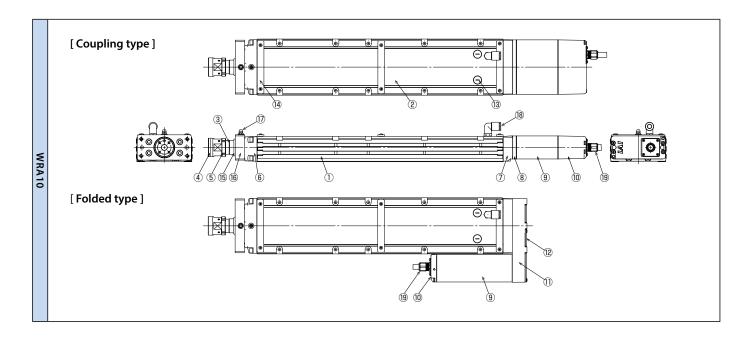
RCP6W Exterior Components Material of each part

RCP6W-RRA4/RRA6/RRA7


	Name		Material	Processing	Finishing	RRA4C	RRA4R	RRA6C	RRA6R	RRA7C	RRA7R
Exterior components	① Frame		Aluminum extruded material	White alumite		0	0	0	0	0	0
	② Rod		Aluminum drawing material	Hard alumite	Buffing finish	0	0	0	0	0	0
	③ Rear bracket		Aluminum die cast	Design surface coating		0	0	0	0	0	0
	① Motor bracket		Aluminum die cast	Design surface coating		0		0		0	
	⑤ Reverse Bracket		Aluminum die cast	Design surface coating			0		0		0
	⑥ Motor cover		Aluminum extruded material	White alumite		0	0	0	0	0	0
	② End cover		Aluminum die cast	Design surface coating		0	0	0	0	0	0
	8 Pulley cover		Stainless steel				0		0		0
	Front bracket IP		Aluminum	White alumite		0	0	0	0	0	0
	Rod tip bracket		Stainless steel			0	0	0	0	0	0
	① Hole cap (Filler port)		Rubber (NBR)			0	0	0	0	0	0
	① Dust seal		Rubber (NBR)			0	0	0	0	0	0
	③ Grease nipple		Brass (C3604)	Electroless nickel plating		0	0	0	0	0	0
	(4) Intake and exhaust port		Resin (PBT, POM), Brass Nickel plating processing			0	0	0	0	0	0
	⑤ Actuator cable	Cable ground	Rubber (NBR) Resin (PBT, POM), Brass Nickel plating processing			0	0	0	0	0	0
		Cable Sheath	Vinyl chloride (PVC)			0	0	0	0	0	0
	Bolts and screws of the exterior part Stainless steel		Stainless steel			0	0	0	0	0	0
	Hexagon nut		Stainless steel			0	0	0	0	0	0
	Square nut		Stainless steel			0	0	0	0	0	0
	Each part gasket		Rubber (NBR)			0	0	0	0	0	0

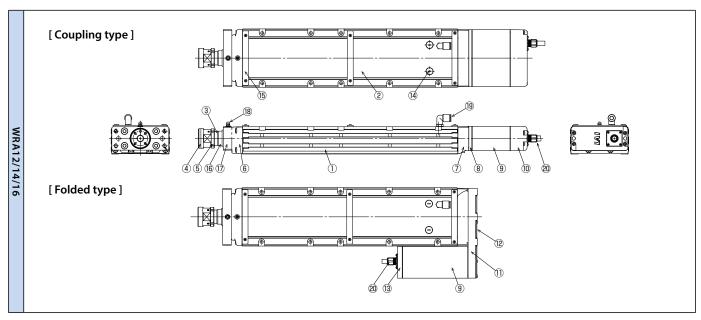
1-211 Technical Reference

RCP6W-RRA8

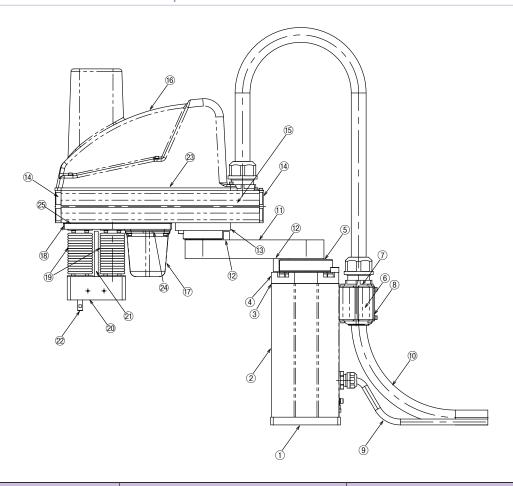

	Name		Material	Processing	Finishing	RRA8C	RRA8R
	① Frame		Aluminum extruded material	White alumite		0	0
	② Rod		Aluminum drawing material	Hard alumite	Buffing finish	0	0
	③ Rear bracket		Aluminum die cast	Design surface coating		0	0
	④ Motor bracket		Aluminum die cast	Design surface coating		0	0
	⑤ Reverse Bracket		Aluminum die cast	Design surface coating			0
	⑥ Motor cover		Aluminum extruded material	White alumite		0	0
Δ	⑦ End cover		Aluminum die cast	Design surface coating		0	0
Exterior	8 Pulley cover		Stainless steel				0
<u> </u> <u>5</u> .	Front bracket IP		Aluminum die cast	Design surface coating		0	0
0	Rod tip bracket		Stainless steel			0	0
Ĭ₹	1 Hole cap (Filler port)	Rubber (NBR)			0	0
ompon	12 Dust seal		Rubber (NBR)			0	0
ents	③ Grease nipple		Brass (C3604)	Electroless nickel plating		0	0
ts	(4) Intake and exhaust	port	Resin (PBT, POM), Brass Nickel plating processing			0	0
	(5)Actuator cable	Cable ground	Rubber (NBR) Resin (PBT, POM), Brass Nickel plating processing			0	0
	(b)Actuator cable	Cable Sheath	Vinyl chloride (PVC)			0	0
	Bolts and screws of the exterior part Stainless steel		Stainless steel			0	0
	Hexagon nut		Stainless steel			0	0
	Each part gasket		Rubber (NBR)			0	0

RCP6W Exterior Components Material of each part

RCP6W-WRA10

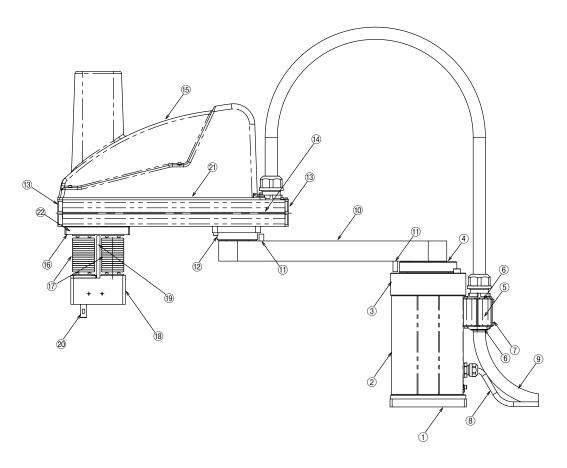

	Name		Material	Processing	Finishing	WRA10C	WRA10R
	① Base		Aluminum extruded material	White alumite		0	0
	② Frame cover		Aluminum extruded material	White alumite		0	0
	③ Rod		Stainless steel pipe	Hard chrome plating	Buffing finish	0	0
	④ Tip bracket		Stainless steel			0	0
	⑤ Lock nut		Stainless steel			0	0
	6 Front bracket		Aluminum die cast	Design surface coating		0	0
	7 Rear bracket		Aluminum die cast	Design surface coating		0	0
	8 Motor bracket		Aluminum die cast	Design surface coating		0	
ļψ	Motor cover		Aluminum extruded material	White alumite		0	0
Exterior	10 Motor end cover	,	Aluminum die cast	Design surface coating		0	0
<u> ō</u> ,	1 Reverse Bracket		Aluminum die cast	Design surface coating			0
	12 Pulley cover		Stainless steel				0
풀	① Cap		Rubber (NBR)			0	0
components	14 Frame cover holder		Aluminum	White alumite		0	0
ent	① Dust seal		Rubber (NBR)			0	0
S	16 Dust seal housing		Aluminum	White alumite		0	0
	(1) Grease nipple		Brass (C3604)	Electroless nickel plating		0	0
	® Intake and exhaust p	oort	Resin (PBT, POM), Brass Nickel plating processing			0	0
	Actuator cable	Cable ground	Rubber (NBR) Resin (PBT, POM), Brass Nickel plating processing			0	0
	(3) Actuator Cable	Cable Sheath	Vinyl chloride (PVC)			0	0
	Bolts and screws of the exterior part Stai	nless steel	Stainless steel			0	0
	Each part gasket		Rubber (NBR)			0	0

1-213 Technical Reference


RCP6W-WRA12/WRA14/WRA16

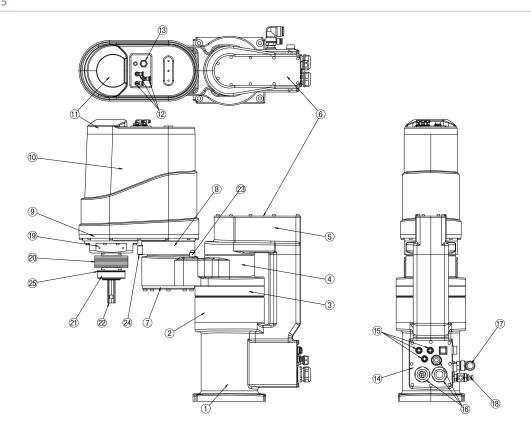
	Name		Material	Processing	Finishing	WRA12C	WRA12R	WRA14C	WRA14R	WRA16C	WRA16R
	① Base		Aluminum extruded material	White alumite		0	0	0	0	0	0
	② Frame cover		Aluminum extruded material	White alumite		0	0	0	0	0	0
	③ Rod		Stainless steel pipe	Hard chrome plating	Buffing finish	0	0	0	0	0	0
	④ Tip bracket		Stainless steel			0	0	0	0	0	0
	⑤ Lock nut		Stainless steel			0	0	0	0	0	0
	6 Front bracket		Aluminum die cast	Design surface coating		0	0	0	0	0	0
	⑦ Rear bracket		Aluminum die cast	Design surface coating		0	0	0	0	0	0
	Motor bracket		Aluminum die cast	Design surface coating		0		0		0	
	Motor cover		Aluminum extruded material	White alumite		0	0	0	0	0	0
Exterior components	Motor end cover(Co	oupling)	Aluminum die cast	Design surface coating		0		0		0	
er.	Reverse Bracket		Aluminum die cast	Design surface coating			0		0		0
or c	12 Pulley cover		Stainless steel				0		0		0
On	Motor end cover (F	olded)	Aluminum	White alumite			0		0		0
odi	[♠] Cap		Rubber (NBR)			0	0	0	0	0	0
neı	15 Frame cover holde	r	Aluminum	White alumite		0	0	0	0	0	0
nts	16 Dust seal		Rubber (NBR)			0	0	0	0	0	0
	Dust seal housing		Aluminum	White alumite		0	0	0	0	0	0
	® Grease nipple		Brass (C3604)	Electroless nickel plating		0	0	0	0	0	0
	(19) Intake and exhaust	port	Resin (PBT, POM), Brass Nickel plating processing			0	0	0	0	0	0
	Actuator cable	Cable ground	Rubber (NBR) Resin (PBT, POM), Brass Nickel plating processing			0	0	0	0	0	0
	Actuator caple	Cable Sheath	Vinyl chloride (PVC)			0	0	0	0	0	0
	Bolts and screws of the exterior part Sta	ainless steel	Stainless steel			0	0	0	0	0	0
	Each part gasket		Rubber (NBR)			0	0	0	0	0	0

IXP dust- and splash-proof Main part materials


IXP-3W3515/4W3515/3W4515/4W4515 Main parts materials

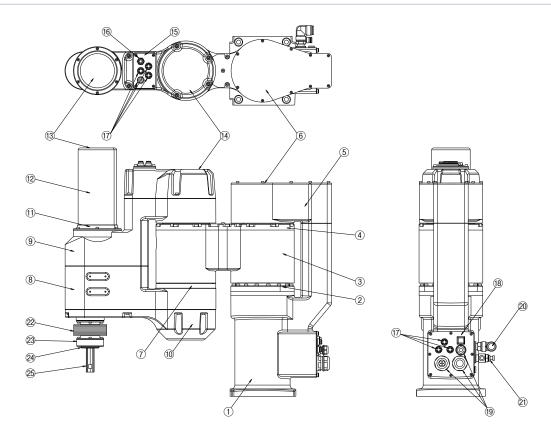
No.	Part Name	Material	Surface treatment
1	Base plate	Aluminium (A2017-T451)	White alumite treatment
2	Base pipe	Extruded aluminium (A6NO1S-T5)	White alumite treatment
3	Base flange (lower)	Aluminium (A2017-T451)	White alumite treatment
4	Base flange (upper)	Carbon steel (S45C)	Hard chromium plating after electroless nickel plating
(5)	Base cover	Aluminium (A2017-T451)	White alumite treatment
6	Cable fixing bracket	Extruded aluminium (A6NO1S-T5)	White alumite treatment
7	Cable stay	Aluminium (A5052P)	White alumite treatment
8	Cable fixing bracket cover	Aluminium (A5052P)	White alumite treatment
9	MPG1 cable	Polyvinyl chloride (PVC)	
10	MPG composite cable	Polyvinyl chloride (PVC)	
11)	1st arm	Aluminium (A2017-T451)	White alumite treatment
12	Stopper block	Carbon steel (S45C)	Electroless nickel plating
13	Seal housing	Aluminium (A2017-T451)	White alumite treatment
14)	Side cover	Aluminium (A5052P)	White alumite treatment
15)	2nd arm	Extruded aluminium (A6NO1S-T5)	White alumite treatment
16	Arm cover	Resin (ABS)	
17	Motor cover	Resin (ABS)	
18	Bellow fixing plate	Aluminium (A5052P)	White alumite treatment
19	Bellow	Nitrile rubber (NBR)	
20	Joint bracket	Aluminium (A5052P)	White alumite treatment
21)	Z stopper	Aluminium (A5052P)	White alumite treatment
22	Tip axis	High carbon chromium bearing steel (SUJ2)	Low temperature black chrome plating
23	Packing (arm cover)	Chloroprene rubber (CR)	
24)	Packing (motor cover)	Chloroprene rubber (CR)	
25	Packing (bellow fixing plate)	Ethylen-propylene rubber (EPDM)	

1-215 Technical Reference


IXP-3W5520/4W5520/3W6520/4W6520 Main parts materials

No.	Part Name	Material	Surface treatment
1	Base plate	Aluminium (A2017-T451)	White alumite treatment
2	Base pipe	Extruded aluminium (A6NO1S-T5)	White alumite treatment
3	Base flange	Carbon steel (S45C)	Hard chromium plating after electroless nickel plating
4	Base cover	Aluminium (A2017-T451)	White alumite treatment
5	Cable fixing bracke	Extruded aluminium (A6NO1S-T5)	White alumite treatment
6	Cable stay	Aluminium (A5052P)	White alumite treatment
7	Cable fixing bracket cover	Aluminium (A5052P)	White alumite treatment
8	MPG1 cable	Polyvinyl chloride (PVC)	
9	MPG composite cable	Polyvinyl chloride (PVC)	
10	1st arm	Aluminium (A2017-T451)	White alumite treatment
11)	Stopper block	Carbon steel (S45C)	Eelectroless nickel plating
12	Seal housing	Aluminium (A2017-T451)	White alumite treatment
13	Side cover	Aluminium (A5052P)	White alumite treatment
14)	2nd arm	Extruded aluminium (A6NO1S-T5)	White alumite treatment
15	Arm cover	Resin (ABS)	
16	Bellow fixing plate	Aluminium (A5052P)	White alumite treatment
17	Bellow	Nitrile rubber (NBR)	
18	Joint bracket	Aluminium (A5052P)	White alumite treatment
19	Z stopper	Aluminium (A5052P)	White alumite treatment
20	Tip axis	High carbon chromium bearing steel (SUJ2)	Low temperature black chrome plating
21)	Packing (arm cover)	Chloroprene rubber (CR)	
22	Packing (bellow fixing plate)	Ethylen-propylene rubber (EPDM)	

IXA dust- and splash-proof Main part materials

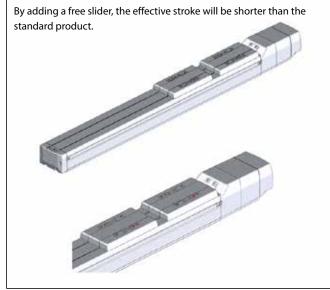

XA-4NSW3015

	No.	Name	Material	Surface treatment		
	1	J1 Base	Aluminum diecast	Design surface coating		
	2	J1 Base flange	Aluminum	Design surface coating		
	3	J1 Flange cover	Carbon steel	Low temperature black chromium plating		
	4	J1 Arm	Aluminum diecast	Design surface coating		
	(5)	J1 Joint bracket	Aluminum diecast	Design surface coating		
	6	J1 JB cover	Stainless steel	Design surface coating		
	7	J2 Under cover	Aluminum	White alumite		
	8	J2 OS housing	Aluminum	Black alumite		
	9	J2 Main arm	Aluminum diecast	Design surface coating		
	10	J2 Arm cover	Aluminum diecast	Design surface coating		
	11)	J2 Spline cover	Aluminum diecast	Design surface coating		
	(12)	One-touch joint elbow	Resin (PBT, POM), Brass nickel plating processing			
ent	13	Metal round connector	Zinc nickel plating, Rubber (CR)			
Exterior component	14)	External wiring panel	Stainless steel			
ਵੱ	15)	One-touch joint, Partition union pea	Resin (PBT, POM), Rubber (CR)			
5	(1)	One-touch joint, Faithfor union pea	Brass nickel plating processing			
eric	(16)	Cable ground	Resin (nylon 66), Rubber (NBR)			
		Cable sheath	Vinyl chloride (PVC)			
	17)	One-touch joint elbow	Resin (PBT, POM), Brass nickel plating processing			
	18)	Speed controller	Resin (PBT, POM), Brass nickel plating processing			
	19	Bellows flange	Aluminum	Black alumite		
	20	Bellows	Urethane			
	21)	Bearing case B	Aluminum	White alumite		
	22	Ball screw spline	High-carbon chromium bearing steel	Low temperature black chromium plating		
	23	Stopper ring	Stainless steel			
	24	Movable stopper	Carbon steel	Low temperature black chromium plating		
	25	Plate A (bellows)	Stainless steel			
	Bolt and	d screw for exterior parts	Stainless steel			
	Each pa	rt gasket (O-ring, Packing)	Rubber (NBR)			
	Each pa	rt oil seal	Rubber (FKM)			

1-217 Technical Reference

IXA-4NSW45 🔲 /4NSW60 🔲

	No.	Name	Material	Surface treatment
	1)	J1 Base	Aluminum diecast	Design surface coating
Exterior component	2	J1 Base flange	Aluminum	Black alumite
	3	J1 Arm L/L-600	Aluminum diecast	Design surface coating
	4	J1 Arm U/L-600	Aluminum	Design surface coating
	(5)	J1 Joint bracket	Aluminum diecast	Design surface coating
[6	J1 JB cover	Stainless steel	Design surface coating
	7	J2 Under cover	Aluminum	Black alumite
	8	J2 Main arm	Aluminum diecast	Design surface coating
	9	J2 Joint bracket	Aluminum diecast	Design surface coating
	10	J2 Arm cover	Aluminum diecast	Design surface coating
	11)	J2 ZR DC flange	Aluminum	Design surface coating
	12	ZR Dust cover	Aluminum drawing round pipe	Design surface coating
ent	13	ZR DC cap	Aluminum	Design surface coating
	14)	J2 Cover U	Aluminum diecast	Design surface coating
r com	15)	J2 User panel	Stainless steel	Design surface coating
l ig	(16)	Metal round connector	Zinc nickel plating, Rubber (CR)	
X	(16)	One-touch joint, Partition union pea	Resin (PBT, POM), Rubber (CR), Brass nickel plating processing	
	17	External wiring panel	Stainless steel	Design surface coating
	18)	Cable ground	Resin (nylon 66), Rubber (NBR)	
	19	Cable sheath	Vinyl chloride (PVC)	
	20	One-touch joint elbow	Resin (PBT, POM), Brass nickel plating	
	21)	Speed controller	Resin (PBT, POM), Brass nickel plating	
	22	Bellows	Urethane	
	23	Bearing case B	Aluminum	White alumite
	24	Set collar	Aluminum	White alumite
	25	Ball Spline	High-carbon chromium bearing steel	Low temperature black chromium plating
	Bolt and	d screw for exterior parts	Stainless steel	
	Each pa	rt gasket (O-ring, Packing)	Rubber (NBR)	
	Each pa	rt oil seal	Rubber (FKM)	


Special Specification

In addition to the standard products that are listed in the catalog, I have been dealing with various special specification products. If you do not have your desired product, please feel free to contact our sales office or Customer center eight (see the back cover).

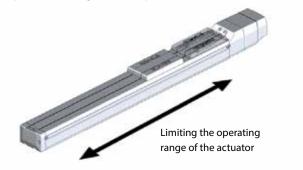
Special Product Examples

Double Slider

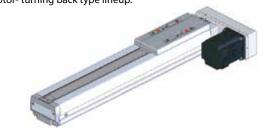
It is effective when the actuator protrudes from the slider a lot and it exceeds the overhang load length or when it exceeds the allowable load moment.

No motor / Special motor

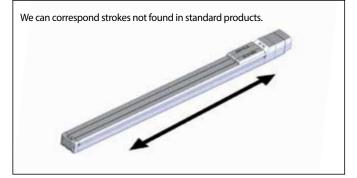
When customer prepares motor and driver, only actuator without motor can be shipped.



Special ball screw lead


Special home position

It is possible to change the home position.(mechanical end)

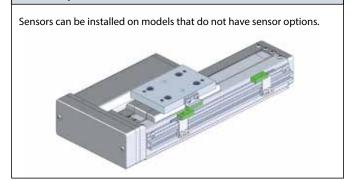


Turning back motor

Motor turning back can be prepared even for models that do not have motor- turning back type lineup.

Special Stroke

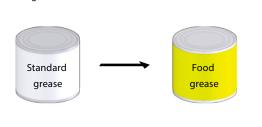
1-219 Technical Reference


Special Product Examples

Surface treatment

Surface treatment can be changed by black alumite treatment or hard alumite treatment.

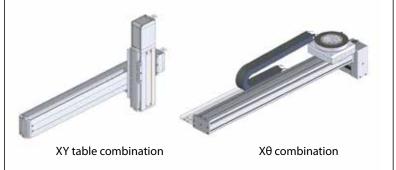
Sensor specifications

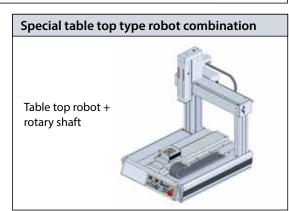

Air purge specification

By air purge, it is possible to make it harder for foreign matter to enter the inside of the actuator and the motor part than standard parts.

Grease

It is possible to change grease such as food grease, low dust grease, and customer specified grease.





$Special\ orthogonal\ robot\ combination$

Overseas Standard

1. RoHS Directive

The RoHS Directive is a directive by the European Union on the "restriction on the use of certain hazardous substances contained in electrical and electronic equipment" and is called RoHS taking the initials of Restriction of Hazardous Substances.

The purpose of RoHS is to prescribe hazardous substances contained in electrical and electronic equipment and to minimize the impact on people and the environment by prohibiting the use of substances. Beginning in July 2006, we prohibited or restricted the use of the following six substances.

- 1. lead
- 2. mercury
- 3. cadmium
- 4. Hexavalent chromium
- 5. Polybrominated biphenyl (PBB)
- 6. Polybrominated diphenyl ether (PBDE)

We are promoting efforts towards the complete elimination of RoHS-compliant substances, and in January 2006, except for some exceptions, we are switching to RoHS compliant parts sequentially.

Please refer to the correspondence table below for the current situation.

2. CE Marking

Products sold in the European Union (EU) area are obliged to indicate CE marking.

The CE marking indicates compliance with the EU (EC) Directive's mandatory safety requirements, and the manufacturer will display it at its own risk. The essential safety requirements are specified by the adoption of the New Approach Directive in 1985, such as "EMC Directive", "Low Voltage Directive", "Machine Directive", etc. are stipulated. These directives stipulate the consistent provisions that embody and embody the essential requirements that each product must observe.

(1) EMC Directive

It is a directive concerning products that emit electromagnetic waves or that may be affected by functions by external electromagnetic waves. A design that does not emit strong electromagnetic waves to the outside or is not affected by external electromagnetic waves is required. Our products decide wiring / installation model (condition) of controller, actuator, and peripheral equipment and conform to the relevant standards of EMC directive.

(2) Low Voltage Directive

It is a directive on the safety of electrical machinery driven by a power supply of AC 50 to 1000 V, DC 75 to 1500 V.

The actuators of ISA / ISPA, ISB / ISPB, ISDA / ISPDA, ISDB / ISPDB, ISDACR / ISPDACR, ISDBCR / ISPDBCR, ISWA / ISPWA, IX and TT series are designed to conform to the low voltage command in combination with the controller. (TT series integrated controller type)

This command is not applicable for 24 V series ROBO Cylinder.

(3) Machinery Directive

For general products, especially industrial machinery, those for which moving parts are recognized as dangerous are targeted.

In the machine directive, IX, IXP, TT and TTA (Safety Category Correspondence specification) series are supported. In the machine directive, IX, IXP, TT and TTA (Safety Category Correspondence specification) series are supported.

All other products are not supported by the machine directive.

(4) Concept of EC directive by IAI Corporation

Our actuator and controllers (hereinafter referred to as our components) are treated as parts (embedded devices) to be incorporated in customer's equipment.

Our components are declared as "semi-finished products" of the machine Directive "machine Directive 2006/42/EC". However, this does not guarantee that your device conforms to the EC Directive.

When customers complete the equipment incorporating our components and ship them to Europe within the European region as final products, always make sure that you comply with the EC Directive by yourself.

Our components are a requirement to conform to en60204-1, which is one of the harmonization standards of the machine directive, and to regulate the electrical safety of industrial equipment, and our component is low voltage directive "Voltage Directive 2014/35/EU" and EMC Directive 2014/30/EU" must be compliant.

1-221 Technical Reference

For Low Voltage Directive "Low Voltage Directive 2014/35 / EU", our components are roughly divided into those operating only with 24 VDC power supply and those operating on AC 200 V power supply. The former is lower than the voltage of the low voltage Directive (AC50 ~ 1000v or dc75 ~ 1500V), the latter is a manual for overseas standards (mj0287-8a 1.3.1 Note 1) The use described in the method is considered to be compatible with the low voltage directive.

The EMC Directive "EMC Directive 2014/30/EU" is applicable to the company's limited terms of use when responding to the radio interference indicated in this overseas standard. Finally, it is necessary to attach it to the customer's device and confirm it.

Directive 2011/65 / EU "RoHS Directive requires that the EC Directive covered by our components require that specified hazardous substances be below specified values.

The revised RoHS directive (Directive 2011/65/EU), which was published in the 2011.7.1 Gazette, declares conformity to the non-inclusion of six hazardous substances for products marketed after 2013.1.2 (After 2017.7.22 for the controller), then it was obliged to paste the CE marking.

By the above, the CE marks attached to our individual components indicate that they comply with the RoHS directive/EMC directive (DC24V) or the RoHS directive/EMC directive and the low voltage directive (200V) under limited operation conditions.

English is the original language used for the instruction manuals and warning labels of our components.

Customers who need support in other languages should contact our sales representatives.

In some warning/caution labels, in cases where notes are written, Japanese may be added occasionally.

If the customers are to make their equipment CE compliant, they should select products (such as safety relays) that correspond to the safety category demanded for the equipments, and should make sure to construct external safety circuits themselves.

3. UL standard

UL (Underwriters Laboratories Inc American Insurer Safety Test Laboratory) was a non-profit organization founded by the American fire insurance association in 1984 and was established to protect human life and property from fire, disaster, theft and other accidents We conduct research, testing and inspection.

The UL standard is a product safety standard relating to functions and safety, UL can test and evaluate samples of the product, UL required products can be shipped with UL certification mark attached.

Some of our models are certified. For details, please contact our sales representative.

4. KCs marking

From 03/01/2013, industrial robots have become part of the self-regulatory safety confirmation declaration program, and products used in Korea or shipped from Japan to Korea are regulated.

The KCs definition of industrial robots is "robots that have controllers of 3 axes or more", and products that we have declared and registered with the KCs are as follows:

- Some of the IX/IXP SCARA robot series (high-speed specification)
- Some of the single-axis combinations (please contact our sales representatives for details)
- TTA table top robot series

Actuato	r		◎: Standard/	○: Option ^	(As of Deceml ∑: Special order: ∆	
Product	Series name	Туре	Model	RoHS Order	CE Marking	UL
structure			SA4C/SA6C/SA7C/SA8C	©	0	Standa
		Slider (standard)	SA4R/SA6R/SA7R/SA8R	<u> </u>	Ö	+
		Slider (wide)	WSA10C/WSA12C/WSA14C/WSA16C	Ö	0	
		Silder (wide)	WSA10R/WSA12R/WSA14R/WSA16R	0	0	
		Rod (standard)	RA4C/RA6C/RA7C/RA8C	0	<u> </u>	
	DCD6		RA4R/RA6R/RA7R/RA8R RRA4C/RRA6C/RRA7C/RRA8C	0	0	+
	RCP6 RCP6S	Rod (radial cylinder)	RRA4R/RRA6R/RRA7R/RRA8R		0	+
	1		WRA10C/WRA12C/WRA14C/WRA16C		Ö	+
		Rod (wide)	WRA10R/WRA12R/WRA14R/WRA16R	Ŏ	Ö	
		Table (motor unit type)	TA4C/TA6C/TA7C	Ö	0	
		Table (motor turn back type)	TA4R/TA6R/TA7R	0	Ö	
		Gripper	GRST6C/GRST7C		0	
			GRST6R/GRST7R GRT7A/GRT7B	0	0	+
		Gripper	RTCKSPE/RTCKMPE		0	+
			RTCKSPI/RTCKMPI		<u> </u>	+
	RCP6	Rotary chuck	RTCKSRE/RTCKMRE	Ŏ	0	+
			RTCKSRI/RTCKMRI	0		
		Rotary	RTFML	0	0	
	RCP6CR	Slider (standard)	SA4C/SA6C/SA7C/SA8C	0	0	
	RCP6SCR	Slider (wide)	WSA10C/WSA12C/WSA14C/WSA16C	0	0	
		Rod (standard)	RA4C/RA6C/RA7C/RA8C RA4R/RA6R/RA7R/RA8R	0	0	
	RCP6W		RRA4C/RRA6C/RRA7C/RRA8C			+
	RCP6SW	Rod (radial cylinder)	RRA4R/RRA6R/RRA7R/RRA8R	0		
		Rod (wide)	WRA10C/WRA12C/WRA14C/WRA16C WRA10R/WRA12R/WRA14R/WRA16R	0	0	
		Slider (motor unit type)	SA4C/SA6C/SA7C	0	0	+
		Slider (motor return type)	SA4R/SA6R/SA7R	Ŏ	0	1
	RCP5	Slider (belt drive)	BA4/BA6/BA7/BA4U/BA6U/BA7U		0	
		Rod (motor unit type)	RA4C/RA6C/RA7C/RA8C/RA10C	0		
	Densen	Rod (Motor return type)	RA4R/RA6R/RA7R/RA8R/RA10R	<u> </u>	0	+
	RCP5CR RCP5W	Slider	SA4C/SA6C/SA7C	0	0	+
	RCPSW	Rod Slider (motor unit type)	RA6C/RA7C/RA8C/RA10C SA3C/SA5C/SA6C/SA7C		0	+
		Slider (motor return type)	SA3R/SA5R/SA6R/SA7R		<u> </u>	+
	2004	Rod (motor unit type)	RA3C/RA5C/RA6C	<u> </u>	Ö	+
BO Cylinder	RCP4	Rod (motor return type)	RA3R/RA5R/RA6R	0		1
, bo cymnaen		Gripper	GRSML/GRSUL/GRSWL/GRLM/GRLL/GRLW	0	0	
		Stopper cylinder	ST68E/ST615E/ST4525E	0	<u> </u>	
	RCP4CR	Slider	SA3C/SA5C/SA6C/SA7C	0	0	4
	RCP4W	Slider Rod	SA5C/SA6C/SA7C RA6C/RA7C	0	0	+
		Slider (motor unit type)	SA2AC/SA2BC/SA3C/SA4C/SA5C/SA6C		<u> </u>	+
		Slider (motor return type)	SA2AR/SA2BR/SA3R/SA4R/SA5R/SA6R	<u> </u>		+
	RCP3	Rod (standard)	RA2AC/RA2BC/RA2AR/RA2BR	0	0	1
		Table (motor unit type)	TA3C/TA4C/TA5C/TA6C/TA7C	0		
		Table (motor turn back type)	TA3R/TA4R/TA5R/TA6R/TA7R	<u> </u>		
		Slider (coupling)	SA5C/SA6C/SA7C/SS7C/SS8C	0	0	-
		Slider (motor return type) Slider (belt drive)	SA5R/SA6R/SA7R/SS7R/SS8R BA6/BA7/BA6U/BA7U		<u> </u>	+
		High speed slider type	HS8C/HS8R	0		+
		, , , , , , , , , , , , , , , , , , , ,	RA2C/RA3C/RA4C/RA6C/RA8C/RA10C		0	+
		Rod (standard)	RA3R/RA4R/RA6R/RA8R/SRA4R	0	ŏ	T
	RCP2	Rod (with guide)	RGS4C/RGS6C/RGD3C/RGD4C/RGD6C	0	0 0	
	nCr2	Rod (with guide)	SRGS4R/SRGD4R		0	
		Gripper	GRLS/GRSS/GRM/GRHM/GRHB	0	◎	1
			GR3LM/GR3LS/GR3SM/GR3SS	0	Ö	+-
		Gripper (long stroke)	GRST RTBS/RTBSL/RTB/RTBB/RTBBL	0		+
		Rotary	RTCS/RTCSL/RTC/RTCB/RTCBL		0	+-
		Simple absolute type	Simple absolute supported model	<u> </u>	<u> </u>	1
		Slider	SA5C/SA6C/SA7C/SS7C/SS8C/HS8C	0		
	RCP2CR	Gripper	GRSS/GRLS/GRS/GRM/GR3SS/GR3SM	0	0	L
		Rotary	RTBS/RTBSL/RTCS/RTCSL/RTB/RTBL/RTC/RTCL/RTBB/RTBBL/RTCB/RTCBL	0	0	
		Slider	SA16C	0	0	
		Rod	RA4C/RA6C	0	0	Д_
	RCP2W	Rod (High thrust)	RA10C	0	0	
		Gripper	GRSS/GRLS/GRS/GRM/GR3SS/GR3SM	O O	0	+
		Rotary	RTBS/RTBSL/RTCS/RTCSL/RTB/RTBL/RTC/RTCL/RTBB/RTBBL/RTCB/RTCBL	0	0	+
	RCP	Slider (motor return type)	SA5/SA6/SS/SM/SSR/SMR	×	-	+
		Rod	RS/RM	×	—	+
	ERC3	Slider Rod	SA5C/SA7C RA4C/RA6C	0	0	+-
	ERC3D	Slider	SA5C/SA7C	0	0	+-
	ERC3CR	Slider	SA5C/SA7C		0	+
	FUCTOR	Sinder	3.00,3.00	$___$		

1- 223 Technical Reference

Product		_	©: Standard/(: Special order/	X : No pla
structure	Series name	Туре	Model		CE Marking	Standard
		Slider	SA6C/SA7C			
	ERC2	Rod (standard)	RA6C/RA7C			+
		Rod (with guide)	RGS6C/RGS7C/RGD6C/RGD7C	RoHS Order CE Mar CE Mar CO CO CO CO CO CO CO CO CO C		
	ERC	Slider	SA6/SA7			+
		Rod	RA54GS/RD54GD/RA64GS/RA64GD			
	RCD	Rod	RA1DA/RA1D			+
		Gripper	GRSNA/GRSN			+
		Slider	SA2AC/SA3C/SA4C/SA5C/SA6C SA2AR/SA3R/SA4R/SA5R/SA6R			+
			RA2AC/RA2AR/SN3N/RN4N/RP3N/RP4N			
			GS3N/GS4N/GD3N/GD4N/SD3N/SD4N			+
		Rod	RN3NA/RN4NA/RP3NA/RP4NA/GS3NA/GS4NA			+
	RCA2		GD3NA/GD4NA/SD3NA/SD4NA			+
	nCA2		TCA3N/TCA4N/TWA3N/TWA4N/TFA3N/TFA4N			+
		Table (short length type)	TCA3NA/TCA4NA/TWA3NA/TWA4NA/TFA3NA/TFA4NA			+
		Table (motor unit type)	TA4C/TA5C/TA6C/TA7C			+
		Table (Motor turn back type)	TA4R/TA5R/TA6R/TA7R			+
		Gripper	GRKS			+
		опррег	RN3NA/RN4NA/RP3NA/RP4NA/GS3NA/GS4NA	H 🚆		+
	RCA2CR	Rod	GD3NA/GD4NA/SD3NA/SD4NA			+
			RN3NA/RN4NA/RP3NA/RP4NA/GS3NA/GS4NA			+
	RCA2W	Rod	GD3NA/GD4NA/SD3NA/SD4NA			+
		Slider (coupling)	SA4C/SA5C/SA6C			+
		Slider (motor direct connection)	SA4D/SA5D/SA6D/SS5D/SS6D			+
		Slider (motor return back type)	SA4R/SA5R/SA6R			+
		Silder (Motor return back type)	RA3C/RA4C/RA3D/RA4D/RA3R/RA4R			+
		Rod (standard)	SRA4R			+
	RCA		RGS3C/RGS4C/RGS3D/RGS4D/SRGS4R			+
ROBO Cylinder		Rod (with guide)	RGD3C/RGD4C/RGD3D/RGD4D			+
		(With guide)	RGD3R/RGD4R/SRGD4R			+
		Arm	A4R/A5R/A6R			+
		Absolute type	All models			+
		Slider (coupling)	SA4C/SA5C/SA6C			+
	RCACR	Slider (motor direct connection)	SA5D/SA6D			+
	RCAW	Rod	RA3C/RA3D/RA3R/RA4C/RA4D/RA4R			+
	IICAW		SA4C/SA6C/SA7C/SA8C			+
		Slider (standard)	SA4R/SA6R/SA7R/SA8R			
		Slider (Wide)	WSA10C/WSA12C/WSA14C/WSA16C WSA10R/WSA12R/WSA14R/WSA16R	0	0	
	DCC 4	Rod (standard)	RA4C/RA6C/RA7C/RA8C RA4R/RA6R/RA7R/RA8R	0	0	
	RCS4	Rod (Radial cylinder)	RRA4C/RRA6C/RRA7C/RRA8C RRA4R/RRA6R/RRA7R/RRA8R	0	0	
		Rod (Wide)	WRA10C/WRA12C/WRA16C WRA10R/WRA12R/WRA14R/WRA16R	0	0	
		Table	TA4C/TA6C/TA7C TA4R/TA6R/TA7R	0	0	
	DCC 4CD	Slider (standard)	SA4C/SA6C/SA7C/SA8C	0	0	1
	RCS4CR	Slider (Wide)	WSA10C/WSA12C/WSA14C/WSA16C	Ō	0	
		High speed slider type	CT8C		0	
	DCC3		RA4R		Ö	1
	RCS3	Rod (servo press)	RA6R/RA7R/RA8R/RA10R/RA15R/RA20R		0	
		High speed table type	CTZ5C	l ö	Ö	1
	DCC2 (DCC22	Slider (coupling)	SA8C/SS8C	l ö	Ö	1
	RCS3/RCS3P	Slider (motor return back type)	SA8R/SS8R	Ŏ	Ö	1
	RCS3CR/RCS3PCR	Slider (coupling)	SA8C/SS8C	Ö	Ô	1

Product structure	Series name	Туре	Model	RoHS Order	CE Marking	UL Standar
		Slider (coupling)	SA4C/SA5C/SA6C/SA7C/SS7C/SS8C	0	0	
		Slider (motor direct connection)	SA4D/SA5D/SA6D		0	
		Slider (motor return back type)			0	
		Rod (standard)	RN5N/RP5N/RA4C/RA5C/RA4D/RA4R/RA5R		0	
		nou (standard)	SRA7BD			
		Rod (servo press)				
			GS5N/GD5N/SD5N	O	0	
	DCS2	Pod (with guido)	RGS4C/RGS5C/RGS4D/RGD4C/RGD5C		0	
	INC32	Nod (With gaide)	ng)			
			SRGS7BD/SRGD7BD			
		Table	TCA5N/TWA5N/TFA5N	0	0	
		Arm	A4R/A5R/A6R	0	0	
		Flat	F5D	0	0	
OBO Cylinder		Gripper	GR8/GRKL		0	
		Rotary	RT6/RT6R/RT7R/RTC8L/RTC10L/RTC12L	<u></u>	0	
	RCS2CR					
						1
						1
	RCS2W	nou .				+
		Slider (motor return be all tons -)			\vdash	+
						+
						1
	RCS				-	+
						1
		Rotary				1
		Absolute type				1
	ISB/ISPB	Standard	SXM/SXL/MXM/MXL/MXMX/LXM/LXL/LXMX/LXUWX	©	0	
	ISDB/ISPDB	Simple dust protection	S/M/MX/L/LX	0	0	
	ISDBCR/ISPDBCR	Clean	S/M/MX/L/LX	0	0	
	SSPA	High rigidity (iron base)	SXM/MXM/LXM	0		
	ISA/ISPA	Standard	SXM/SYM/SZM/MXM/MYM/MZM/MXMXLXM/LYM/LZM/LXMX/		0	
	ISDA/ISPDA	Simple dust protection				
ingle axis	SSCR	Clean				
obot			M			
	NSA	Standard	L		O	
			SXMS/SXMM/SZMS/SZMM	0	0	
	NS	Standard	MXMS/MXMM/MXMXS/MZMS/MZMM			
	IF	Standard				
		Standard				1
	l FS					1
	RS					1
	-"					
						+
	DS					
	Silder (coupling)	-	+			
					<u> </u>	
			1 - 1 -		© (*1)	
irect drive					0	1
otor			_ T18□/LT18□/H18□/LH18□		0	1
					0	
	DDW			0	0	
		Slider (single slider)	SA1L/SA2L/SA3L/SA4L/SA5L/SA6L	0	1	
	RCL					
						<u> </u>
near						
Linear					<u> </u>	+
		I DIIdft	1 2	ı W	1	
		Flatness		0		
		Flatness Small size/Large size	S/L	© ×		
gh-speed	LS	Flatness Small size/Large size Standard	S/L G1	© × ©		
igh-speed rthogonal rpe	LS	Flatness Small size/Large size Standard Specification with rotary shaft	S/L G1 G1RT	© × © ©		

1- 225 Technical Reference

Control				②: Standard/ ○: Option	△. Special C	Tuci/ / . No più
Product structure	Series name	Туре	Model	RoHS Order	CE Marking	UL Standard
Outle I	ICSA/ICSPA	_	-	0		
Orthogonal robot	ICSB/ICSPB	_	_			
TODOL	IK	_	_			
	TT	Old	TT-300	X		
Table top	' '	New	TT-A2/A3/C2/C3	0	0	
	TTA	_	TTA-A2_/A3_/A4_/C2_/C3_/C4_	0	CE Marking	
			3NNN1805/4NNN1805	0	0	
		Show down	3NNN3015/4NNN3015	0	0	
		Standard	3NNN45 // /4NNN45 // // /	0		
			3NNN60 /4NNN60 /		0	
	D/A		3NSN3015/4NSN3015	0	0	
	IXA	High speed	3NSN45 / /4NSN45 / /			
			3NSN60□□/4NSN60□□			
			4NSW3015			
		Dust- and splash-proof	4NSW45			
			4NSW60			
	IH	1_	_	X		
			3N1808/3N2508/4N1808/4N2508	0	0	
		Standard	3N3515/3N4515/4N3515/4N4515			
			3N5520/4N5520/3N6520/4N6520			
Scalar		With gripper	3N2508GM/3N3515GM/3N4515GM/ 3N3510GL/3N4510GL	0		
	IXP	With gripper	3N5515GL/3N5515GW/3N6515GL/3N6515GW			+
			3C3515/4C3515/3C4515/4C4515/			
		Clean	3C5520/4C5520/3C6520/4C6520			
			3W3515/4W3515/3W4515/4W4515			
		Dust-proof and drip-proof	3W5520/4W5520/3W6520/4W6520			+
			1205/1505/1805			
			2515H/3515H			
		Standard (NNN)	50 H/60 H/70 H/80 H			+
	IX		10040/12040		<u> </u>	_
		Clean/Dust-proof and drip-proof Ceiling mounted, high speed, wall hanging	1205/1505/1805/2515H/3515H/3015H 50 H/60 H/70 H/80 H	0	0	
Wrist unit	WU	1_	S/M		T 0	
Solenoid		1_	SEG/MEG		T	
gripper	GRS	_	SIG/MIG			
	TX	1_	_			
Other		ISAC	200W/400W			<u> </u>
	Motor unit	ISAC High rigidity (T1)	60W(RS)/100W/150W			

- (*1) Excluding the brake option.
- (*2) Not compliant when connecting with IX-NNN 10040/12040.
- (*3) Limited to 200V specification.
- (*4) The EU Battery Directive is applied, and RoHS Order is not applicable.
 (*5) Field networks of CC-Link IE, SSCNET and EtherCAT Motion are not supported.
- (*6) Field networks of CC-Link IE and MECHATROLINK-I/II are not supported.
- (*7) Field network of MECHATROLINK-I/II is not supported.
- (*8) 3000 and 3300W types are not supported.
- (*9) XSSEL-SAX/SAXD8 are not supported.
- (*10) Limited to Safety category compliant specification.
- (*11) XSEL-PCT is not supported.

Product	Series name	Type	Model	RoHS Order	CE Marking	UL Standard
structure	PMEC	Incremental				OL Staridard
	AMEC	Incremental			○ (3)	
		Incremental			0	0
	PSEP	Simple Absolute	C/CW-ABU			0
		Incremental	C/CW			0
	ASEP	Simple Absolute	C C	0		
	DSEP	Incremental	C/CW	RoHS Order CE Marking		
	MCED	Incremental	C/LC			0
	MSEP	Simple Absolute	C-ABB/LC-ABB	0	0	0
	PSEP/ASEP	Absolute battery unit	SEP-ABUM/SEP-ABUM-W	(*4)	0	0
	MCON	_	C/CG/LC/LCG	0	◎ (*5)	0
			RCON-GW/GWG	0	0	0
		Master unit			0	To be acquired
			REC-GW		0	To be acquired
						To be acquired
						To be acquired
		Driver unit				To be acquired
						To be acquired
	R-unit				To be acquired	To be acquired
		Power supply unit	RCON-PS2-3		To be acquired	To be acquired
		EC connection unit			To be acquired	To be acquired
		Simple absolute unit				To be acquired
		Simple absolute unit			0	To be acquired
						To be acquired
		Extension unit	RCON-EXT-NP/PN			To be acquired
			RCON-NP/PN		0	To be acquired
		_				0
		_	CA/CF/CFA			0
	PCON	_	C/CG			0
		_				0
		_	CYB/PLB/POB			0
		_		1 0		0
		_				0
	ACON	_				0
		_				Ö
		_				0
						0
Controller for	DCON					0
ROBO Cylinder	Decir	_				0
,						© (*8)
						© (*8)
	SCON					© (0)
	JCON					×
		_				×
	MSCON	1_				
	IVISCOIN	RCM-P6PC				0
	RCM-P6	RCM-P6AC	_			0
	INCIVI-F 0	RCM-P6DC	_			0
	PSEL	—				
	ASEL	_				
	SSEL	_		$H = \frac{1}{2}$	<u> </u>	+
	JJEL	— Standard				-
		Safety category supported type				
	MCEI	56SP/60P/86P motor-	PCF		⊚	
	MSEL	compatible type		-	-	1
		Safety Category Supported Type 56SP/60P/86P motor-compatible	PGF			
		type				
			RGW-DV/RGW-CC		0	0
		Gateway R unit	RGW-PR/RGW-SIO		0	0
		Controller Unit	RACON/RPCON		0	0
	1	Simple Absolute R Unit	RABU	(*4)	0	0
	ROBONET	Expansion Unit	REXT		0	0
		Expansion Unit (unit turn back)	REXT-SIO		0	0
		Expansion unit (controller		1		
		connection)	REXT-CTL		O	0
		Standard	C/CG		0	0
	RCP2	High thrust	CF CF		0	0
	INCF 2		<u> </u>		0	0
		Absolute	-	©		
		100V/200V	C	X		1
		24v (general purpose)		X		
	200	24V (low price)	E	×		-
	RCS	EU (256)	_	×		
		CC-Link (256)	_	X		
		DeviceNet	-	×		
		ProfiBus	_		1	i .

1- 227 Technical Reference

			©:	Standard/ (): Option		order/ × : No plan
Product structure	Series name	Туре	Model	RoHS Order	CE Marking	UL Standard
		Standard	_	X		
		EU	_	X		
	E-Con	CC-Link (256)	_	X		
	E-Con	DeviceNet	_	X		
		ProfiBus	_	X		
		Absolute type	_	X		
	P-Driver	_	_	X		
	TX	TX-C1	_	0		
	MCEL	Standard	PCX3/PCX4			
	MSEL	Safety category supported type	PGX3/PGX4		0	
	VCEL DAVCA	Standard	RA/RAX/RAXD8	◎ (*2)	© (*2)	
	XSEL-RA/SA	Safety category supported type	SA/SAX/SAXD8	© (*2)	© (*2)	△ (*9)
	VCEL D/C	Standard	R/RX/RXD8		0	` ,
	XSEL-R/S	Safety category supported type	S/SX/SXD8		0	
	XSEL-J/K	Small type	J			
		General purpose	К			
		Safety category supported type	KT		0	
Controller		CE	KE/KET		0	
for single axis for orthogonal		Scalar	JX/KX			
for scalar		General purpose extension SIO	IA-105-X-MW-A/B/C			
Tor Scalar		Standard	P	0	0	
	V651 B (0	Safety category supported type	Q		0	Δ
	XSEL-P/Q	Scalar	PX/QX		0	
		CT4	PCT/QCT		0	△ (*11)
		CC-Link (256)	IA-NT-3206/4-CC256			_ , ,
		CC-Link (16)	IA-NT-3204-CC16	0		
		DeviceNet	IA-NT-3206/4-DV			
	XSEL-J/K	ProfiBus	IA-NT-3206/4-PR	0		
		EtherNet	IA-NT-3206/4-ET	0		
		Extended PIO	IA-103-X-32/16			
		Multipoint I /O	IA-IO-3204/5-NP/PN	0		
	DC C C1	Standard	_	X		
	DS-S-C1	EU	_	X		
	CEL E /C	Standard	_	X		
	SEL-E/G	EU	_	X		
	SEL-F	_	_	X		
	IH	 	_	X		
Driver box	GRS	1-	GRS-DB			

- (*1) Excluding the brake option.
- (*2) Not compliant when connecting with IX-NNN 10040/12040.
- (*3) Limited to 200V specification..
- (*4) The EU Battery Directive is applied, and RoHS Order is not applicable.
- (*5) Field networks of CC-Link IE, SSCNET and EtherCAT Motion are not supported.
- $\label{eq:continuous} \mbox{(*6) Field networks of CC-Link IE and MECHATROLINK-I/II are not supported.}$
- (*7) Field network of MECHATROLINK-I/II is not supported.
- (*8) 3000 and 3300W types are not supported.
- (*9) XSSEL-SAX/SAXD8 are not supported.
- (*10) Limited to Safety category compliant specification.
- (*11) XSEL-PCT is not supported.

	Series name	Type	Model	d/ ○: Option △ RoHS Order	: Special order/ CE mark	U
structure	Series name	Туре				stand
		Standard	TB-01 TB-02		0	×
	Position controller/ Program controller		TB-01D/DR		0	+ ^
	dual use	With deadman switch	TB-02D	1 6	<u> </u>	
		Standard	TB-03	0	Ö	×
		Standard	CON-T		0	
		Safety category 4 supported type	CON-TGS	0	0	(C
		SEP controller only Touch panel teaching	SEP-PT	0	0	
		Universal touch panel teaching Standard type (color liquid crystal type)	CON-PTA-C		0	
		Universal Touch Panel Teaching Type with enable switch (same as above)	CON-PDA-C	0	0	
	New RC System	Universal Touch Panel Teaching Safety category supported type (same as above)	CON-PGAS-C	0	0	
		Universal Touch Panel Teaching Standard type (monochrome liquid crystal type)	CON-PT-M		0	
		Universal Touch Panel Teaching				
eaching box		Type with enable switch (same as above)	CON-PD-M	0	0	
		Universal Touch Panel Teaching Safety category supported type (same as above)	CON-PG-M		0	
	RCP2	Standard	RCA-T/TD	×		
	ERC	(With deadman switch)	RCM-T/TD	X		
	RCS	Simple type	RCA-E			
	E-Con	* **	RCM-E RCA-P	0		
	RC	Data setting device	RCM-P			
	RCP2					
	ERC	Jog teach	RCB-J			
		Standard	SEL-T		0	
	New SEL System	With deadman switch	SEL-TD		0	(
	VCEI	Safety category 4 supported type		0	0	(
	XSEL DS	Standard (With deadman switch) DS-S-T1	IA-T-X(IA-T-XD)	H ×		
	E/G,F	NE-T-SS	_	$+$ \times		_
	IH	IA-T-IH	_	$+$ $\stackrel{}{\times}$		
	TX	TX-JB	_			
Quick teach	ERC3	RCM-PST	_	1	×	-
		RCM-PM-01				
Touch panel	_	INCIVI-LIAI-O I	-			
ouch panel		NCIVI-FIVI-01	 CB-CAN-MPA		0	
Touch panel	IXP/RCP6/RCP5/	Motor/Encoder integrated	CB-CAN-MPA CB-CAN-MPA***-RB	0	0	
Touch panel	RCP4-SA3-RA3/		CB-CAN-MPA***-RB CB-ADPC-MPA***	0	0	
Touch panel	RCP4-SA3·RA3/ RCP2/RCD	Motor/Encoder integrated cable	CB-CAN-MPA***-RB CB-ADPC-MPA*** CB-ADPC-MPA***-RB	© 0 0	0	(
ouch panel	RCP4-SA3-RA3/	Motor/Encoder integrated cable Motor/Encoder integrated cable	CB-CAN-MPA***-RB CB-ADPC-MPA*** CB-ADPC-MPA***-RB CB-CFA3-MPA		0 0	(
ouch panel	RCP4-SA3·RA3/ RCP2/RCD	Motor/Encoder integrated cable Motor/Encoder integrated cable Motor/Encoder integrated cable	CB-CAN-MPA***-RB CB-ADPC-MPA*** CB-ADPC-MPA***-RB CB-CFA3-MPA CB-CA-MPA		() () () () ()	(
ouch panel	RCP4-SA3-RA3/ RCP2/RCD RCP6/RCP5	Motor/Encoder integrated cable Motor/Encoder integrated cable	CB-CAN-MPA***-RB CB-ADPC-MPA*** CB-ADPC-MPA**-RB CB-CFA3-MPA CB-CA-MPA CB-CA-MPA		0 0 0 0 0	(
ouch panel	RCP4-SA3-RA3/ RCP2/RCD RCP6/RCP5	Motor/Encoder integrated cable Motor/Encoder integrated cable Motor/Encoder integrated cable	CB-CAN-MPA***-RB CB-ADPC-MPA*** CB-ADPC-MPA***-RB CB-CFA3-MPA CB-CA-MPA CB-CA-MPA CB-CA-MPA CB-CA-MPA**-RB CB-APSEP-MPA		() () () () ()	((
ouch panel	RCP4-SA3-RA3/ RCP2/RCD RCP6/RCP5 RCP4/RCD	Motor/Encoder integrated cable Motor/Encoder integrated cable Motor/Encoder integrated cable cable	CB-CAN-MPA***-RB CB-ADPC-MPA*** CB-ADPC-MPA***-RB CB-CFA3-MPA CB-CA-MPA CB-CA-MPA CB-CA-MPA**-RB CB-CA-MPA**-RB CB-CA-MPA**-RB CB-CA-MPA**-RB		0 0 0 0 0	(
ouch panel	RCP4-SA3-RA3/ RCP2/RCD RCP6/RCP5 RCP4/RCD RCP3/RCP2/ RCA2/RCA/RCL	Motor/Encoder integrated cable Motor/Encoder integrated cable Motor/Encoder integrated cable Motor/Encoder integrated cable	CB-CAN-MPA***-RB CB-ADPC-MPA*** CB-ADPC-MPA***-RB CB-CFA3-MPA CB-CA-MPA		© © © © © ©	(
ouch panel	RCP4-SA3-RA3/ RCP2/RCD RCP6/RCP5 RCP4/RCD	Motor/Encoder integrated cable	CB-CAN-MPA***-RB CB-ADPC-MPA*** CB-ADPC-MPA***-RB CB-CFA3-MPA CB-CA-MPA CB-CA-MPA CB-CA-MPA CB-CA-MPA**-RB CB-APSEP-MPA CB-RCAPC-MPA CB-RCAPC-MPA CB-RCAPC-MPA CB-RCAPC-MPA CB-RCAPC-MPA		(a) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	((
Touch panel	RCP4-SA3-RA3/ RCP2/RCD RCP6/RCP5 RCP4/RCD RCP3/RCP2/ RCA2/RCA/RCL	Motor/Encoder integrated cable	CB-CAN-MPA***-RB CB-ADPC-MPA*** CB-ADPC-MPA***-RB CB-CFA3-MPA CB-CA-MPA CB-CA-MPA CB-CA-MPA CB-CA-MPA**-RB CB-APSEP-MPA CB-RCAPC-MPA CB-RCAPC-MPA CB-RCAPC-MPA CB-RCAPC-MPA CB-RCAPC-MPA		© © © © © ©	(0)
Touch panel	RCP4-SA3-RA3/ RCP2/RCD RCP6/RCP5 RCP4/RCD RCP3/RCP2/ RCA2/RCA/RCL RCP3/RCP2	Motor/Encoder integrated cable	CB-CAN-MPA***-RB CB-ADPC-MPA*** CB-ADPC-MPA***-RB CB-CFA3-MPA CB-CA-MPA CB-CA-MPA CB-CA-MPA CB-CA-MPA**-RB CB-APSEP-MPA CB-RCAPC-MPA-RB CB-RCAPC-MPA-RB CB-RCAPC-MPA-RB CB-PSEP-MPA CB-PSEP-MPA CB-PSEP-MPA		(a) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	
Touch panel	RCP4-SA3-RA3/ RCP2/RCD RCP6/RCP5 RCP4/RCD RCP3/RCP2/ RCA2/RCA/RCL	Motor/Encoder integrated cable	CB-CAN-MPA***-RB CB-ADPC-MPA*** CB-ADPC-MPA***-RB CB-CFA3-MPA CB-CA-MPA CB-CA-MPA CB-CA-MPA CB-CA-MPA CB-CA-MPA CB-RCAPC-MPA CB-RCAPC-MPA CB-RCAPC-MPA CB-RCAPC-MPA CB-PSEP-MPA CB-PSEP-MPA CB-PSEP-MPA CB-RCS-MPA CB-RCS-MPA CB-RCS-MPA CB-RCS-MPA CB-RCS-MPA CB-RCS-MPA		(a) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	(6)
	RCP4-SA3-RA3/ RCP2/RCD RCP6/RCP5 RCP4/RCD RCP3/RCP2/ RCA2/RCA/RCL RCP3/RCP2	Motor/Encoder integrated cable Motor/Encoder integrated cable (Small rotary type only) Motor cable	CB-CAN-MPA***-RB CB-ADPC-MPA*** CB-ADPC-MPA***-RB CB-CFA3-MPA CB-CA-MPA CB-CA-MPA CB-CA-MPA CB-CA-MPA**-RB CB-APSEP-MPA CB-RCAPC-MPA-RB CB-RCAPC-MPA-RB CB-RCAPC-MPA-RB CB-PSEP-MPA CB-PSEP-MPA CB-PSEP-MPA			(6)
ouch panel	RCP4-SA3-RA3/ RCP2/RCD RCP6/RCP5 RCP4/RCD RCP3/RCP2/ RCA2/RCA/RCL RCP3/RCP2	Motor/Encoder integrated cable	CB-CAN-MPA***-RB CB-ADPC-MPA*** CB-ADPC-MPA***-RB CB-CFA3-MPA CB-CA-MPA CB-CA-MPA CB-CA-MPA CB-CA-MPA CB-CA-MPA CB-CA-MPA CB-RCAPC-MPA CB-RCAPC-MPA CB-RCAPC-MPA CB-RCAPC-MPA CB-PCS-MPA CB-PCS-MPA CB-PCS-MPA CB-PCS-MPA CB-RCS-MPA CB-RCS-MPA CB-RCS-MPA CB-RCS-MPA CB-RCS-MPA CB-RCS-MPA CB-RCS-MPA CB-RCS-MPA CB-RCS-MPA			
	RCP4-SA3-RA3/ RCP2/RCD RCP6/RCP5 RCP4/RCD RCP3/RCP2/ RCA2/RCA/RCL RCP3/RCP2 RCP3/RCP2	Motor/Encoder integrated cable Motor/Encoder integrated cable (Small rotary type only) Motor cable Encoder cable	CB-CAN-MPA***-RB CB-ADPC-MPA*** CB-ADPC-MPA***-RB CB-CFA3-MPA CB-CA-MPA CB-CA-MPA CB-CA-MPA CB-CA-MPA CB-RCAPC-MPA CB-RCAPC-MPA CB-RCAPC-MPA CB-RCAPC-MPA CB-PCS-MPA CB-PSEP-MPA CB-PSEP-MPA CB-PCS-MPA CB-PSEP-MPA CB-RCP2-MPA CB-RCP2-PA**-RB CB-RCP2-PA CB-RFA-PA CB-RCP2-PA**-RB CB-RCP2-PA***-RB			
	RCP4-SA3-RA3/ RCP2/RCD RCP6/RCP5 RCP4/RCD RCP3/RCP2/ RCA2/RCA/RCL RCP3/RCP2	Motor/Encoder integrated cable Encoder cable Motor cable Motor/Encoder integrated cable	CB-CAN-MPA***-RB CB-ADPC-MPA*** CB-ADPC-MPA***-RB CB-CFA3-MPA CB-CA-MPA CB-CA-MPA CB-CA-MPA CB-CA-MPA CB-RCAPC-MPA CB-RCAPC-MPA CB-RCAPC-MPA CB-RCAPC-MPA CB-RCAPC-MPA CB-PSEP-MPA CB-PSEP-MPA CB-PSEP-MPA CB-RCPC-MPA CB-RCPC-MPA CB-RCPC-MPA CB-RCP2-MPA CB-RCP2-MA CB-RCP2-PA CB-RCP2-PA CB-RCP2-PA CB-RCP2-PA***-RB CB-RCP2-PA***-RB CB-RCS-MPA			
	RCP4-SA3-RA3/ RCP2/RCD RCP6/RCP5 RCP4/RCD RCP3/RCP2/ RCA2/RCA/RCL RCP3/RCP2 RCP3/RCP2	Motor/Encoder integrated cable Motor/Encoder integrated cable (Small rotary type only) Motor cable Encoder cable Motor/Encoder integrated cable Motor/Encoder integrated cable Motor/Encoder integrated cable	CB-CAN-MPA***-RB CB-ADPC-MPA*** CB-ADPC-MPA***-RB CB-CFA3-MPA CB-CA-MPA CB-CA-MPA CB-CA-MPA CB-CA-MPA CB-RCAPC-MPA CB-RCAPC-MPA CB-RCAPC-MPA CB-RCAPC-MPA CB-PSEP-MPA CB-PSEP-MPA CB-PSEP-MPA CB-RCAPC-MPA CB-RCAPC-MPA CB-RCAPC-MPA CB-RCAPC-MPA CB-RCAPC-MPA CB-RCAPC-MPA CB-RCAPC-MPA CB-RCAPC-MPA CB-RCAPC-MA CB-RCP2-MA CB-RCP2-PA CB-RCP2-PA CB-RCAPC-MPA CB-RCAPC-MPA CB-RCAPC-MPA CB-RCAPC-MPA CB-RCAPC-MPA			
	RCP4-SA3-RA3/ RCP2/RCD RCP6/RCP5 RCP4/RCD RCP3/RCP2/ RCA2/RCA/RCL RCP3/RCP2 RCP3/RCP2 RCP3/RCP2	Motor/Encoder integrated cable Motor/Encoder integrated cable (Small rotary type only) Motor cable Encoder cable Motor/Encoder integrated cable Motor/Encoder integrated cable Motor/Encoder integrated cable	CB-CAN-MPA***-RB CB-ADPC-MPA*** CB-ADPC-MPA***-RB CB-CA-MPA CB-CA-MPA CB-CA-MPA CB-CA-MPA CB-CA-MPA CB-CA-MPA CB-RCAPC-MPA CB-RCAPC-MPA CB-RCAPC-MPA CB-RSEP-MPA CB-PSEP-MPA CB-PSEP-MPA CB-RSEP-MPA CB-ASEP-MPA CB-ASEP-MPA			
	RCP4-SA3-RA3/ RCP2/RCD RCP6/RCP5 RCP4/RCD RCP3/RCP2/ RCA2/RCA/RCL RCP3/RCP2 RCP3/RCP2	Motor/Encoder integrated cable Motor/Encoder integrated cable (Small rotary type only) Motor cable Encoder cable Motor/Encoder integrated cable Motor/Encoder integrated cable Motor/Encoder integrated cable	CB-CAN-MPA***-RB CB-ADPC-MPA*** CB-ADPC-MPA***-RB CB-CFA3-MPA CB-CA-MPA CB-CA-MPA CB-CA-MPA CB-CA-MPA CB-CA-MPA CB-RCAPC-MPA CB-RCAPC-MPA CB-RCAPC-MPA CB-RCAPC-MPA CB-PCS-MPA CB-PSEP-MPA CB-RSEP-MPA CB-RSEP-MPA CB-RSEP-MPA CB-RF2-MA CB-RF2-MA CB-RF2-PA CB-RF3-PA CB-RF3-PA CB-RF3-PA CB-RF3-PA CB-RF3-PA CB-RSEP-MPA CB-RSEP-MPA CB-RSEP-MPA CB-RSEP-MPA CB-RSEP-MPA CB-RSEP-MPA CB-ASEP-MPA CB-ASEP-MPA CB-ASEP-MPA CB-ASEP-MPA CB-ASEP-MPA CB-ASEP-MPA CB-ASEP-MPA			
	RCP4-SA3-RA3/ RCP2/RCD RCP6/RCP5 RCP4/RCD RCP3/RCP2/ RCA2/RCA/RCL RCP3/RCP2 RCP3/RCP2 RCP3/RCP2	Motor/Encoder integrated cable Motor/Encoder integrated cable (Small rotary type only) Motor cable Encoder cable Motor/Encoder integrated cable Motor/Encoder integrated cable Motor/Encoder integrated cable	CB-CAN-MPA***-RB CB-ADPC-MPA*** CB-ADPC-MPA***-RB CB-CFA3-MPA CB-CA-MPA CB-CA-MPA CB-CA-MPA CB-CA-MPA CB-RCAPC-MPA CB-RCAPC-MPA CB-RCAPC-MPA CB-PCS-MPA CB-PSEP-MPA CB-PSEP-MPA CB-PSEP-MPA CB-RCP2-MPA CB-RCP2-MA CB-RCP2-MA CB-RCP2-PA**-RB CB-RCP2-PA**-RB CB-RCP2-PA**-RB CB-RCS-MPA CB-SEP-MPA CB-ACS-MPA CB-ACS-MPA CB-ACS-MPA CB-ACS-MA CB-ACS-MA			
	RCP4-SA3-RA3/ RCP2/RCD RCP6/RCP5 RCP4/RCD RCP3/RCP2/ RCA2/RCA/RCL RCP3/RCP2 RCP3/RCP2 RCP3/RCP2 RCA2/RCA/RCL	Motor/Encoder integrated cable Motor cable Encoder cable Motor/Encoder integrated cable Motor/Encoder integrated cable Motor cable Encoder cable Motor/Encoder integrated cable Motor/Encoder integrated cable Motor/Encoder integrated cable Motor cable Encoder cable	CB-CAN-MPA***-RB CB-ADPC-MPA*** CB-ADPC-MPA***-RB CB-CFA3-MPA CB-CA-MPA CB-CA-MPA CB-CA-MPA CB-CA-MPA CB-CA-MPA CB-RCAPC-MPA CB-RCAPC-MPA CB-RCAPC-MPA CB-RCAPC-MPA CB-PCS-MPA CB-PSEP-MPA CB-PSEP-MPA CB-RCP2-MA CB-RCP2-PA CB-RCP2-PA CB-RCP2-PA CB-RCP2-PA CB-RCP2-PA CB-RCP2-PA CB-RCP2-PA CB-RCS-MPA CB-RCS-PA			
	RCP4-SA3-RA3/ RCP2/RCD RCP6/RCP5 RCP4/RCD RCP3/RCP2/ RCA2/RCA/RCL RCP3/RCP2 RCP3/RCP2 RCP3/RCP2	Motor/Encoder integrated cable Motor cable Encoder cable Motor/Encoder integrated cable Motor cable Encoder cable Motor cable	CB-CAN-MPA***-RB CB-ADPC-MPA*** CB-ADPC-MPA***-RB CB-CA-MPA CB-CA-MPA CB-CA-MPA CB-CA-MPA CB-CA-MPA CB-CA-MPA CB-RCAPC-MPA CB-RCAPC-MPA CB-RCAPC-MPA CB-RCAPC-MPA CB-RCAPC-MPA CB-RCAPC-MPA CB-RCAPC-MPA CB-RCP2-MPA CB-RCP2-MPA CB-RCP2-PA CB-RCP2-PA CB-RCP2-PA CB-RCP2-PA**-RB CB-RCP2-MPA CB-ACS-MPA CB-ACS-MPA CB-ACS-MA CB-ACS-PA CB-ACS-PA CB-RCS3-MA***-RB CB-RCS3-MA***-RB CB-RCS3-MA***-RB			
	RCP4-SA3-RA3/ RCP2/RCD RCP6/RCP5 RCP4/RCD RCP3/RCP2/ RCA2/RCA/RCL RCP3/RCP2 RCP3/RCP2 RCP3/RCP2 RCA2/RCA/RCL	Motor/Encoder integrated cable Motor cable Encoder cable Motor/Encoder integrated cable Motor/Encoder integrated cable Motor cable Encoder cable Motor cable Encoder cable Motor cable Encoder cable Motor cable Encoder cable	CB-CAN-MPA***-RB CB-ADPC-MPA*** CB-ADPC-MPA***-RB CB-CFA3-MPA CB-CA-MPA CB-CA-MPA CB-CA-MPA CB-CA-MPA CB-CA-MPA CB-RCAPC-MPA CB-RCAPC-MPA CB-RCAPC-MPA CB-RCAPC-MPA CB-PCS-MPA CB-PSEP-MPA CB-PSEP-MPA CB-RCP2-MA CB-RCP2-PA CB-RCP2-PA CB-RCP2-PA CB-RCP2-PA CB-RCP2-PA CB-RCP2-PA CB-RCP2-PA CB-RCS-MPA CB-RCS-PA			
	RCP4-SA3-RA3/ RCP2/RCD RCP6/RCP5 RCP4/RCD RCP3/RCP2/ RCA2/RCA/RCL RCP3/RCP2 RCP3/RCP2 RCP3/RCP2 RCA2/RCA/RCL	Motor/Encoder integrated cable Motor cable Encoder cable Motor/Encoder integrated cable Motor cable Encoder cable Motor cable	CB-CAN-MPA***-RB CB-ADPC-MPA*** CB-ADPC-MPA***-RB CB-CA-MPA CB-CA-MPA CB-CA-MPA CB-CA-MPA CB-CA-MPA CB-CA-MPA CB-RCAPC-MPA CB-RCAPC-MPA CB-RCAPC-MPA CB-RCAPC-MPA CB-RCAPC-MPA CB-RCAPC-MPA CB-RCP-MPA CB-ACS-MPA CB-ACS-MPA CB-ACS-MPA CB-ACS-MA CB-ACS-PA**-RB CB-RCS-MA**-RB CB-RCS-MA***-RB CB-RCS-MA***-RB CB-RCS-MA***-RB CB-RCS-MA***-RB CB-RCS-MA***-RB CB-RCS-MA***-RB CB-RCS-MA***-RB			
	RCP4-SA3-RA3/ RCP2/RCD RCP6/RCP5 RCP4/RCD RCP3/RCP2/ RCA2/RCA/RCL RCP3/RCP2 RCP3/RCP2 RCP3/RCP2 RCA2/RCA/RCL	Motor/Encoder integrated cable Motor cable Encoder cable Motor/Encoder integrated cable Motor/Encoder integrated cable Motor cable Encoder cable Motor cable Encoder cable Motor cable Encoder cable Motor cable Encoder cable	CB-CAN-MPA***-RB CB-ADPC-MPA*** CB-ADPC-MPA***-RB CB-CFA3-MPA CB-CA-MPA CB-CA-MPA CB-CA-MPA CB-CA-MPA CB-RCAPC-MPA CB-RCAPC-MPA CB-RCAPC-MPA CB-RCAPC-MPA CB-RCAPC-MPA CB-RCAPC-MPA CB-RCAPC-MPA CB-RCPS-MPA CB-RSEP-MPA CB-RSEP-MPA CB-RCP2-MA CB-RCP2-PA CB-RCP2-PA CB-RCP2-PA CB-RCP2-PA CB-RCP2-PA CB-RCP2-PA CB-RCP3-MPA CB-ACS-MPA CB-ACS-MPA CB-ACS-MPA CB-ACS-MPA CB-ACS-MPA CB-ACS-MA CB-ACS-PA**-RB CB-ACS-PA			
	RCP4-SA3-RA3/ RCP2/RCD RCP6/RCP5 RCP4/RCD RCP3/RCP2/ RCA2/RCA/RCL RCP3/RCP2 RCP3/RCP2 RCP3/RCP2 RCA2/RCA/RCL	Motor/Encoder integrated cable Motor cable Encoder cable Motor/Encoder integrated cable Motor/Encoder integrated cable Motor cable Encoder cable Motor cable Encoder cable Motor cable Encoder cable Motor cable Encoder cable	CB-CAN-MPA***-RB CB-ADPC-MPA***-RB CB-ADPC-MPA***-RB CB-CA-MPA CB-CA-MPA CB-CA-MPA CB-CA-MPA CB-CA-MPA CB-RCAPC-MPA CB-RCAPC-MPA CB-RCAPC-MPA CB-RCAPC-MPA CB-PSEP-MPA CB-PSEP-MPA CB-RSEP-MPA CB-RSEP-MPA CB-RCP2-MPA CB-RCP2-PA CB-RCP2-PA CB-RCP2-PA CB-RCP2-PA CB-RCP2-PA**-RB CB-ACS-MPA CB-ASEP2-MPA CB-ASEP2-MPA CB-ASEP3-MPA CB-ASEP3-MPA CB-ASEP3-MPA CB-ASEP3-MPA CB-RCS-MPA CB-RCS-MPA**-RB CB-RCS-MPA**-RB CB-RCS-MPA**-RB CB-RCC-MA			
	RCP4-SA3-RA3/ RCP2/RCD RCP6/RCP5 RCP4/RCD RCP3/RCP2/ RCA2/RCA/RCL RCP3/RCP2 RCP3/RCP2 RCA2/RCA/RCL RCP3/RCP2	Motor/Encoder integrated cable Motor cable Encoder cable Motor/Encoder integrated cable Motor/Encoder integrated cable Motor cable Encoder cable Motor cable Encoder cable Motor cable Encoder cable Motor cable Encoder cable	CB-CAN-MPA***-RB CB-ADPC-MPA*** CB-ADPC-MPA***-RB CB-CFA3-MPA CB-CA-MPA CB-CA-MPA CB-CA-MPA**-RB CB-APSEP-MPA CB-RCAPC-MPA-RB CB-PCS-MPA CB-PCS-MPA CB-PSEP-MPA CB-RCP2-MPA CB-RCP2-MPA CB-RCP2-PA CB-RCP2-PA CB-RCP2-PA CB-RCP2-PA CB-RCP2-PA CB-RCP2-PA CB-RCP2-PA CB-RCP3-PA CB-RCP3-PA CB-RCP3-PA CB-RCP3-PA CB-RCP3-PA CB-RCS-MPA CB-ACS-MPA CB-ACS-MPA CB-ACS-MPA CB-ACS-MPA CB-ACS-MPA CB-ACS-MPA CB-ACS-MA CB-ACS-PA**-RB CB-RCS-PA**-RB CB-RCS-PA			

1- 229 Technical Reference

Product	Coultra	T	◎: Standard/ (: Special order/	UL
structure	Series name	Туре	Model	RoHS Order	CE mark	standar
			CB-X-MA	0	0	
		Motor cable	CB-XMC-MA	0	0	
			CB-XEU-MA	0	<u> </u>	
	VCEI		CB-X-PA	0	0	-
	XSEL	Francisco dos coblo	CB-X1-PA/PLA	0	0	+
		Encoder cable	CB-X2-PA/PLA CB-X1-PA***-WC	0	0	_
MPG cable			CB-X3-PA			_
IVIP G Cable		Limit switch cable	CB-X-LC		<u>©</u>	+
			CB-CT4-MA	Ö	<u> </u>	+
		Motor cable	CB-CT4R-MA	Ö	<u> </u>	+
	XSEL-PCT/QCT		CB-CT4-PA	0	<u> </u>	+
	7.522 . 6.7 Q6.	Encoder cable	CB-CT4R-PA	0	<u> </u>	+
			CB-CT4PR-PA	Ŏ	<u> </u>	
	TX	Motor cable	CB-TX-ML050-RB	Ö		
	PMEC/AMEC	For standard	CB-APMEC-PIO***-NC	Ö	0	
	PSEP/ASEP/DSEP	For Standard/Dust-proof	CB-APSEP-PIO/CB-APSEPW-PIO	<u></u>	<u> </u>	
		For standard	CB-MSEP-PIO	Ö	<u> </u>	
	MSEP	For LC	CB-PAC-PIO	Ö	<u> </u>	
		For standard (C/CA/CB/CG/CGB type)	CB-PAC-PIO	Ö	Ö	
	DC01/// CC11	For solenoid valve type (CY type)	CB-PACY-PIO		Ö	
	PCON/ACON/	For solenoid valve type (CYB type)	CB-PAD-PIO	0	<u> </u>	
	DCON	For pulse train control (PL/PO type)			<u> </u>	
		For pulse train control (PLB/POB type)	CB-PAD-PIOS	Ŏ	<u> </u>	
I/O Cable	SCON	For standard	CB-PAC-PIO		<u> </u>	
	MSEL	Standard	CB-PAC-PIO	0	<u></u>	
	PSEL/ASEL/SSEL	For standard	CB-DS-PIO		Ŏ	
	XSEL	For standard	CB-X-PIO		Ŏ	
	FDC3	Power supply for PIO type	CB-ERC3P-PWBIO		×	X
	ERC3	Power supply for SIO type	CB-ERC3S-PWBIO	0	×	X
		Power supply for PIO type	CB-ERC-PWBIO***(-RB)		0	
	ERC/ERC2	Davier supply/I/O sable	CB-ERC-PWBIO***-H6		0	
	ERC/ERC2	Power supply/I/O cable	CB-ERC-PWBIO***-RB-H6	0	0	×
		Power supply for SIO type	CB-ERC2-PWBIO***(-RB)	0	0	
Communication cable for SIO	ERC3	_	CB-PST-SIO050	0	×	×
Cable 101 310			RCM-101-MW	0		+
		Software for PC	RCM-101-WW			+
		External communication cable	CB-RCA-SIO***		0	+
		RS232C conversion cable	RCB-CV-MW	0		-
			CB-SEL-USB***	Ö	0	+
		USB cable	CB-SEL-USB030	Ö		+
	RC	USB conversion adapter	CB-CV-USB	Ö		
		Link cable	CB-RCB-CTL***	Ö	0	
		Unit link cable	CB-REXT-SIO***	Ŏ	<u> </u>	
		Controller connection cable	CB-REXT-CTL***	Ŏ	Ö	
		Conversion cable	CB-CAN-AJ002	0		
		Conversion connector	RCM-CV-APCS	0		
		A.L C. CONTE	DCD LD TCC	Ö		
	SCON	Adapter for CON-TG	RCB-LB-TGS	0		
	SCON	Pulse train control cable	CB-SC-PIOS	Ö	0	
		Connection cable (between	CB-RCP6S-PWBIO□□□(-RB)	0	_	
	RCP6S	axis and GW)	CSC. 33 (WDIOCICIA (ND)	_		1
		Connection cable (between GW and hub)	CB-RCP6S-PLY□□□(-RB)	0		
	ERC2	PC connection cable	CB-ERC2-SIO***	0	0	X
	LINCZ	Cable for network connection	CB-ERC2-CTL***	0	0	×
Others	MSEL (included	Connection cable	CB-MSEL-AB***		0	×
	with MSELABB)					+
			IA-101-X-MW			+
		Software for PC	IA-101-XA-MW	Ö		+
		(Cable + EMG BOX)	IA-101-X-USBS	0		+
			IA-101-X-USBMW			
			EMG SW BOX CB-ST-E1MW***	0		+
		Insulated cable (single item)	CB-ST-A2MW***	0	0	+
		moulated capie (single item)	CB-SEL-USB010			+
	XSEL	LICE conversion adapter				+
		USB conversion adapter	IA-CV-USB			+
		Adapter for SEL-TG	IA-LB-TGS CR-ST-2321001/CR-ST-4221010			+
		Joint cable	CB-ST-232J001/CB-ST-422J010	0	<u> </u>	+
		SEL-TG connection cable	CB-SEL25-LBS***	0	0	+
	1	Brake box ~controller connection cable	CB-XBB-PA030/050-CS	0	×	×
		Cable for brake box release switch	CB-XBB-SW020	0	×	X
		Connection cable (included				
		with EIOU - 4)	CB-RS-IAN020	0	×	×
	A/P/SSEL	SEL-TG connection cable	CB-SEL26H-LBS***	0	0	
	DDA	Brake box · Mechanical	CB-DDB-BK***	0	×	X
		connection cable			^	⊥_^

Product structure	Series name	Туре	◎: Standard/ ○: Model	RoHS Order	: Special orde CE Marking	UL Standard
	SEL	Panel unit	PU-1	0		
Others		Connector conversion cable	CB-SEL-SJS***	0	0	
	TX	Connection cable	CB-TX-P1MW020	0		
c: .	TTA	Software for PC	IA-101-TTA-USB	0		
Simple absolute unit	PCON/ACON	PCON-ABU ACON-ABU	_	*4	0	0
Simple Absolute Battery Unit	ACON-CB/CGB	SEP-ABU/ABUS	_	*4	0	0
Dc24V Power supply	_	PSA-24 PS-241/PS-242	_	0	0	0
PLC connection unit	RCP6S	RCB-P6PLC	_	0	0	
Hub unit	RCP6S	RCM-P6HUB	_	0	Ō	
	RCP6S	RCM-P6GW	_	0	0	
	ERC3	RCM-EGW	_	0	×	X
Gateway unit		DV	RCM-GW-DV	0		
	RCM-GW	СС	RCM-GW-CC	0		
		PR	RCM-GW-PR	0		
RC gateway (dedicated	XSEL-P/Q	Communication cable	CB-RCB-SIO***		0	×
cable for communica- tion port connection)	XSEL-R/S	Controller link cable	CB-RCB-CTL***	0	0	×
Expansion I / O	SSEL MSEL	EIOU-1	_	0	×	×
unit	TTA	1		"	^	^
	XSEL	EIOU-4	_	0	×	X
	SCON (for RCS3-	RESU-35T	_	0	0	×
	RA20R) MSCON XSEL-J/K/P/Q/R/	RESU-1/RESUD-1	_	0	×	×
	S/RA/SA SCON MSCON	RESU-2/RESUD-2	_		×	×
Regenerative	SSEL	THESO Z/THESOD Z				^
resistance unit	E-Con PDR XSEL-J/K/P/Q/R/	REU-1	_	 ⊚		
	S/RA/SA SCON					
	SSEL MSEP	REU-2		0		
	MCON	RER-1	_	0	×	×
	HAB	IA-HAB	_	*4		
	RCP	AB-2	_			
	XSEL-J/K	IA-XAB-BT	_	0		
	RCS E-Con	AB-1	_			
	P-Driver IX Scalar	AB-3	_			
	(for 250-800) RCP2	AB-4	_			
	XSEL-P/Q/R/S/ RA/SA					
Absolute battery	ASEL					
	ACON SCON	AB-5		*4		
	MSCON					
	SSEL IX Scalar	AD 6				
	(for 120-180) PCON-ABU	AB-6	_			
	ACON-ABU MCON	- - AB-7	_			
	MSEL					
Absolute battery	MSEP MCON	MSEP-ABB	_	0	0	0
box	MSEL	MSEL-ABB	_	0	0	×
	XSEL	DP-2	_	0	X	X
	PSEL					
	ASEL	DP-4S	_	0		
	SSEL					
Dummy plug	MSEL			-	-	
	MCON ACON-CGB	-				
	DCON-CGB	DP-5	_	0	×	×
	SCON-CGB/	1				^`
	CGBL/CAL					

1-231 Technical Reference

			◎: Standard/ ○	:Option 🛆	Special orde	r/ $ imes$: No plan
Product structure	Series name	Туре	Model	RoHS Order	CE Marking	UL Standard
		1-Axis AC	H-109-□A	×		
		1-axis DC	H-109-□D	×		
	E/G	Brake Box	H-110-□A	×		
		2-axis DC	H-110-□D	×		
Dueles been		Coil	H-500	×		
Brake box	GDS	1-Axis	H-401	×		
	GDS	2-Axis	H-402	×		
	RCS2-RA13R	RCB-110-RA13R-0	_	0	×	×
	XSEL-J/K	IA-110-X-0	_	0		
	DDA	IA-110-DD-4	_	0	×	×
	MSEP (for pulse motors)	MSEP-PPD1/PD1/PD2	_	0	×	×
	MSEP (for AC Servomotor)	MSEP-AD1/AD2	_	0	×	×
Driver board	MSEP (for DC brushless motor)	MSEP-DD1/DD2	_	0	×	×
Driver board	MCON (for pulse motors)	MCON-PPD1/PD1/PD2	_	0	×	×
	MCON (for AC Servomotor)	MCON-AD1/AD2	_	0	×	×
	MCON (for DC brushless motor)	MCON-DD1/DD2	_	0	×	×
Fan unit	RCON	RCON-FU	_	0	×	×
Replacement fan	MSEP	MSEP-FU	_	0	×	×
unit	SCON	SCON-FU	_	0	×	×
PIO converter	ERC3	RCB-CV	_	0	×	×
PIO terminal block	_	RCB-TU-PIO-A/B	_	0	×	×
SIO converter	_	RCB-TU-SIO-A/B	_	0	×	×
DC222	RCS	New	RCB-CV-MW	0		
RS232 conversion uni	ERC	Old	RCA-ADP-MW	X		
uiii	XSEL	RCB-CV-GW	_	0		
Multipoint I/O board Terminal block	XSEL-K	TU-MA96(-P)	_	0		
Filter box	E-Con	PFB-1	_	X		
Pulse converter	PDR/ACON/SCON	AK-04	_	0		
	SCON-CB	JM-08	_	0	×	×
I/O expansion box	E/G	H-107-4	_	X		

^(*1) Excluding the brake option.

^(*2) Not compliant when connecting with IX-NNN 10040/12040.

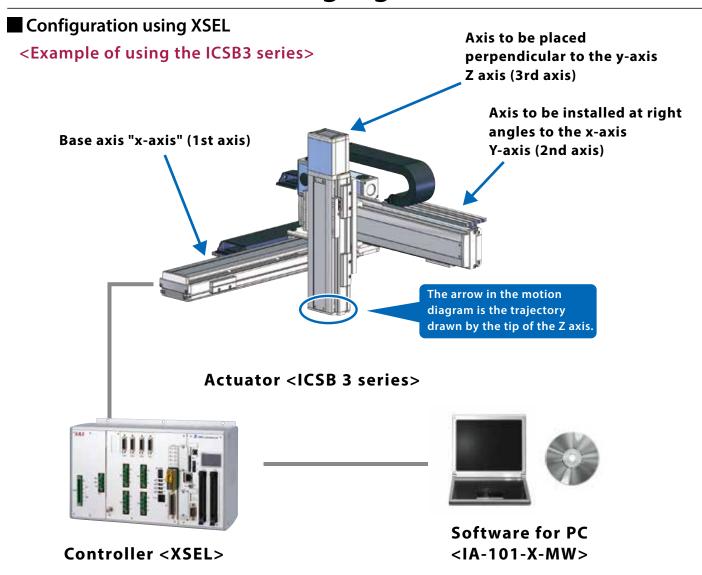
^(*3) Limited to 200V specification..

 $^(^*\!4)$ The EU Battery Directive is applied, and RoHS Order is not applicable.

^(*5) Field networks of CC-Link IE, SSCNET and EtherCAT Motion are not supported.

 $[\]label{eq:continuous} \mbox{(*6) Field networks of CC-Link IE and MECHATROLINK-I/II are not supported.}$

^(*7) Field network of MECHATROLINK-I/II is not supported.


^{(*8) 3000} and 3300W types are not supported.

^(*9) XSSEL-SAX/SAXD8 are not supported.

^(*10) Limited to Safety Category compliant specification.

^(*11) XSEL-PCT is not supported.

Introduction to SEL Language

^{*} SEL language is used in XSEL controller, PSEL controller, ASEL controller, SSEL controller, table top robot TTA series.

The above actuator combines three linear actuators.

1 The three actuators are expressed as "1 axis, 2 axis, 3 axis", respectively.

2 This actuator is called "3 axis orthogonal robot" which uses 3 axes in combination orthogonally.

3 Each axis is classified into X axis, Y axis, Z axis from its installation status.

Base axis → <X axis>

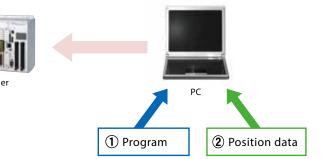
Axis installed at right angles to the X axis → <Y axis>

Axis installed perpendicular to the Y axis → <Z axis>

1 In program data and position data, it is expressed as follows.

X axis (first axis) = Axis 1

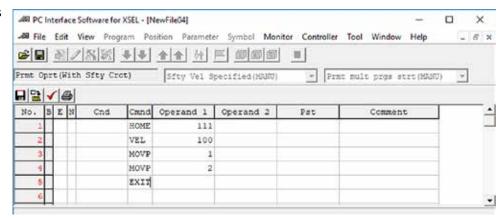
Y axis (second axis) = Axis 2


Z axis (third axis) = Axis 3

■ What is necessary for robot operation

In order to operate the robot,

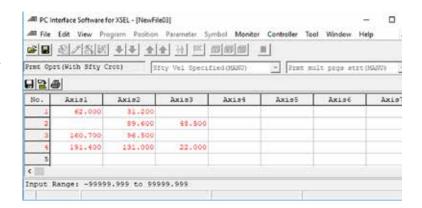
- **1** Program
- **2** Position data


(The position where the robot moves)
It is necessary to enter these two data to
the controller using a personal computer.

1 Program

Enter "SEL language" (our company's original language) which instructs the contents and order of action in the program data sheet in PC software.

* The program actually entered is displayed as follows.


Software for PC IA-101-X-MW Program Input screen

2 Position data (position where the robot moves)

The position to move the actuator is indicated by coordinates and entered in the position data sheet in the personal computer software.

* The position data actually entered is displayed as follows.

Data not transferred to the controller will be displayed in red and will be black after transfer.

Software for PC IA-101-X-MW Position Input screen

Introduction to SEL Language

Basics of program

Basics of program creation

- ① Use the instruction word "Super SEL language" (hereinafter "SEL language") to instruct the operation.
- ② "SEL language" basically executes instructions one by one in order from the top.
- ③ Enter the command word in the [Cmnd] field of the program data sheet.
 - * [Cmnd] stands for Command.
- ④ In the [Operand 1] [Operand 2] field, enter various numerical values following the command word on the same line. Numeric values are various types, such as position number, axis number, axis pattern, speed, number of seconds.
 - * [Operand] is a computer term and is "numerical value and variable to be calculated". In SEL language, Operand 1 is called "operation 1" and perand 2 is called "operation 2".
- ⑤ The basic program configurations are "move to reference point", "speed specification", "operation designation", and "end declaration".
 - Move to reference point ... Return to origin and use the command word "HOME".
 - Speed specification ... Specify the moving speed with the command word "VEL (abbreviation for speed translation English)".
 - It will not work unless speed is specified. The maximum speed depends on the actuator used.
 - Operation specification ... Set various actions.
 - End declaration ... Ends the operation. At the end of the program, enter the instruction word "EXIT".

If this is not entered, repeat the program.

<Example of program>

The following program shows

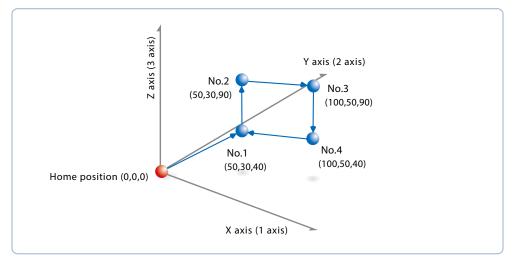
The X, Y and Z axes return to the reference point of motion and then move from the reference point to position No. 1 at a speed of 100 mm / s. After that, it moves to No. 2 and end the operation.

No. B	3 E	N N	Cnd	Cmnd	Operand 1	Operand 2	Pst	Comment
- 1				HOME	111			
2				YEL	100			
3				MOVL	1		1	
4		11		MOYL	2			
5				EXIT				
6								

Step No.

Column for command

Column for comment


■ Basics of position data

Basics of creating position data

- 1 In the position data sheet, enter the "coordinates" of the position to move.
- ② Axis is the axis, Axis 1 = first axis, Axis 2 = second axis, Axis 3 = third axis respectively. In ICSB 3, Axis 1 = X axis, Axis 2 = Y axis, Axis 3 = Z axis.
- ③ Even if position data is entered, it will not operate unless a move is instructed by the program.
- ④ Since the order of moving is set by the program, the order of the position numbers is not related to the moving order.

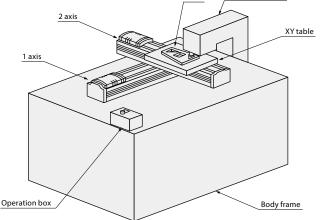
<Example of Position Data>

Move from No. 1 to No. 4 by setting the target position to 4 points.

The four three-dimensional coordinates (distance from the origin) are set from position No. 1 to No. 4.

* The unit is mm.

No.	Axis1	Axis2	Axis3
1	50.000	30.000	40.000
2	50.000	30.000	90.000
3	100.000	50.000	90.000
4	100.000	50.000	40.000
5			
6			

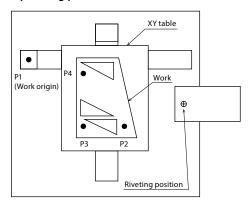


Position No.

Sample Program 1: Rivet Stopping Device

Device outline

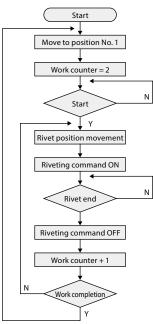
This device consists of X Y table and riveting machine by 1 axis / 2 axis actuator. This is a rivet stop device that sets a work on the X Y table at the work home position and makes the rivet stop to the specified three points on the work by turning on the start switch.


Operation explanation

Describe the operation of this device.

- 1 The XY table moves to the work origin (P1) and waits.
- ② The operator sets the work on the XY table and turns on the start SW.
- ③ In the XY table, riveting position No.1 (P2) of the work moves to riveting position and riveting command is outputted to the riveting machine.
- ④ Riveting operation is completed, the rivet position No. 2 (P3), No. 3 (P4) is moved to the riveting position in the same operation after the completion signal is entered.
- ⑤ After returning to riveting on all 3 points, return to the work origin (P1).

Operation position, input / output allocation of external input / output, and operation flowchart are shown below.


Operating position

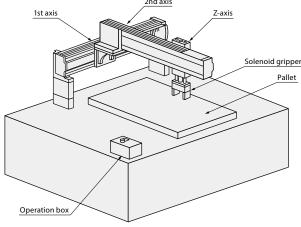
I / O allocation

Classit	fication I / O No.		Signal name	Specification	
	Enter	16	Start command	Pushbutton SW	
XSEL	Enter	17	Riveting complete	Contact signal	
ASEL	Output	309	Rivet Command 24v DC		
		* Flag	used more than 600		

Operation flowchart

1-237 Technical Reference

Application Program

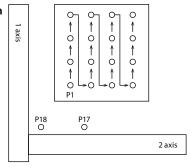

Step	Extended condition	Input condition	Cnd	Command	Operation 1	Operation 2	Output condition	Comment
1				HOME	11			XY table home return (servo ON)
2				VEL	400			Speed 400 mm / s setting
3				TAG	1			
4				MOVL	1			Move to position No. 1 (work origin)
5				LET	1	2		Set 2 to work counter
6				BTOF	600			Clear completion flag
7				WTON	16			Waiting for start command
8				TAG	2			
9				MOVL	*1			Work counter position movement
10				BTON	309			Riveting command ON
11				WTON	17			Waiting for riveting completion
12				BTOF	309			Riveting command OFF
13				ADD	1	1		Work counter + 1
14				CPEQ	1	5	600	Flag ON when work is completed
15		N	600	GOTO	2			If it is not completed jump TAG 2
16				GOTO	1			If it is completed jump TAG 1
17								
18								
19								
20								
21								
22								
23								
24								
25								
26								
27								
28								
29								
30								
31								
32								

Sample Program 2: Palletizing Device

Device outline

This device is a palletizing device that consists of 1st, 2nd and Z-axis actuators (controller: ACON-CYB) to grip workpieces from the part feeding point and transfer them sequentially on a pallet (using an offset instruction instead of the palletizing

function).

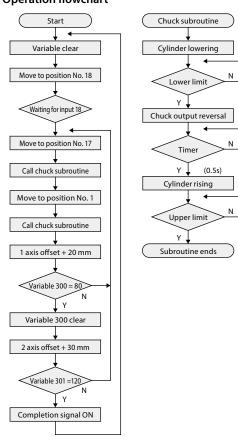

Operation explanation

Describe the operation of this device.

- 1 Move to standby point and wait for start input.
- 2 After starting input, move to the work supply point.
- ③ The Z-axis descends and the solenoid gripper grips the workpiece.
- 4 The Z-axis rises and moves onto the pallet.
- ⑤ The Z-axis descends and the solenoid gripper releases the workpiece.
- 6 The Z-axis rises and moves to the work supply point.
- ① At the end of the pallet, the pallet completion indication is outputted, after waiting for restart after moving to P18.

Operation position, input / output allocation of external input / output, and operation flowchart are shown below.

Operating position



I/O allocation

Classi	ssification I / O No. Signal name Specif		Specification	
	16 Enter 17		Z-axis actuator upper limit	Controller complete signal
			Z-axis actuator lower limit	Controller complete signal
		18	Start	Pushbutton SW
XSEL		309	Z axis actuator	DC24V
	Output	310	Z axis chuck	DC24V
		311 Pallet completion DC24V		DC24V
	* Flag used more than 600			

Pallet specification 1 axis direction: 20 mm pitch 2 axial direction: 30 mm pitch

Operation flowchart

1-239 Technical Reference

Application Program

Step	Extended condition	Input condition	Cnd	Command	Operation 1	Operation 2	Output condition	Comment
1				HOME	11			1 · 2 axes home return
2				VEL	100			2 VEL 100 speed 100 mm / s setting
3				ACC	0.2			3 ACC 0.2 Acceleration / Deceleration 0.2 G
4				TAG	1			
5				LET	300	0		Variable clear
6				LET	301	0		Variable clear
7				OFST	11	0		Offset value clear
8				MOVL	18			Move to position No. 18
9				WTON	18			Wait for start input
10				BTOF	311			Output 311 off
11				TAG	2			
12				OFST	11	0		Offset value clear
13				MOVL	17			Move to position No. 17
14				EXSR	1			Call chuck subroutine (chuck)
15				OFST	1	* 300		1 axis, value offset for variable 300
16				OFST	10	* 301		2 axis, value offset for variable 301
17				MOVL	1			Move to position No. 1 + offset value
18				EXSR	1			Call chuck subroutine (unchuck)
19				ADD	300	20		Add 20 to variable 300
20				CPEQ	300	80	600	If variable 300 = 80, flag 600 on
21		N	600	GOTO	2			If flag 600 is off, jump to TAG 2
22				LET	300	0		Variable 300 clear
23				ADD	301	30		Add 30 to variable 301
24				CPEQ	301	120	601	If variable 301 = 120, flag 601 is on
25		N	601	GOTO	2			If flag 601 is off, jump to TAG 2
26				BTON	311			Output 311 ON
27				GOTO	1			Jump to TAG 1
28				BGSR	1			Start of chuck subroutine
29				BTON	309			Z-axis actuator down
30				WTON	17			Wait for lower limit input
31				BTNT	310			Air chuck output reversal
32				TIMW	0.5			Timer 0.5 seconds
33				BTOF	309			Z-axis actuator up
34				WTON	16			Wait for upper limit input
35				EDSR				Chuck subroutine ends
36								
37								
38								
39								

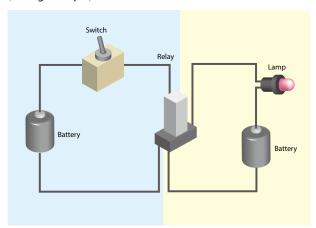
Basic of Sequential Control

This chapter describes the basic of sequential control that controls actuators.

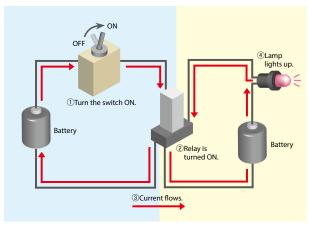
Contents

1. What is sequential control1-242
2. Sequential control and PLC1-243
3. a-contract and b-contact1-244
4. AND circuit and OR circuit1-245
5. Self-holding circuit1-247
6. Timer circuit1-249
7. Counter circuit1-251
8. Interlock circuit1-253
9. Alternate circuit1-255
10. ROBO Cylinder PIO control1-257

1- 241 Technical Reference

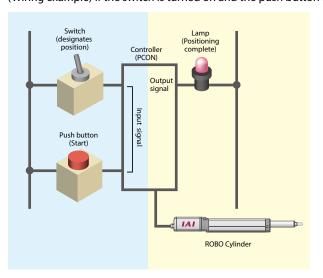

1. What is Sequential Control

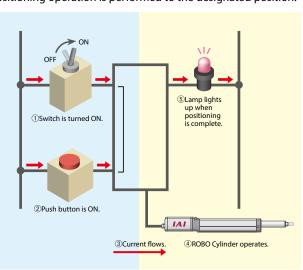
The sequential control is a control according to the predetermined sequence.


A circuit using a switch to turn on and off a lamp is also a sequential control.

An example of control to turn on a lamp

(Wiring example)





Example of control for ROBO Cylinder

(Wiring example) If the switch is turned on and the push button is pressed, a positioning operation is performed to the designated position.

Basic of Sequential Control

2. A sequential control and PLC A sequential control is performed mainly by PLC.

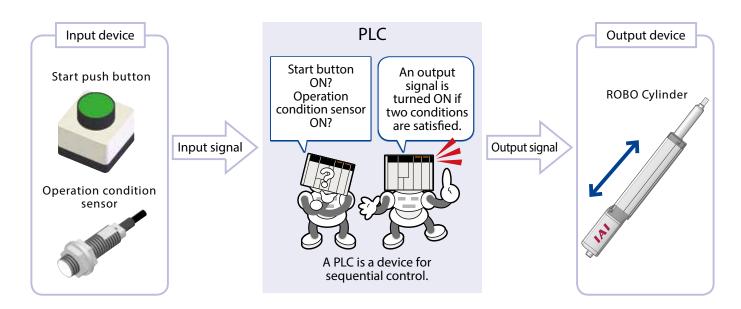
Machinery is controlled by sequential control so that it can be operated according to the intended use.

A sequential control mainly uses a PLC that combines switches and sensor signals to turn on lamps, turn on/off solenoid valves and drive motors.

Method of sequential control by PLC

A sequential control is performed by the following three elements:

- Input signal: Input signals entered into a control circuit, which are ON/OFF signals from input devices such as various switches attached to the control panel and sensors mounted on machinery. The output signals of a ROBO Cylinder controller are also input signals to a control circuit.
- Control circuit: A control circuit to operate machinery.


In order to operate machinery using a PLC, operating conditions of the machine and a circuit to perform sequential operations (sequential control circuit) are stored in the memory.

The sequential control circuit turns output signals ON/OFF to perform predetermined operations according the input signals of push buttons and sensors.

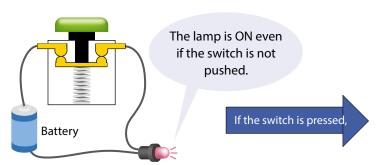
It also monitors abnormal and safety states of the machine.

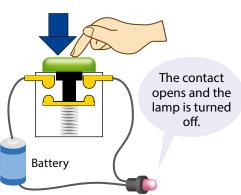
Output signal: Signals to turn ON/OFF by control signal, which turn ON/OFF of the output devices, such as motors to drive machinery and solenoid valves.

The ROBO Cylinder is also operated and controlled by these output signals.

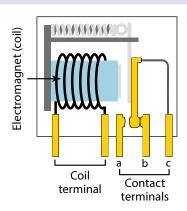
PLC is an abbreviation of Programmable Logic Controller, which is generally called a sequencer^(Note).

(Note) Sequencer is a trade name of Mitsubishi Electric Corporation.

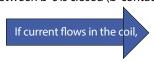


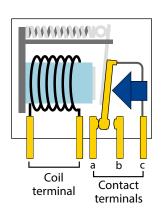

1- 243 Technical Reference

3. a-contact and b-contract


There are two kinds of contacts in switches: The a-contract is "Open" if it is not operated and "Close" if it is operated. Conversely, the b-contact is "Close" if it is not operated and "Open" if it is operated.

a-Contract of a push button switch The lamp is OFF if the switch is not pressed. If the switch is pressed, Battery Battery Battery Battery Battery Battery



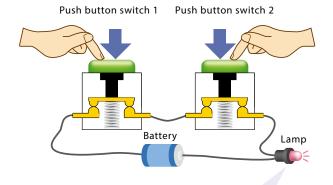

a-Contact and b-Contact of a relay

Current is not flowing in normal time, Between a-c is open (a-contact) Between b-c is closed (b-contact)

Between a-c (a-contact) from Open to Close Between b-c (b-contact) from Close to Open

(Note) C is a common terminal.

As shown in the diagram above, the contact that has both the a-Contact and b-Contact is called a c-Contact.

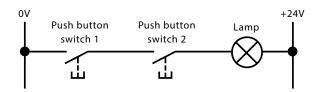

Basic of Sequential Control

4. AND and OR circuits

AND circuit

In a sequential control, the circuit that turns on in its output if more than two contacts connected in parallel are ON, is called an "AND circuit". The illustration below is an example of an "AND circuit" that turns on a lamp if two push buttons are pressed.

1 Wiring example

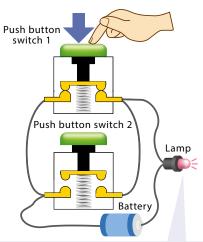


If either switch is not pressed, the lamp is turned OFF. If both switches are pressed, the lamp is turned ON.

2 Circuit diagram

A typical control circuit using DC24V power supply of actual machinery is shown in a circuit diagram below. This circuit diagram is called an elementary wiring diagram.

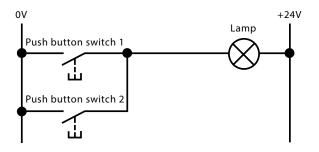
Symbols are specified by JIS C 0617.



(Note) The power supply circuit is not shown here.

OR circuit

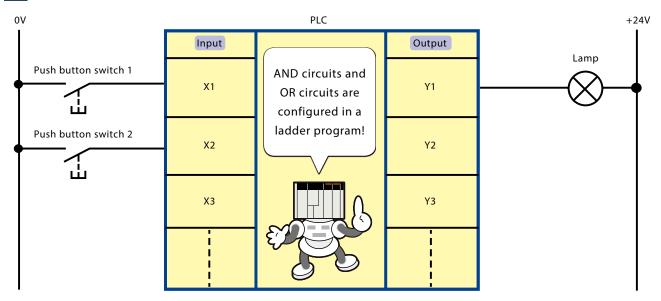
The circuit that turns on in its output if out of two or more contacts connected in parallel, either one or more contacts are turned ON, is called an "OR circuit".


1 Wiring example

The lamp is turned OFF if either switch is not pressed. It is turned ON if either switch is pressed.

2 Wiring diagram

The diagram below shows a DC24V power supply^(Note).

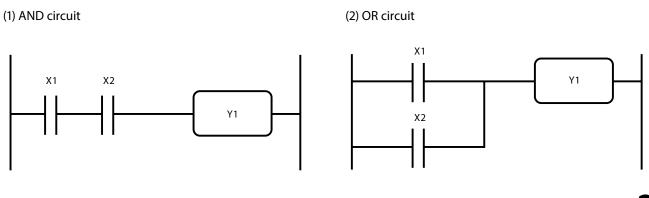


(Note) The power supply circuit is not shown here.

"AND circuit" and "OR circuit" using a PLC

When using a PLC, push buttons switches are connected to the input terminal, and a lamp is connected to the output terminal of the PLC. Since an "AND circuit" and an "OR circuit" are written in the PLC as a ladder program, the wiring is same.

1 Input/Output circuit diagram of a PLC



2 Ladder program

The PLC replaces circuits using relays with software.

Relay circuits are configured in a program using dedicated software. It is called a ladder program.

In a ladder program, the push button switches 1 and 2 are replaced with contacts X1 and X2, and the lamp is replaced with the relay coil Y1. These X1, X2 and Y1 are called addresses.

Basic of Sequential Control

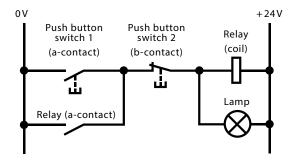
5. Self-holding circuit

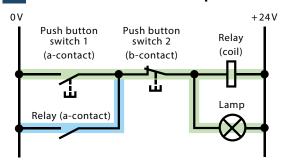
A self-holding circuit is a circuit that can retain memories.

For instance, when an elevator button is pressed, a push button lamp will light up.

Even if the switch button is released, the lamp continues to light up until the elevator arrives.

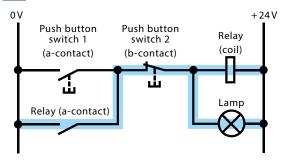
This is because until the elevator arrives, the push button holds the memory that the button was pressed.


A circuit like this is called a self-holding circuit.


Current flow in the self-holding circuit that uses relays

Let's configure a circuit such that when pressing the push button switch 1, the lamp is turned on and remains to light up until the push button 2 is pressed. Then try to see the current flow and the changes in the circuit.

1 Status before operation


2 Current flow when the push button switch 1 is pressed

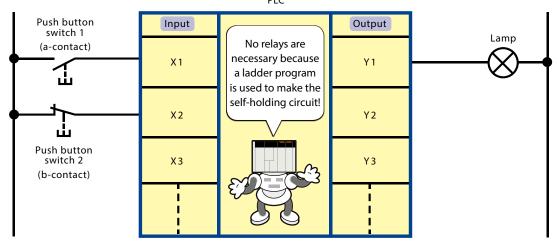
Current flows on the green circuit, the relay is closed, and the lamp is turned on.

When the relay is on, the contact is closed, and current also flows on the blue circuit.

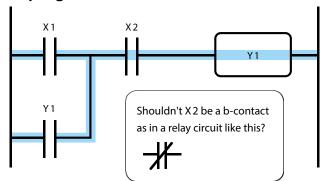
3 Current flow when the push button switch 1 is released

Even if the push button switch 1 is released, the current continues to flow through the blue circuit, the relay keeps ON, and the lamp also remains to light up.

This state is said that the circuit is self-holding.


When the push button switch 2 is pressed, the circuit is cut off and the self-holding circuit is released.

1- 247 Technical Reference


Self-holing circuit using a PLC

Let's consider a circuit using a PLC.

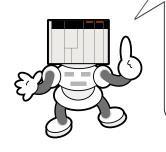
1 Input/output circuit diagram of a PLC

2 Ladder program

Blue letters represent processing by the ladder program.

The PLC controls ON/OFF of output signals by using a ladder program and combining input signals, doesn't it? (Refer to 2. Sequential Control and PLC.)

The push button switch 2 is connected to the input X2 of the PLC with a b-contact and current is always flowing, making the input signal X2 turned ON.


Therefore, X2 is always closed although it is an a-contact in the ladder program.

Conversely, although the push button switch is connected to the input X1 of the PLC with an a-contract, the a-contact of X1 is always open in the ladder program, because current is not flowing in a normal condition, which is an OFF state.

In this state, if the push button switch 1 is pressed, current flows in the input signal X1, the signal is turned ON, the contact X1 is closed in the ladder program, and all the blue lines are connected, enabling Y1 to self-hold.

If Y1 is turned ON, current flows in the lamp through output Y1 of PLC and makes the lamp turned on.

The contact X2 is turned off X2 only if the push button switch 2 is pressed, and opens contact X2 to function to release self-holding.

Basic of Sequential Control

6. Timer circuit

A timer circuit is used to change the ON/OFF timing of various signals in a sequential control.

To perform such controls, a timer is necessary.

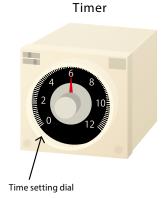
A timer is a relay^(Note 1) with a contact that activates after a predetermined time has elapsed.

A timer is not composed of electromagnets and relays, but is made of an electronic circuit that measures time.

(Note 1) Refer to the "3. a-contact and b-contact" (on P1-244) for the details of relay.

The self-timer of a camera releases the shutter after a certain time has elapsed subsequent to pressing the shutter button.

Such a timer delays activation and is called an "on-delay* timer".


An "on-delay" timer activates a relay after a specified time has elapsed subsequent to turning an input signal (power for timer) ON.

The "on-delay" is the most typical function of a timer, and is most frequently used in automation machinery.

*On-delay operation: A technical term that describes the operating function of a timer.

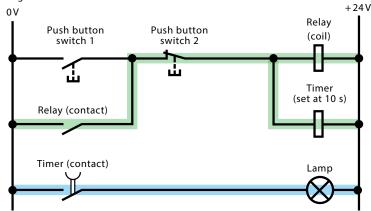
If the input signal (power of a timer) is turned ON, it starts counting time. After reaching at a specified counting value, it activates the relay.

If the input signal is turned OFF, the time counter is reset immediately, and the relay resumes the original state.

A lamp circuit using a timer

Let's configure a circuit such that the lamp is turned on 10 seconds after the push button switch 1 is pressed, and turned off when the push button switch 2 is pressed.

This circuit is configured in combination of a self-holding circuit (Note 2) and a timer.

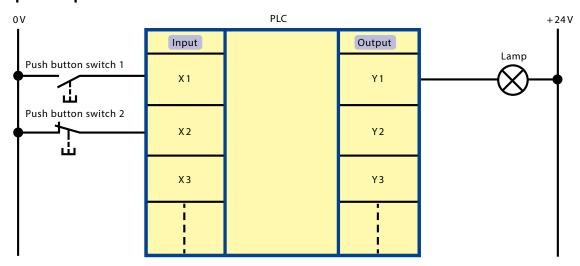

If the push button switch 1 is pressed, the circuit self-holds by the green circuit.

Simultaneously the current flows to the timer, which starts counting.

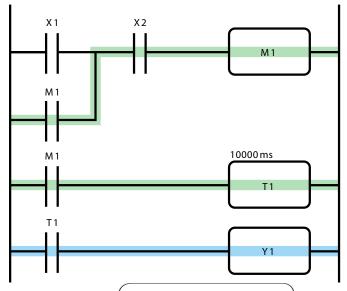
When the count reaches the specified time, the timer's contact is closed, the current flows in the **blue** circuit and the lamp is turned on.

If the push button 2 is pressed, the self-hold is released, the timer is reset simultaneously, the contact is opened, and the lamp is turned off.

(Note 2) Refer to the "5. Self-Holding Circuit" on P1-247 for details.



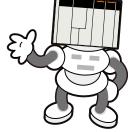
1- 249 Technical Reference


Timer circuit using a PLC

Let's configure a circuit of the preceding page by using a PLC. The PLC has an on-delay timer as a ladder program function.

1 Input/output circuit of a PLC

2 Ladder program


If the push button 1 is pressed, the input X1 is turned on, the internal relay M1^(Note 3) self-holds in the

green circuit.

The " $10000\,ms^{(Note\,4)_{11}}$ shown above T1 is the specified value of the timer.

When the specified value of 10 seconds (10000ms) has elapsed, the timer contact T1 is closed, the output Y1 is turned ON by the blue circuit, and the lamp is turned on.

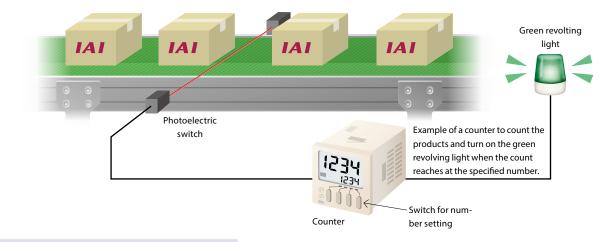
The lamp is turned off if the self-holding of M1 is released by the push button switch 2 and the timer is reset.

In a ladder program, the timer contact is also indicated as

(Note 3) The Internal relay M1 is equivalent to an auxiliary relay of a sequential circuit using relays. It is not used to directly turn output signals ON/OFF, but used to configuring an auxiliary circuit within a PLC such as this circuit.

(Note 4) Commercially available PLC timers have minimum setting units of 10 ms and 100 ms. Refer to manufacturer's manual for the timer setting of the PLC.

The diagrams and the minimum setting unit are those for the built-in PLC of IAI controllers.


Basic of Sequential Control

7. Counter circuit

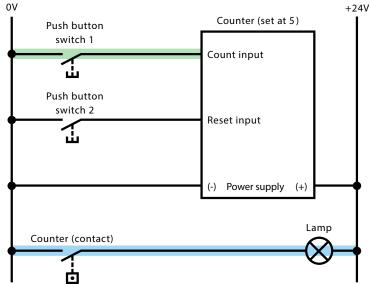
A counter circuit (Note 1) is used in a sequential circuit when counting is needed. For instance, it is used to count the number of products passed through or processed.

A counter outputs a signal when the counting reaches at a specified value.

Note 1: Some counters can perform not only addition, but also subtraction or both. Refer to counter manufacturer's catalog for details.

Circuit using a counter to turn on a lamp

Let's configure a circuit such that the lamp is turned on if the push button switch 1 is pressed 5 times, and if the push button switch 2 is pressed, the counter is reset and lamp is turned off.

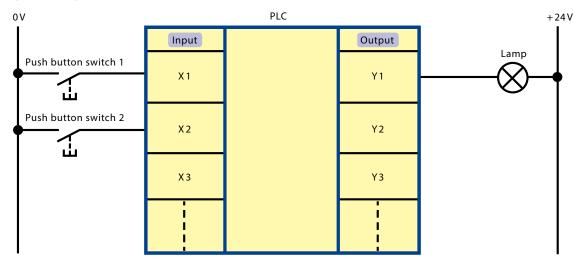

If the push button switch 1 is pressed, a count signal is entered through the green circuit.

The counter counts every time the input signal is turned on.

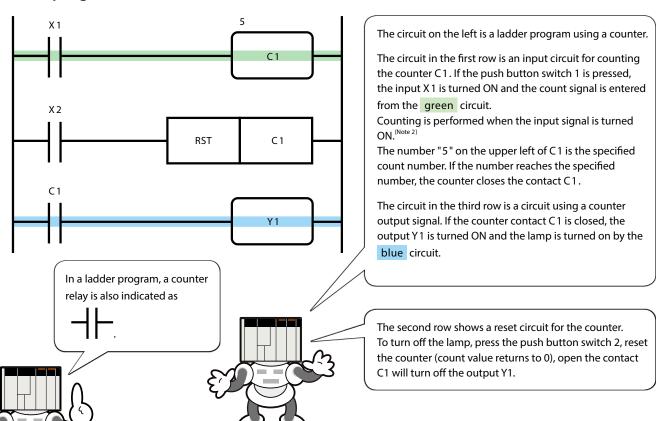
If the counting number reaches the specified number, the counter's contact is closed, the current flows on the blue circuit and the lamp is turned on.

If the push button switch 2 is pressed, the counter is reset (the count value returns to 0), the contact is opened and the lamp

is turned off.


1-251 Technical Reference

Counter circuit using a PLC


Let's configure a circuit using a counter.

The PLC has a counter as a ladder program function.

1 Input/output circuit of a PLC

2 Ladder program

IAI

Note 2: Commercially available PLC counters could be a count-down counter.

It subtracts 1 at a time from the specified value by the count signal, and outputs a signal if the value becomes 0.

Refer to PLC manufacturer's manual for details. The above diagram shows those for the built-in PLC of the IAI controllers.

Basic of Sequential Control

8. Interlock

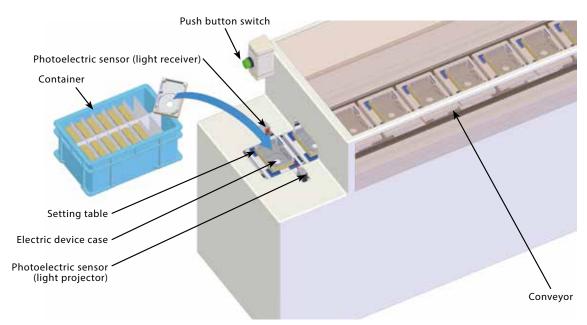
An interlock is an electronic circuit that makes an operation disabled unless certain conditions are satisfied. In a sequential control, various interlocks are built in the circuit so that safe and correct operations are performed. For instance,

- ①Operations are disabled if an incorrect manipulation is
- 2 It determines the priority of the two operations that cannot be performed simultaneously.
- 3 It determines the process to stop the operation in case of an emergency and the procedure to resume.

Unless the automobile gear is in the P (parking), the engine will not start or stop. This is also thanks to an interlock.

An interlock for loading electronic device cases (Example)

This is an example of loading electronic device cases.

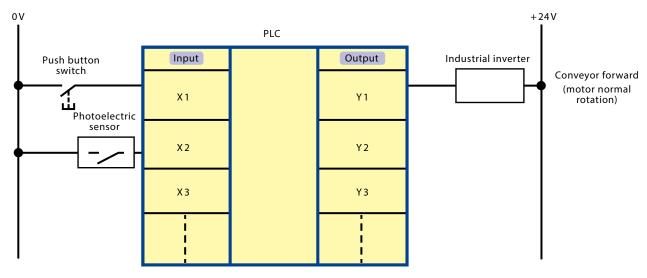

An operator places an electronic device case on a setting table on the conveyor and pushes a push button switch. Then the conveyor moves to transfer one case at a time.

A photoelectric sensor^{*1} detects when the electronic device case is placed on the setting table.

If the case is not placed, the conveyor cannot be operated even when the push button switch is pressed thanks to the interlock.

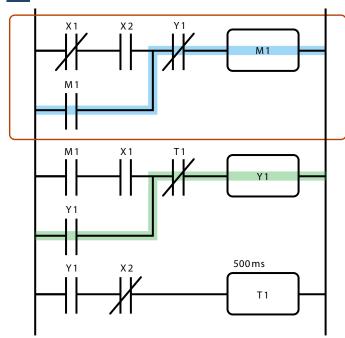
The conveyor, which is driven by an AC motor using an industrial inverter², will stop 0.5 seconds after the case has passed and the photoelectric sensor^(Note 1) is turned OFF.

(Note 1) This type of the photoelectric sensor turns ON its output signal if the case is placed and blocks the light.



^{*1} Photoelectric sensor: It consists of a light receiver and a light projector to detect objects by light transmission and reflection. Refer to manufacturer's catalog for detail specifications.

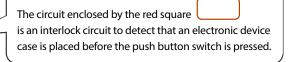
^{*2} Industrial inverter: An AC motor (3-phase induction motor) can change its speed by changing frequency. An industrial inverter is a power supply unit that changes frequency to change the rotational speed freely. Refer to manufacturer's catalog for detail specifications and applicable motors.


Example of sequential circuit for the loading electronic device cases

1 Input/Output circuit diagram of a PLC

Circuits other than input/output signals are not shown here because of a loading sequence.

2 Ladder program


If the push button switches are not pressed and an electric device case is placed, the input X1 is OFF, the X2 is ON by the photoelectric sensor, and the internal relay M1 will self-hold through the blue circuit.

While the internal relay M1 is turned on, if the push button switch is pressed, the input X1 is turned ON, the output Y1 will self-hold through the green circuit, and the conveyor starts moving forward.

This means, the electronic device case must be placed before the push button switch is pressed.

Now, the internal relay M1 releases the self-holding of contact Y1 because the operations are performed in the proper manner.

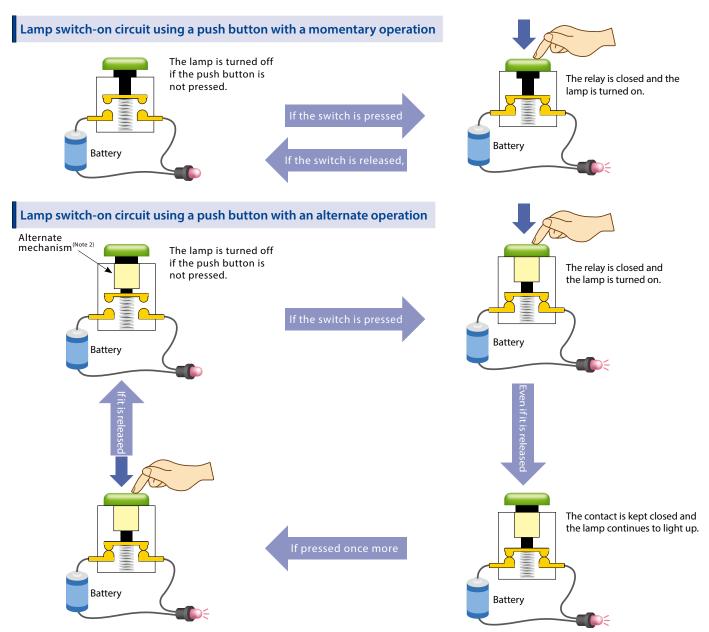
Next, as the conveyor moves forward the photoelectric sensor detects the light and waits until the input X2 is turned OFF. Then, the Timer T1 is activated and output Y1 is turned OFF after 0.5 seconds^(Note 2) to stop the conveyor.

(Note 2): Commercially available PLC timers have minimum units of 10ms and 100ms. Refer to manufacturer's manual for the timer setting of the PLC.

The diagrams and the minimum unit are those for the built-in PLC of IAI controllers.

Basic of Sequential Control

9. Alternate circuit


Switch operations are classified into two categories: the momentary and alternate operations.

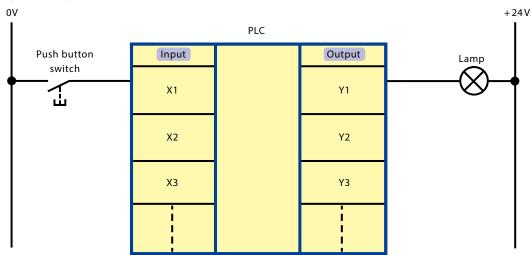
In push button switches, a momentary operation is such that the switch is ON while the push button is being pressed, and it is OFF if the push button is released. In contrast, an alternate operation is such that even if the switch is released it remains ON until the button is pressed again. For instance, it is used for an automobile hazard lamp.

An alternate operation switch can be used only if such an operation does not cause a dangerous situation^(Note 1).

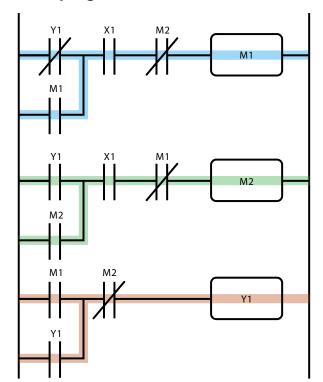
It cannot generally be used to start the operation of machinery.

Note 1: Refer to the "JIS B9960-1 Safety of machinery-electrical equipment of machines-Part 1: General requirements".

Note 2: An alternate mechanism generally employs a cam system, in which the cam rotates every time the button is pressed and the contact repeats ON and OFF alternately.


Alternate circuit using a PLC

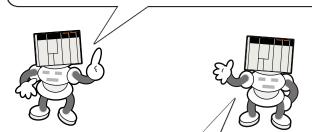
Let's configure a lamp circuit of an alternate operation using a push button switch of a momentary operation.


This circuit can output ON/OFF using an input signal from the contact of a push button switch.

However, unless the state of a selected operation is displayed, it is not possible to see whether it is ON or OFF although the push button switch is visible.

1 Input/output of a PLC

2 Ladder program



An auxiliary circuit is in blue color is such that while the output Y1 is OFF (the lamp is turned off), if the push button switch is pressed, the input X1 is turned ON and keeps self-holding as long as the button is being pressed.

Likewise, the auxiliary relay M2 in green color is such that while the output Y1 is ON (the lamp is turned on), if the push button switch is pressed, the Input X1 is ON and keeps self-holding.

The circuit is interlocked so that the auxiliary relays M1 and M2 are not turned on at the same time.

The circuit of the output Y1 in orange color that turns on the lamp performs self-holding by the auxiliary relay M1, and is released by M2.

In other words, while the output Y1 is OFF (the lamp is turned off), if the push button is pressed, then Y1 is turned ON by the auxiliary relay M1. If the push button is pressed while Y1 is ON, then Y1 is turned OFF (lamp is turned off) by the auxiliary relay M2.

This is an alternate circuit that the lamp is turned on and off by pressing a push button.

Basic of Sequential Control

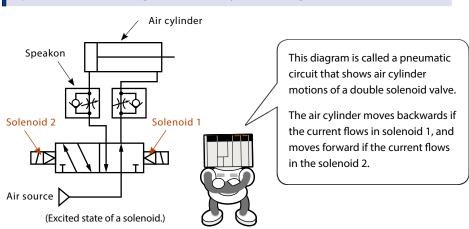
10. ROBO Cylinder PIO Control (Solenoid valve mode)

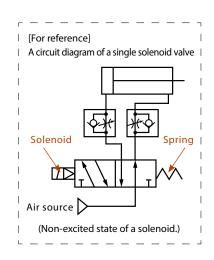
There are two methods in the ROBO Cylinder PIO control: One is such that the start signal is turned on by specifying the position No. is in binary code^{*1}. The other, is such that the signal of the position No. is directly turned ON. The latter method using the signal of the position No. directly is called the solenoid valve mode.

An air cylinder changes the direction of motions using a solenoid valve. A solenoid valve operates an internal valve by current flow in the solenoid (electromagnetic coil) to change the air flow and the direction of the air cylinder motion.

There are various types of solenoid valves. The ROBO Cylinder in the solenoid valve mode can be operated using a ladder program equivalent to so-called the double solenoid valve^{*2} that has 2 positions and 5 ports and is frequently used.

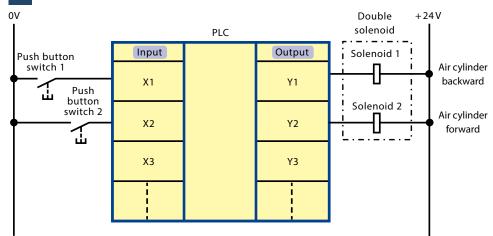
*1 Binary code

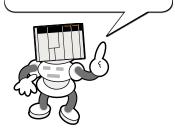

- : Values in binary digits. Position Nos. are entered into a ROBO Cylinder controller in binary digits. (Refer to the controller operation manual for details.)
- *2 Double solenoid valve with 2 positions and 5 ports :
- It is equipped with two solenoids to change the air flow direction by switching these solenoids.


The internal valve does not change its state even if the current is cut off.

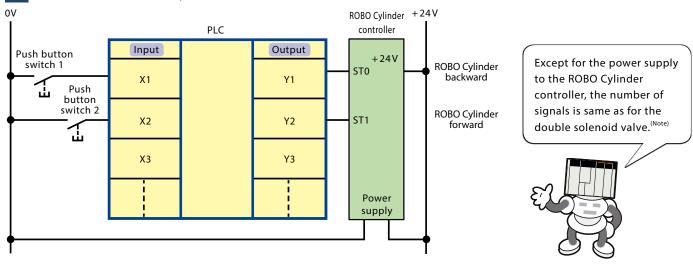
In contrast, a single solenoid changes the air cylinder motions if current is cut off because the internal valve returns to the original position by spring.

(See the pneumatic circuit diagram of an air cylinder shown below.)


A pneumatic circuit diagram of an air cylinder using a double solenoid valve

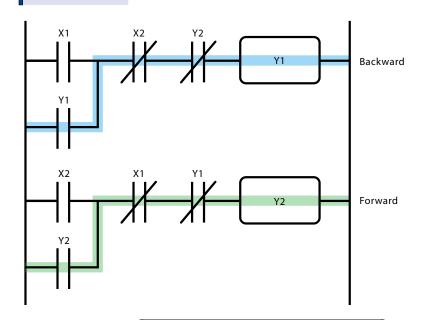

Inpupt/Output of a PLC

1 Double solenoid valve


Let's compare the PIO between a double solenoid valve and a PLC connected to a ROBO Cylinder controller.

The operating condition is that the push button switch 1 is to move backwards, and push button switch 2 is to move forwards.

1-257 Technical Reference


2 In case of a ROBO Cylinder controller

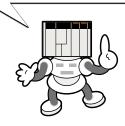
(Note) The PIO wiring of the ROBO Cylinder uses flat cables.

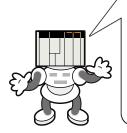
Refer to the "ROBO Cylinder Operation Manual" for the details of the signal assignments and the connection method of power supply.

Ladder program

The circuit is common in a ROBO Cylinder and in an air cylinder. If the push button switch 1 is pressed, the input X1 is turned ON and the output Y2 is turned OFF. After that, the output Y1 will self-hold through the blue circuit and the ROBO Cylinder (air cylinder) moves backward.

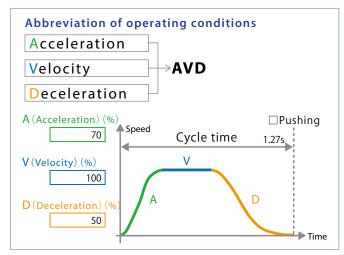
Likewise, if the push button switch 2 is pressed, the input X2 is turned ON, the output Y1 is turned OFF, and after that the output Y2 will self-hold through the green circuit and the ROBO Cylinder (air cylinder) moves forward.


Oh!


There is only one ladder program. Is it common in the ROBO Cylinder and air cylinder?

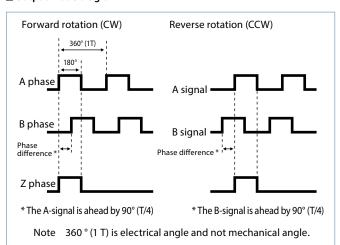
Yes, it's correct!

The ladder program is common in a ROBO Cylinder and air cylinder. That's why there is no need to change the program when replacing an air cylinder with a ROBO Cylinder.



Explanation of Terms (This terminology is related to IAI products, and so the definitions are more limited than general meaning.)

AVD


When moving an object, the object will accelerate from the stopped state, reach a constant speed, decelerate from that constant speed, and stop. The operating conditions of acceleration, speed, and deceleration at that time are abbreviated as AVD, with the initial letters of each English word. IAI uses it as an abbreviation of operating conditions. The IAI electric actuator can set the AVD individually to an arbitrary value.

A phase (signal) output · B phase (signal) output

The incremental type output judges the forward and reverse rotation of the axis with the phase difference between A phase and B phase. In the case of forward rotation (CW), the A phase precedes the B phase.

■ Output mode diagram

A transistor

When a small amount of current is passed through the base (B) part, current flows between the collector (C) and the emitter (E), and it functions as a switching element. There are two types, PNP type and NPN type.

Absolute battery

Battery to hold encoder information when power is cut off.

Absolute encoder

Encoder with absolute position detection function. Since absolute position can always be grasped, return to home is not required every time power is turned on.

Air purge

To ensure dust-proof and drip-proof properties in dust-proof and drip-proof type actuators, apply air pressure inside the actuator to prevent dust and other substances from entering the inside of the actuator.

Allowable Dynamic Moment

Indicator for guide life. In our company, the moment where the mileage is 5,000 km for ROBO Cylinder and 10,000 km for Single Axis Robot shall be the standard rated life.

Allowable Static Moment

Calculated based on the static load rating (N) * 1 that can be added to the slider while the slider is stopped.

*1 When a certain load is applied, a small indentation (the total permanent deformation amount of the guide ball becomes about 1/10000 times the ball diameter) remains on the contact surface between the guide and the ball (steel ball)).

AO seal

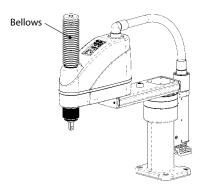
Lubricating components obtained by solidifying lubricating oil with resin. Lubricating oil seeps out to the surface due to capillary phenomenon, the optimal amount of oil is secured on the raceway surface of the ball screw / linear guide, and lubricating performance is maintained.

Backlash

Gaps between the mechanical elements that move together.

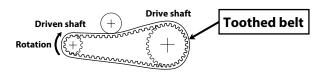
Backup memory

A storage device for storing information necessary for moving the actuator in the controller.


Ball screw

Machine parts where the screw shaft and nut operate through the ball.

1-259 Technical Reference


Bellows

A stretched sheet that is mounted for dust-proof or drip-proof purposes.

Belt drive

Drive system that transmits power from drive shaft to driven shaft (driven shaft) with belt. IAI mainly uses toothed belts.

Bit

Unit of information amount in the network. In addition, there are byte (word) and word (word).

The amount of information that can be handled in order of minimum bit, next byte, maximum word changes.

Concept: 8 bits = 1 byte 16 bits = 2 bytes = 1 word

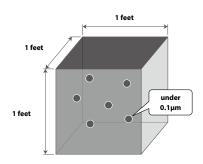
Brake box

A device to be connected between the brake controller.

CCW

Counter clock wise.

It is used to indicate the direction of rotation of the motor.



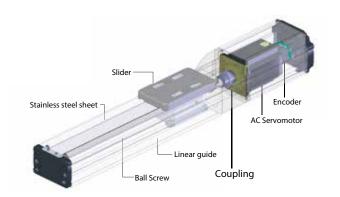
Circuit

It is defined as "the one to operate the contact mechanism by using the electromagnetic suction force caused when the current more than the value in the electromagnet is flowed" composed of the electromagnet and the contact mechanism. The contacts are opened and closed by voltage and current (input signal) applied to the coil.

Cleanliness

An index showing the cleanliness in a clean room.

Coil


A component that generates an electromotive force proportional to a change in current per unit time when the flowing current changes. There is a property that only high-frequency electric signals are passed through, and only direct current or low-frequency alternating current is passed.

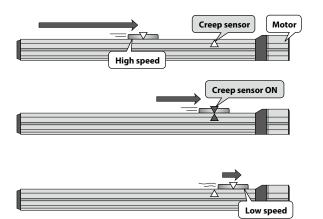
Condenser

Passive element that acts to store electric charge. Also referred to as electrostatic capacity or capacitor.

Coupling

Shaft coupling. Machine element for fastening shaft and shaft.

CP control


Control with all orbits or all routes specified. (Continuous Path)

Explanation of Terms

Creep sensor

Sensor for returning to home at high speed.

Critical speed

The speed of the slider where the ball screw resonates. (Ball screw rotation speed)

CT effect

By replacing the air cylinder of the facility with an electric actuator, it is possible to shorten the cycle time and reduce Choco Tei. As a result of improved productivity, capital investment and personnel expenses can be suppressed and the benefit of increasing customer profits. CT is an abbreviation for Cycle Time and Choco Tei.

CW

Clockwise (Clock Wise). It is used to indicate the direction of rotation of the motor.

Cycle time

The time taken for one process.

Differential line driver

It is one of the input / output method of the pulse train signal, and has the feature that it is more resistant to noise than the "open collector" method of the same input / output method. On the other hand, it is more expensive than the open collector type.

Diode

A part that makes the flow of electricity one way. <Type of diode>

- Switching diode
 It is used most frequently for small signal diodes.
 The shape is also small and it is sealed with glass.
- Light emitting diode
 LED. It is used for display, infrared remote control etc.

Direct numerical designation control

A control method in which a numerical value is entered from a touch panel and is directly reflected on the target position even if the target position is not memorized in the controller in advance.

Dispenser

Equipment that restricts the flow of liquids. It is incorporated into adhesive and sealant coating equipment.

Double slider

A free slider (slider not connected to the ball screw/drive belt) is added separately from the drive slider.

Duty

The ratio between the time the actuator is operating and the elapsed time.

Earth

Connect the equipment casing, the reference potential wiring of the electronic equipment, etc. to the reference potential point. Or the reference potential point itself. It is connected for the purpose of noise countermeasure, electric shock prevention, etc. (Ground, ground)

Emergency stop circuit

Circuit that stops the device either artificially or automatically if the device is in a hazardous state.

1-261 Technical Reference

Encoder

Sensor that detects the position of the motor.

A-phase slit

Light-receiving element

Z-phase slit

Z-phase slit

A-phase slit

Light-receiving element

Light-receiving element

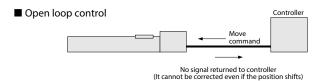
An incremental encoder

detects the rotational angle and the RPM of the axis from the number of output pulses. To detect the rotational angle and the RPM, a counter is needed to cumulatively add the number of output pulses. An incremental encoder allows you to electrically increase the resolution by using the rise and fall points on the pulse aveform to double or quadruple the pulse generation frequency.

An absolute encoder

detects the rotation angle of the axis from the state of the rotation slit, enabling you to know the absolute position at all times, even when the rotating slit is at rest. Consequently, the rotational position of the axis can always be checked even without a counter.

In addition, since the home position of the input rotation axis is determined at the time it is assembled into the machine, the number of rotations from home can always be accurately expressed, even when turning the power ON during startup or after a power outage or an emergency stop.

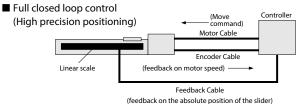

External operation mode

An operation mode activated by a start signal of an external device (PLC etc.). (self-driving)

Feedback control

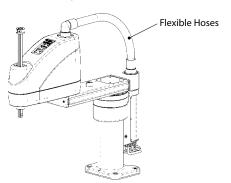
A mechanism to control so that the control results from the controller and the command from the encoder can match.

There are the following types of control of the actuator.



Semi-closed loop control
(General servo control)

(Move command)
Motor Cable

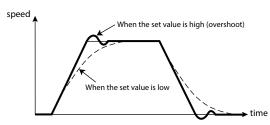

Encoder Cable

(The calculation position and the speed of the motor (rotation) are feedback) ——

Flexible Hoses

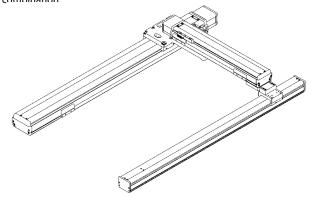
A pipe that is through the motor, encoder cables and user wiring of SCARA robot. Flexible hose, flexible tube and so on.

Frame ground


A place with a stable electric potential consisting of a large conductor such as the frame of the equipment.

G

A unit representing the magnitude of acceleration. Non SI unit. Acceleration is indicated based on standard gravity acceleration. 1 G = 9.807 m/s^2


Gain

A numerical value that adjusts the response when the controller controls the servomotor. Generally, the higher the gain, the more quick response is improved.

Gantry

Combination type with a guide for Y axis support attached to XY 2 axis

Explanation of Terms

Global specification

Type of controller and touch panel teaching pendant equipped with functions such as duplex emergency stop circuit and 3-position enable switch so that it can correspond to safety category.

Grease

Suspended thickener in lubricating oil to make it semisolid or solid.

Grease up

Injecting and applying grease to sliding parts.

Ground

A place that becomes a reference potential that is installed in the earth and used for security.

<Ground sign>

Guide module

Guide mechanism with drive mechanism removed from direct acting actuator.

Home

Reference point of actuator operation.

Hunting

The phenomenon in which the response is vibrating near the target value.

I/O

Input / Output (Input / Output). An interface used for input and output information (signal) with devices connected to the outside of the device.

Incremental encoder

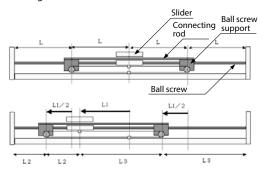
Encoder with the function to detect the relative position. Since only the relative position can be grasped, return to home is required every time the power is turned on.

Inertia

(Inertia)

As long as no external force acts on the object, it is a property to sustain the current state.

Inertia ratio


Ratio of load inertia moment to moment of inertia of motor shaft.

Inrush current

Current flowing to charge the capacitor at the moment of power-on. It is much larger than the steady state current.

Intermediate support mechanism

A ball screw support mechanism that moves in conjunction with a slider. A mechanism that greatly improves the maximum speed of the long stroke type, suppressing the runout of the ball screw in the case of long stroke, increasing the band of critical revolution number.

Jog feed

Send it manually at a predetermined feed speed.

Key Grooves

The grooves to be machined into the shaft or mounting parts for key mounting. (Key: The part to prevent the position shift in the rotation direction of the shaft and the mounting part.)

Lead

Distance at which the slider moves when the feed screw rotates once. When the lead is large, the speed of the slider is fast, but the thrust is small.

Leak current

It is a small current flowing from a part etc. used in a device using a high voltage power supply (AC 100 V etc.) to a surrounding conductor (mainly a frame).

Linear encoder

Encoder to detect linear distance.

Linear guide

Mechanism for guiding the slider of the actuator.

Linear motor

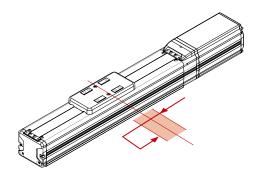
Motor that performs linear motion.

1-263 Technical Reference

Load cell

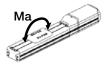
Sensor that detects the magnitude of force.

Load Coefficient

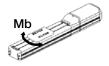

Coefficient to consider lifetime reduction due to operating conditions in lifetime calculation.

Load Rating

The ratio of the load to the rated output of the motor.


Lost motion

Difference between both stopping positions by positioning in a positive direction to a certain position and positioning in a negative direction. Repeat positioning from positive and negative directions seven times at an arbitrary point, measure the stop position, and find the average difference between the positive and negative measured values. This measurement is performed at the center of the moving distance and almost at both ends, and the largest one of the obtained average differences is taken as the measured value.


Ma direction

Front-to-rear direction with respect to the traveling direction.

Mb direction

Horizontal direction with respect to the traveling direction.

Mc direction

Rotational direction with respect to the direction of travel.

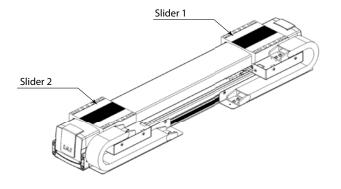
Mechanical end

Mechanical movable limit position of the slider.

Moment

The power to try to rotate the object.

Moment of inertia


The amount that indicates the degree of difficulty of rotation (difficulty of stopping).

Motor / encoder cable

Cable connecting the actuator and the controller.

Multi Slider

Specifications equipped with multiple sliders that can be operated individually.

N

Unit of force in SI unit system. It shows the force to accelerate an object with a mass of 1 kg at 1 m/s 2 . 1 kgf = 9.807 N

N∙m

Unit of force moment (torque) in SI unit system. The moment of force around the center point is 1 N·m when 1 N force is applied in the direction perpendicular to the center point to the point 1 m away from the center point.

Noise

Distortion of electrical signal caused by unnecessary electromagnetic wave leaked from equipment.

Noise filter

Equipment that prevents leakage or intrusion of noise in power supplies, signals, etc.

Explanation of Terms

Open collector output

A system with no overload resistance in the voltage output circuit, that outputs signals by sinking the load current. Since this circuit can turn the load current ON/OFF regardless of voltage potential to which the current is connected, it is useful for switching an external load and is widely used as a relay or ramp circuit or the like for switching external loads, etc.

Open loop system

A type of control system. This system only outputs commands and does not take feedback.

A typical example of this is the stepping motor. Since it does not compare each actual value against the commanded value, even if a loss of synchronization (i.e signal error) occurs, the controller would

not be able to correct it.

Overhang

The object to be mounted on the actuator protrudes in either front, back, left, right, up or down.

Overhang load length

Estimated maximum length that can be extended from the slider.

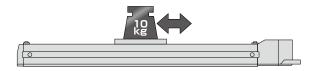
Overload check

Check overload. (One of protection functions)

Overshoot

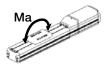
The response goes over the target value too much.

Overvoltage


Voltage above the specified value will be applied to the motor.

Parameter

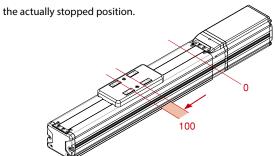
The data that the controller holds to operate the actuator, such as setting the input and output of the signal and how the voltage and current for rotating the motor are changed.


Payload quantity

Mass which can be conveyed by actuator slider / rod / table.

Pitching

It is an angle that shows how far it is inclined in the fore-and-aft direction (Ma direction) with respect to the traveling direction.



PLC

 $Abbreviation for Programmable \ Logic \ Controller. Programmable \ controller for controlling \ production \ facilities / equipment.$

Positioning accuracy

The degree of coincidence between the commanded stop position and the actually stopped position

Positioning complete width

Width regarded as positioning completion with respect to the coordinates to be positioned. (Pend Band)

Protective structure (IP

The degree of protection from water, human body and solid foreign matter.

It is based on the standards of IEC (International Electrotechnical Commission), JIS (Japan Industrial Standard) and JEMA (Japan Electric Industry Association).

Protocol

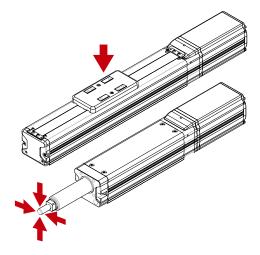
Conventions stipulated mainly when communicating. It decided how to arrange the data and give meaning.

PTP control

Control where pass points on the route are specified intermittently. (Point to Point)

1-265 Technical Reference

Pulse Train Control


A method that controls the operation of the motor by modulating the pulse train output by the driver.

Push and return to origin

A method of determining the hime position by pushing against a stopper. Return to home is possible without using the home sensor.

Radial load

Load acting perpendicularly to the direction of motion of the direct acting actuator.

Rated thrust

Thrust that can be generated continuously.

Rated torque

Torque that can be generated continuously.

Reference rated life

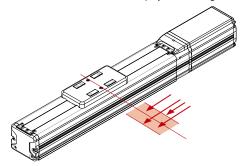
Standard value of running life. We have set the standard rated life of ROBO Cylinder to 5,000 km and the standard rated life of single axis robot to 10,000 km. (Except some models)

Regenerative brake

It is a brake that uses the rotational resistance generated when the motor decelerates as a braking force.

Regenerative energy

Energy generated by itself when the motor rotates.


Regenerative resistor

Resistance to discharge regenerative current.

Repetitive positioning accuracy

Reproducibility when repeatedly positioned by the same command under the same condition.

Repeat positioning from the same direction to an arbitrary point seven times, measure the stop position, and find the maximum difference in reading. This measurement is performed at the center of the moving distance and almost at both ends, and the maximum one of the obtained values is taken as the measured value, and 1/2 of the value is displayed with a sign of \pm .

Return to home

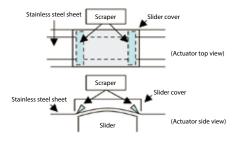
Go back to the point that is the basis of the movement of the actuator.

Robot cable

A cable excellent in resistance to bending and twisting.

Rolling

It is an angle that shows how tilted in the direction of rotation (Mc direction) with respect to the direction of travel.



Safety category

It is prescribed by ISO 13849-1 of the international standard and classified as a function (safety function) to ensure safety. Classification is divided into 5 stages of B, 1, 2, 3, and 4 according to safety standards, and the standard (category) 4 indicates the standard with the highest safety.

Scraper

A part for removing foreign objects on the sliding surface and preventing intrusion into the inside of the main body.

Explanation of Terms

SEL language

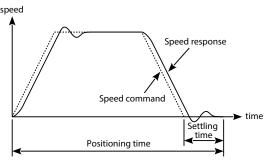
Abbreviation for Shimizukiden Ecology Language. Our proprietary programming language.

Serial communication

Use one or two transmission lines to send and receive data.

1bit is a communication method that transmits and receives continuously.

Servo control


A control method that detects the current speed and position from the motor and compares the actual result against the command value by feeding back the result to the upper side to make the difference as small as possible.

Servomotor

Motor operated by giving feedback.

Settling time

In the positioning operation, it means the time until the speed command value becomes zero and then stops.

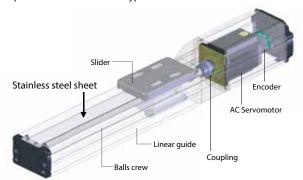
Shielded wire

An electric wire structured by covering the core wire with an electrostatic shield (aluminum tape, netting etc). It is less sensitive to noise.

Single phase AC

AC consisting of one phase. It is used for household power supply etc.

Software limit


Limit of operating range set on software.

Solenoid valve type

The type of controller that made it possible to operate with the same signal as the signal operating the solenoid valve of the air cylinder.

Stainless steel sheet

Dust-proof sheet used for slider type.

Standard load factor

The standard value of the load factor set for each model.

Step-out

Synchronization between input pulse signal (command position) and motor rotation (position after movement) is lost due to shock, overload, etc. In the open-loop control, it is impossible to detect step-out, so the operation is continued with the position shift.

Stepping motor

Motor for angular positioning by input pulse signal. Also called a pulse motor.

Stroke

Operating range of the actuator.

Switch

It is made possible to connect and shut off the path of electricity by lever or push button.

<Types of representative switches>

- 1 Toggle switch (snap switch)
 Switch to turn ON / OFF by tilting the lever. There are 2P, 3P, 6P
 depending on the pin pin number.
- 2 Momentary switch

A switch that turns ON when the operation part is pushed, and returns to the original when you release the hand.

3 Alternate switch

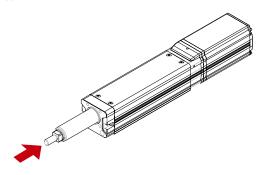
A switch that holds the ON state even when you release your hand and turns it OFF when you press it again.

1-267 Technical Reference

Tact time

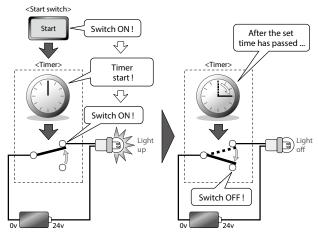
In the production line, within a certain time, the working time per piece allocated to produce target production quantity. (Planned value)

Teaching


Make the controller store the information necessary for the required work. (Teaching)

Three phase AC

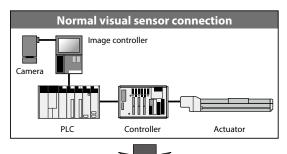
Exchange consisting of three phases. Since it can transmit with less current compared with single phase, it is widely used for power supply.

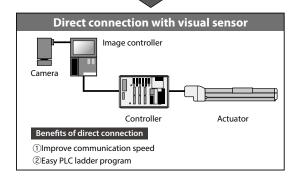

Thrust load

Load applied in the axial direction. (Axial load)

Timer

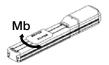
An electronic component that can be activated after an electrical start signal is given, and can switch circuits after a predetermined time has passed.



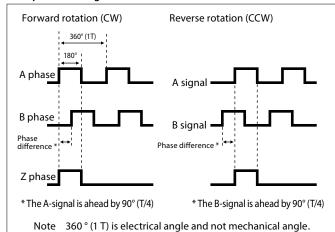

Trance

Electrical equipment or parts that convert AC voltage or current.

Vision Sensor


A device that uses a camera to capture an object (a workpiece), read a position or contour, and send data to a control device.

Yawing


It is an angle that shows how much it tilts in the left-right direction (Mb direction) with respect to the traveling direction.

Z phase

It is a phase (signal) that detects the reference point of the incremental encoder and is used to detect the origin during home return operation. Searching the Z phase signal serving as a reference during the homing operation is called Z phase search.

■Output mode diagram

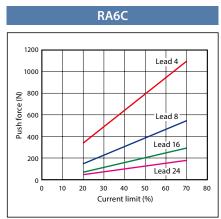
Pressing Operation

As with pneumatic cylinders, push motion is a function to keep holding rods and sliders pressed against workpiece etc. Some models may not be used depending on the model of the actuator, so please make sure the following usage instructions and notes.

[Compatible with push motion]

Motor type	Series	Model	Availability	Notes
	RCP6/	Slider type	0	Push motion is possible. (See note 1 below)
Pulse motor	RCP5/RCP4 RCP3/RCP2	Rod type	0	It is suitable for pushing operation. (See note 2 below)
	RCP2/RCP5	Belt type	×	Since the pushing force of the belt is not stable, it can not be pushed.
Servo motor (DC24V)	RCA2/RCA	All model	\triangle	See notes 2 below
	RCS4	All model	\triangle	See notes 2 below
Servo motor		RA4R/RA6R/RA7R/ RA8R/RA10R/ RA15R/RA20R	0	It is suitable for pushing operation.
(AC100/200V)		Other models	\triangle	See notes 2 below
	RCS2	RA13R	0	It is suitable for pushing operation.
		Other models	Δ	See notes 2 below

[Notes]


- 1. When pushing with the slider type, it is necessary to consider the allowable dynamic moment of the guide. For details, please refer to the correlation diagram page of push force and current limit value of each slider type. (P1-271)
- 2. RCP6 / RCP5 / RCP4 / RCP3 / RCP2 series are recommended for pushing applications.

 The RCP6 / RCP5 / RCP4 / RCP3 / RCP2 series are excellent in stopping stability at the time of pushing, and when compared with the RCA2 / RCA / RCS2 series of equivalent product cross section, a large pushing force can be obtained. Please contact our company for pressing on the RCA 2 / RCA / RCS 2 series.

[Adjustment of pressing force]

- The pushing force (pushing force) can be adjusted by changing the current limit value of the controller.
- · Check the pushing force of each model referring to the "Correlation diagram of pushing force and current limit value" on P1-271 to P1-283 and select the model that suits the condition.
 - * Please confirm the following caution concerning "Correlation diagram of pressing force and current limit value".

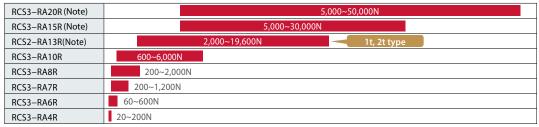
(Note)

<Correlation diagram of pressing force and current limit value>

Caution

The correlation diagram between the pushing force and the current limit value shows the lower limit of the pushing force at each current limit value. Even if the current limit value is the same, depending on the aircraft, due to the individual differences of the motor and the variation of the mechanical efficiency, the pushing force lower limit value may be about 40% higher.

Except for the force control function, pushing force is not controlled by thrusting operation but by feedback control of current value. As a result, individual differences and variations may occur in the pressing force due to variations in the holding torque of the motor, individual differences such as ball screws and bearings, and changes in lubrication conditions. It is assumed that the holding torque of the motor itself has variations of about 30% due to the difference of the lot.


When accurate pushing force is required, please use actuator and controller which can use force control function. (See the right page) and the properties of the properties

Force Control Function

The force control function enables highly accurate push control compared to conventional push motion by taking feedback of pushing force with a dedicated load cell attached to the actuator.

All eight models are available, and you can choose from a wide range of products.

• The corresponding thrust is from 2kg to 5t (50, 000N). We have a variety of lineup.

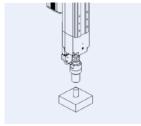
Note: Thrust force for the servo press specification.

• It can operate by entering 4 steps the position, speed, acceleration, load etc. in the press operation on the press program sheet of the software for PC.

STEP 1 Operation mode selection

STEP 2 Home position input

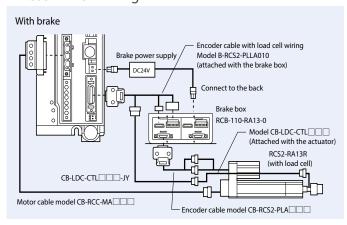
STEP 3 Position, load, speed input

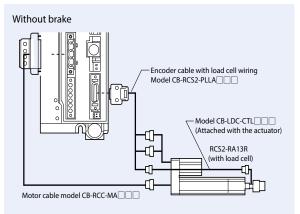

STEP 4 Pressurization determination condition input

Caution

- · It is only for pressing. It is not possible to control the force in the tensile direction.
- · When operating in pulse train mode, force control function can not be used.

Used for press-fitting pins


It is possible to manage accurate pressing power. Even when the pin to be press-fitted is thin and loose, it is possible to confirm the failure judgment by setting the threshold value.



Riveting Work

A detailed push force setting is possible for each product, and it is also possible to check whether the riveting completion position has been reache

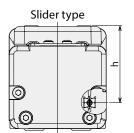
■ RCS3-RA13R wiring

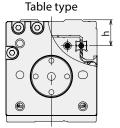
* Option for RCS2-RA13R: When "BN" is selected for the brake option (no brake) and is used for the 2nd axis of the brake box, separate purchase of "CB-LDC-CTL________JY" and "CB-RCS2-PLLA010" is necessary.

Correlation Diagram of Push Force and Current Limit

RCP6 Series

Slider type / Rod type / Table type * Same as CR/W


The pushing force at the time of pushing operation can be changed by setting the controller's current limit value 20% to 70%.

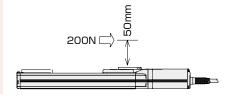

Maximum pushing force varies depending on the model, so please check the required pushing force from the table below and select the type of object. The correlation between push force and current limit value is given as a guideline based on pushing at 20 mm/s speed.

When pushing with the slider type, please limit the pushing current so that the anti-moment generated by the pushing force does not exceed the allowable dynamic moment (Ma, Mb) of the catalog spec.

To calculate moment, use the guide moment action position shown in the gure below, and consider the amount of off set at the push force action position.

If an excessive force exceeding the allowable dynamic moment is applied, the guide may be damaged and the life may be shortened, carefully set the current with safety in mind.

Operating position of guide moment


h measurement SA4 36 TA4 12 SA₆ 46 TA6 16.5 48 TA7 SA7 19.5 SA8 45.5 WSA10 26.5 WSA12 32 WSA14 36 WSA16 38.5

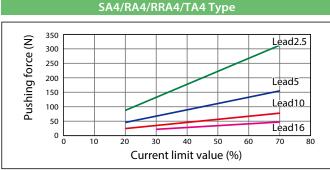
* Unit: mm

Calculation example)

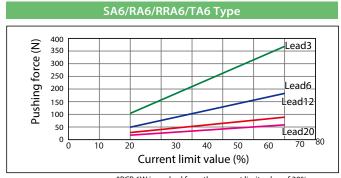
With RCP6-SA7C type, when pushing 200 N at the position on the right figure The moment the guide receives is

Ma=
$$(48 + 50) \times 200 = 19600 (N \cdot mm)$$

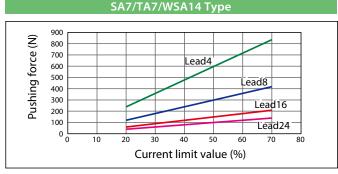
= 19.6 $(N \cdot m)$.

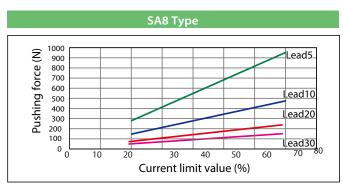


The allowable dynamic moment of SA7C is $Ma = 44 (N \cdot m)$.

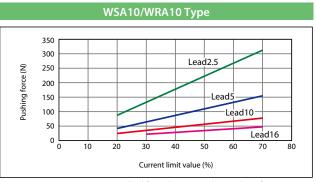

Therefore it is OK because it is 44 > 19.6.

When Mb's moment is generated by pushing, it is calculated from the overhang amount Make sure that it is within the allowable dynamic moment as well.


Correlation diagram of pushing force and current limit value



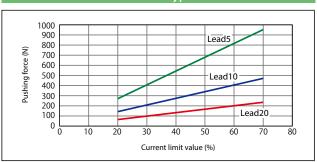
*RCP 6W is pushed from the current limit value of 30% or more.



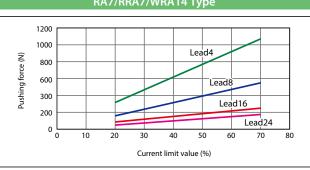
1- 271 Technical Reference

RCP6 Series

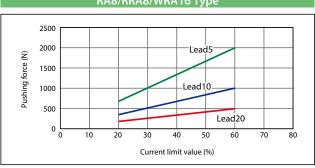
Slider type / Rod type / Table type * Same as CR/W



*RCP 6W is pushed from the current limit value of 30% or more.


WSA12/WRA12 Type 400 350 300 Pushing force (N) 250 200 Lead6 150 Lead12 100 50 0 6 Lead20 60 70 Current limit value (%)

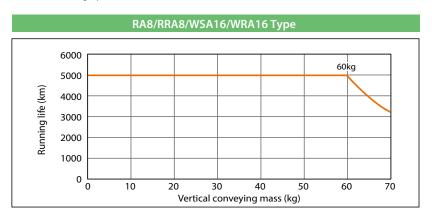
*RCP 6W is pushed from the current limit value of 30% or more.



RA7/RRA7/WRA14 Type

*RCP 6W is pushed from the current limit value of 30% or more.

RA8/RRA8/WRA16 Type



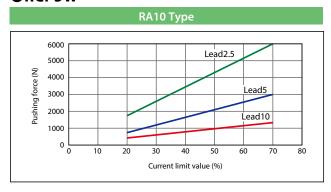
*RCP 6W is pushed from the current limit value of 30% or more.

Vertical conveying mass and running life

When using the RCP6 (S) - RA8, RRA8, WSA16 (lead 5 only),

RCP6 (S), W-RA8,RRA8, WRA16 (lead 5 only) vertically, the service life varies greatly depending on payload quantity. Please check the graph below.

Correlation Diagram of Push Force and Current Limit


RCP6 Series

Slider type / Rod type / Table type * Same as CR/W

The pushing force at the time of pushing operation can be changed by changing the controller current limit value of 20% - 70%. Maximum pushing force varies depending on the model, so please check the required pushing force from the table below and select the type of object.

Correlation diagram of pushing force and current limit value * In the table below, standard figures are shown. Actual figures will differ slightly.

RCP5W

Caution

- ●The push force and current limit correlation figures are given as standard. Actual figures will slightly differ.
- ullet For RCP 5W RA 6 C / RA 7 C, please select the model whose desired pushing force is within the red line frame of the graph.
- ●If the current limit value is less than 20%, the pushing force may vary, so please use RCP 5W RA 6 C / RA 7 C at 30% or more,
- The moving speed during push operation is when the RASC / RASR / RA10C / RA10R is 10 mm / s, and otherwise at 20 mm/s.
- ullet A limits the power supply limit value that can be continuously operated to 60% or less from the motor heat restriction.
- ●The upper limit of number of pushing times when RCP 5 RA 10 C / RA 10 R is operated with the maximum pushing force and pushing displacement 1 mm, please use the following table as a guide.

Lead (Type)	2.5	5	10
Pushing times	1.4 million cycles	25 million cycles	157.6 million cycles

* The maximum number of pressing varies depending on the operating conditions of the shock/vibration. The number of times left is a numerical value when there is no impact vibration.

RCP5 (W)-RA10C/RA10R pushing operation caution

From the relationship of the buckling load of the ball screw, limitation is placed on the pushing force of some models of RA10C / RA10R. (See table below)

						(,
Item	Stroke 550mm or less	Stroke 600mm or less	Stroke 650mm or less	Stroke 700mm or less	Stroke 750mm or less	Stroke 800mm or less
Lead 10	As shown in the push force graph					
Lead 5	As shown in the graph 2900 2500 2200 2000 1800					1800
Lead 2.5	As shown in the graph			5900	5400	

RCP4(CR) Series

Slider type / Rod type * Same as CR/W

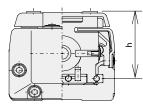
The pushing force at the time of pushing operation can be changed by changing the controller current limit value of 20% (30%, 40%) - 70%. Maximum pushing force varies depending on the model, so please check the required pushing force from the table below and select the type of object.

When pushing with the slider type, please limit the pushing current so that the anti-moment generated by the pushing force does not exceed the allowable dynamic moment (Ma, Mb) of the catalog spec.

To calculate moment, use the guide moment action position shown in the figure below, and consider the amount of offset at the push force action position.

If an excessive force exceeding the allowable dynamic moment is applied, the guide may be damaged and the life may be shortened, carefully set the current with safety in mind.

Calculation example)

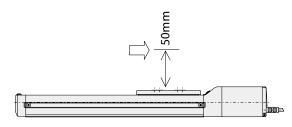

With the RCP4-SA5C type, when pushing 50N at the position on the right figure, the moment applied to the guide is

Ma =
$$(39 + 50) \times 50 = 4450 (N \cdot mm)$$

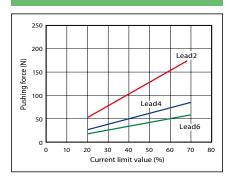
= 4.45 (N · m).

The allowable dynamic moment of SA5C is Ma = $5 (N \cdot m)$.

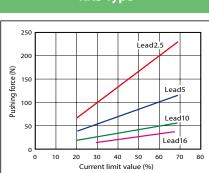
Hence it is OK because it is 5>4.45.


When Mb's moment is generated by pushing, it is calculated from the overhang amount Make sure that it is within the allowable dynamic moment as well.

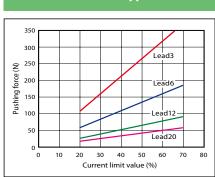
SA3C: h=29.5mm SA5C: h=39mm

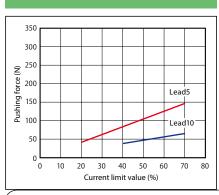

RCP4W-SA5C: h=22.5mm RCP4W-SA7C: h=27.5mm

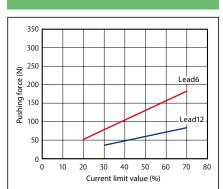
RCP4W-SA6C: h=26mm

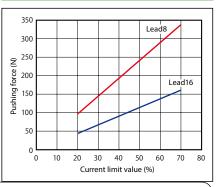


Correlation diagram of pushing force and current limit value


SA3 Type


RA3 Type


SA5/RA5 Type


RCP4W-SA5C

RCP4W-SA6C

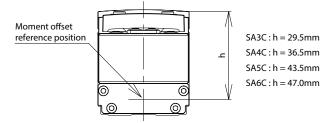
RCP4W-SA7C

Caution

- The correlation between the push force and current limit values are given as a reference. The actual figures will slightly differ.
- When the current limit value is less than 20%, the pushing force may vary. Use at 20% or more.
- The moving speed during pushing motion is 20 mm/s.

Correlation Diagram of Push Force and Current Limit

RCP3 Series


Slider type

The pushing force in a pushing motion can be changed by changing the power limit value of 30% - 50%.

When pushing with the slider type, please limit the pushing current so that the anti-moment generated by the pushing force does not exceed the allowable dynamic moment (Ma, Mb) of the catalog spec.

To calculate moment, use the guide moment action position shown in the figure below, and consider the amount of offset at the push force action position.

If an excessive force exceeding the allowable dynamic moment is applied, the guide may be damaged and the life may be shortened, carefully set the current with safety in mind.

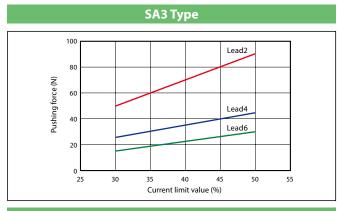
When performing the push motion with the slider type, please set so that the reaction moment generated by the pushing force does not exceed **the allowable moment** of the catalog spec.

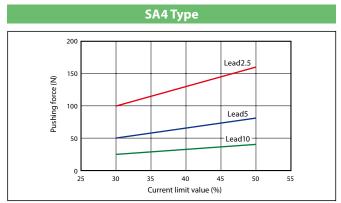

Calculation example)

With RCP 3-SA 6 C (Lead 12) type, when pushing 30 N at the position of 50 mm from the upper surface of the slider

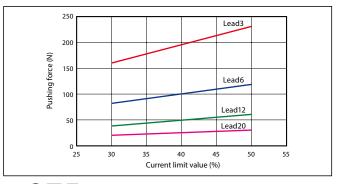
The moment the guide receives is

Ma = $(47 + 50) \times 30$ = 2910 (N·mm) = 2.91 (N·m).


The allowable dynamic moment (Ma) of SA6C is 5 (N \cdot m). Therefore it is OK because it is greater than the moment load (2.91) applied to the guide actually.



Correlation diagram of pushing force and current limit value


* In the table below, standard figures are shown. Actual figures will differ slightly.

The correlation between push force and current limit value is given as a guideline based on pushing at 20 mm/s speed.

SA5/SA6 Type

1- 275 Technical Reference

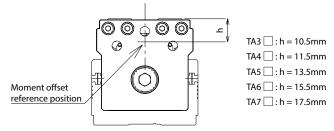

RCP3 Series

Table type

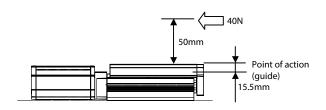
When pushing with the table type, please limit the pushing current so that the anti-moment generated by the pushing force does not exceed the allowable dynamic moment (Ma, Mb) of the catalog spec.

To calculate moment, use the guide moment action position shown in the figure below, and consider the amount of offset at the push force action position.

If an excessive force exceeding the allowable dynamic moment is applied, the guide may be damaged and the life may be shortened, carefully set the current with safety in mind.

When performing the push motion with the slider type, please set so that the reaction moment generated by the pushing force does not exceed **the allowable moment** of the catalog spec.

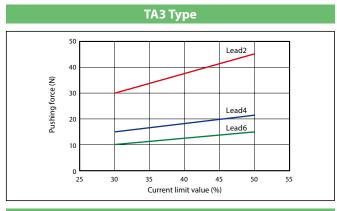
Calculation example)

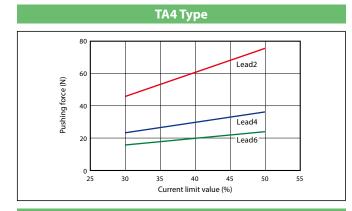

With RCP 3-TA 6 C (Lead 12) type, when pushing 40 N at the position on the figure

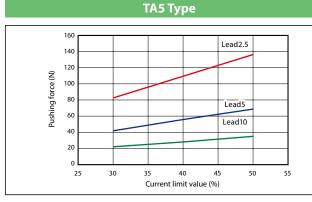
The moment the guide receives is

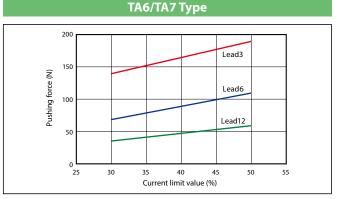
 $Ma = (15.5 + 50) \times 40$ = 2620 (N·mm)

= 2.62 (N·m).

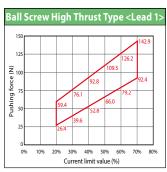

The allowable dynamic moment (Ma) of TA6C is 8 (N \cdot m). Therefore it is OK because it is greater than the moment load (2.62) applied to the guide actually.

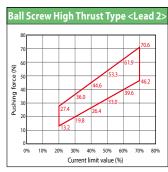


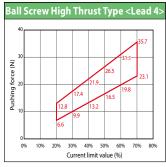

Correlation diagram of pushing force and current limit value

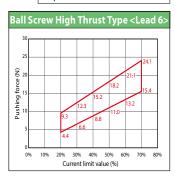

* In the table below, standard figures are shown. Actual figures will differ slightly.

The correlation between push force and current limit value is given as a guideline based on pushing at 20 mm/s speed.

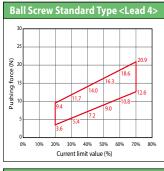

Correlation Diagram of Push Force and Current Limit

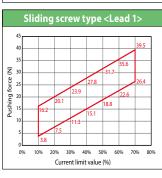

RCP3 Series

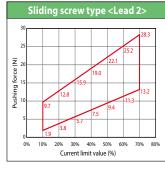

Thin and Small ROBO Cylinder (RA2AC/RA2BC/RA2AR/RA2BR) * Specification value within the red line range

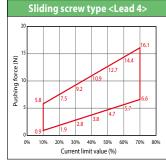

To perform push motion, please select the model with the desired pushing force within the red line range of the lower graph. (The graph has width in consideration of efficiency reduction due to secular change of sliding screw.)

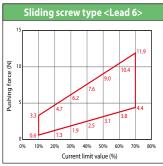

• The moving speed during pushing operation is fixed at 5 mm/s.





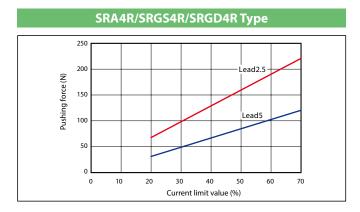






1- 277 Technical Reference

RCP2 Series

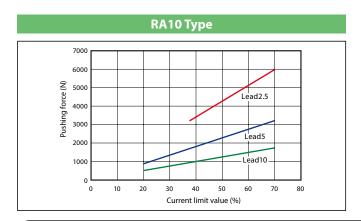

Rod type

The pushing force at the time of pushing operation can be changed by changing the controller current limit value of 20% - 70%.

Maximum pushing force varies depending on the model, so please check the required pushing force from the table below and select the type of object.

Correlation diagram of pushing force and current limit value

* In the table below, standard figures are shown. Actual figures will differ slightly


RCP2 Series

High thrust rod type

The pushing force at the time of pushing operation can freely be changed by changing the controller current limit value. The maximum pushing force varies depending on the model. Confirm it in the table below and select a desired type.

Correlation between the pushing force and the current limit value.

*The diagram below is only a guide. Allow some tolerance

(Note)

When operating the lead type at the maximum pushing force with a pushing distance of 1 mm, the maximum number of pushing motions is shown in the table below as a guide.

Lead (Type)	2.5	5	10
Number of pushing motions	1.4 million	25 million	157.6 million

*The upper limit of the number of pushing motions varies depending on operating conditions such as impact and vibration.

The numbers shown in the left table assume no impact and vibration.

Correlation Diagram of Push Force and Current Limit

RCS3-RCS2 Series

Servo press specification (with load cell)

When using this machine, it is necessary to clear the following three conditions.

Condition 1. The pressing time is shorter than the fixed time

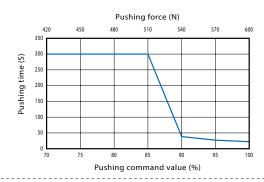
Condition 2. The continuous operation thrust of 1 cycle is less than the permissible thrust of continuous operation of actuator

Condition 3. One push operation must be performed within one cycle

Selection method

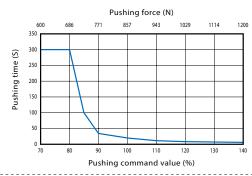
Condition 1. Pushing time

The maximum pushing time for each push command value is determined as shown in the table below. Be sure to use the pressing time below the time shown in the table below.

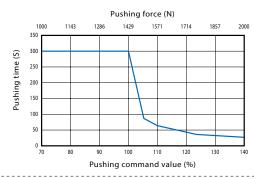

Please be aware that malfunction may occur in the actuator if you use it without following the table below.

There is no limit on the continuous push time for RA4R.

RCS3


RA6R

Push command value (%)	Maximum pressing time (S)
70 or less	Capable of continuous pushing
85	300
90	38
95	27
100	21


RA7R

Push command value (%)	Maximum pressing time (S)
70 or less	Capable of continuous pushing
80	300
85	94
90	33
95	24
100	18
105	15
110	12
115	11
120	9
125	8
130	7
135	6
140	5

RA8R

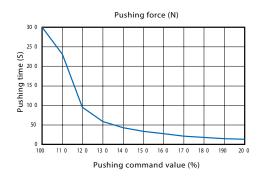
Push command value (%)	Maximum pressing time (S)
70 or less	Capable of continuous pushing
100	300
105	92
110	67
115	54
120	44
125	38
130	33
135	29
140	25


1-279 Technical Reference

RCS3·RCS2 Series

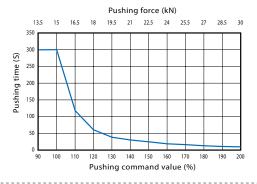
Rod type with load cell

RA10R

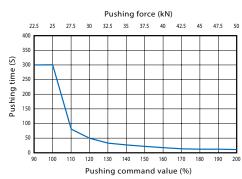

Push command value (%)	Maximum pressing time (S)
70 or less	Capable of continuous pushing
90	300
95	210
100	95
105	70
110	56
115	46
120	39
125	34
130	30
135	26
140	24
145	21
150	19
155	17
160	16
165	14
170	13
175	12
180	11
185	10
190	9
195	9
200	8

RCS2

RA13R


Push command value (%)	Maximum pressing time (S)
70 or less	(Capable of continuous pushing)
71-100	300
110	230
120	95
130	58
140	43
150	33
160	27
170	21
180	18
190	15
200	13

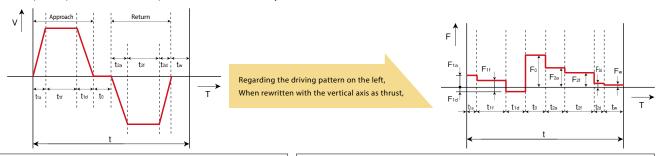
RCS3


RA15R

Push command value (%)	Maximum pressing time (S)
90 or less	Capable of continuous pushing
91-100	300
110	118
120	58
130	40
140	30
150	25
160	20
170	16
180	13
190	10
200	9

RA20R

Push command value (%)	Maximum pressing time (S)
90 or less	Capable of continuous pushing
91-100	300
110	80
120	50
130	36
140	28
150	22
160	18
170	15
180	13
190	11
200	10


Correlation Diagram of Push Force and Current Limit

RCS3-RCS2 Series

Servo press specification (with load cell)

Condition 2. Continuous operation thrust

It is confirmed that the continuous operation of the one cycle with load and duty is less than the continuous operation allowable thrust of the actuator. The push operation should be performed once in one cycle.

- : Operating time of one cycle (s)
- t_{1a}: Acceleration time 1
- t_{1f}: Constant speed movement time 1 t_{1d}: Deceleration time 1
- to : Push operation time * within the range of condition 1

- t2d: Deceleration time 2 tw : Standby time

ta : Acceleration time 2

- F_{1a} : Thrust required for acceleration 1
- F_{1f}: Thrust required for constant speed
- F_{1d}: Thrust required for deceleration 1
- F₀: Thrust required for pressing operation
- : Thrust required for acceleration 2
- : Thrust required for constant speed

Actuator

Mass of moving part: RA6R: 2.5kg

RA7R: 3.5kg

RA8R: 4kg

RA10R: 5kg

RA13R: 9kg

RA15R: 10kg

RA20R: 18kg

- : Thrust required for deceleration 2
- : Thrust required for standby

Calculate the continuous operation thrust Ft of one cycle from the following calculation formula.

$$Ft = \sqrt{\frac{F_{1a}^2 \times \ t_{1a} + F_{1l}^2 \times \ t_{1f} + F_{1d}^2 \times \ t_{1d} + F_{0}^2 \times \ t_{0} + F_{2a}^2 \times \ t_{2a} + F_{2l}^2 \times \ t_{2f} + F_{2d}^2 \times \ t_{2d} + F_{w}^2 \times \ t_{w}}{t}}$$

t2f : Constant speed movement time 2

Since F1a / F2a / F1d / F2d varies depending on the direction of motion, calculate by the following formula.

In case of horizontal use (common for acceleration / deceleration) $F_{1a} = F_{1d} = F_{2a} = F_{2d} = (M+m) \times d + F_{5}$ Horizontal use For constant speed movement

Horizontal use For standby state

Horizontal use Case of acceleration during descent

Vertical use Case of constant speed movement during descent

Vertical use Case of deceleration during descent

Vertical use Case of acceleration during ascent

Vertical use Case of constant-speed movement during descent

Vertical use Case of deceleration during descent

Vertical use Case of standby state

 $F_W = (M+m) \times 9.8$

111 121 1 1 1 1
$F_W = 0$
$F_{1a} = (M+m) \times 9.8 - (M+m) \times d + F_{5}$
$F_{1f} = (M+m) \times 9.8 + \alpha(^{*}1) + F_{5}$
$F_{1d} = (M+m) \times 9.8 + (M+m) \times d + F_{1d}$
$F_{2a} = (M+m) \times 9.8 + (M+m) \times d + F_{2a}$
$F_{2f} = (M+m) \times 9.8 + \alpha(^{*}1) + F_{5}$
$F_{2d} = (M+m) \times 9.8 - (M+m) \cdot d + F_{S}$

M: Weight of moving part (kg) m: Load weight (kg)

- d: Command acceleration / deceleration (m/s 2)
- a: Thrust considering running resistance of the external guide
- f: Running resistance (N) generated when an external guide or the like is attached
- Fs: For RA15R, 20R only Please calculate the thrust for each speed from
- * 1 When installing an external guide etc., it is necessary to consider running resistance f.

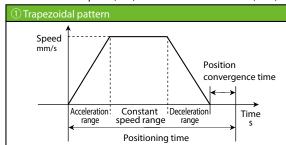
RCS3-RA15R		RCS3-RA20R	
Speed [mm/s]	Fs [N]	Speed [mm/s]	Fs [N]
0~180	0	0~40	0
181~190	625	41~50	1875
191~200	1250	51~60	3750
201~210	1875	61~70	5625
211~220	2500	71~80	7500
221~230	3125	81~90	9375
231~240	3750	91~100	11250
		101~110	13125
		111~120	15000
		121~130	16875
		131~140	18750
		141~150	20625
		151~160	22500
		161~170	24375
		171~180	26250
		181~220	27500

RCS3-RCS2 Series

Servo press specification (with load cell)

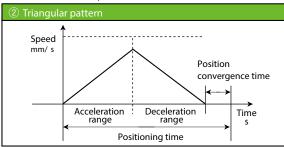
t
 a is the acceleration time, but the calculation method differs depending on the ① trapezoidal pattern ② triangular pattern of the motion pattern.

 The difference between the trapezoidal pattern and the triangular pattern can be judged by operating the moving distance at the set speed, depending on whether the arrival speed is higher or lower than the set speed.


Reaching speed (Vmax) = $\sqrt{\text{moving distance (m)} \times \text{set acceleration (m/s}^2)}$

Set speed < Arrival speed ① Trapezoidal pattern

Setting speed > Arrival speed ② Triangular pattern


1 In case of trapezoidal pattern

 $t\Box a = Vs/a \ Vs: set \ speed \ (m/s) \ a: command \ acceleration \ (m/s^2)$

② In case of triangular pattern

 $t\Box a = Vt/a Vt$: arrival speed (m/s) a: command acceleration (m/s²)

t□f is the constant-speed movement time. Calculate by calculating the constant speed moving distance.

 $t \Box f = Lc/V$ Lc: Constant speed moving distance (m) V: Command speed (m/s)

- * Constant speed movement distance = movement distance acceleration distance deceleration distance acceleration distance (deceleration distance) = V²/2a
- t d is the deceleration time, but it is the same as the acceleration time if the acceleration and deceleration are the same.

t d = V/a V: Set speed (trapezoidal pattern) or reaching speed (triangular pattern) (m/s) a: Command deceleration (m/s²)

[RCS 3 - RA 15 R / RA 20 R only]

• Calculate average speed. The average speed is given by the following equation.

$$v_t = \begin{array}{c} 0.5 \cdot v_1 \cdot t_{1a} + v_1 \cdot t_{1f} + 0.5 \cdot v_1 \cdot t_{1d} + 0.5 \cdot v_2 \cdot t_{2a} + v_2 \cdot t_{2f} + 0.5 \cdot v_2 \cdot t_{2d} \\ t \end{array}$$

 v_1 : Constant velocity speed at approach

v₂: Constant velocity at return (during trapezoidal pattern)
Arrival speed (in triangular pattern)

Then, calculate the final continuous operation thrust from the calculated continuous operation thrust Ft and average speed vt.

$$F = F_t + v_t \cdot K$$

The coefficient K is selected from the table below.

Model	Coefficient K	
RA15R	150	
RA20R	412.5	

Please confirm that the calculated continuous operation thrust Ft (F in the case of RA15R, 20R, calculated by the above formula) is smaller than the continuous operation allowable thrust.

The permissible thrust of continuous operation of this product is as follows.

Model	Allowable continuous thrust force [N]
RA6R-LC	420
RA7R-LC	600
RA8R-LC	1000
RA10R-LC	2100
DA12D I C	1t 5100
RA13R-LC	2t 10200
RA15R-LC	13500
RA20R-LC	22500

I* 2 Use RA13R at duty 50% or less.

If conditions can not be satisfied, take measures such as shortening the pressing time or prolonging the waiting time.

Correlation Diagram of Push Force and Current Limit

RCS3-RCS2 Series

Servo press specification (without load cell)

RCS2

RA13R

This is the same condition as the rod type with load cell for servo press. See P1-279 to P1-282.

RCS3

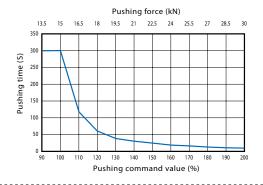
It is required to meet the following two conditions bellow when using this model.

Condition 1. Pushing time must be less than or equal to the specified time.

Condition 2. Operation duty is less than usable duty depending on the operating conditions (Payload, speed).

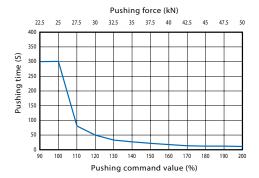
Condition 3. The push operation should be performed once in one cycle.

Selection method


Condition 1. Pushing time

The maximum pushing time for each push command value is determined as shown in the table below. Be sure to use the pressing time below the time shown in the table below.

Please pay attention that malfunction may occur in the actuator if you use it without following the table below.


RA15R

Push command value (%)	Maximum pressing time (S)
90 or less	Capable of continuous pushing
91-100	300
110	118
120	58
130	40
140	30
150	25
160	20
170	16
180	13
190	10
200	9

RA20R

Push command value (%)	Maximum pressing time (S)
90 or less	Capable of continuous pushing
91-100	300
110	80
120	50
130	36
140	28
150	22
160	18
170	15
180	13
190	11
200	10

RCS3-RCS2 Series

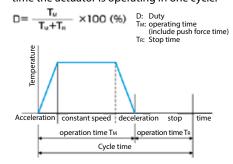
Rod type (without load cell)

Condition 2. Duty

Duty refers to the operating rate of the actuator (the time during which the actuator is operating during one cycle).

The standard of the usable duty varies depending on the operating conditions (conveying mass, acceleration /deceleration etc.)

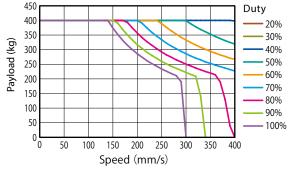
From the combination of the maximum speed and the payload within one cycle, check the following graphs for the usable duty, and operate below the usable duty.

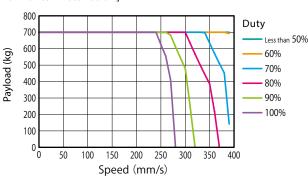

<Example>

If the speed and payload change in reciprocating motion, check with a large value.

	Forward	Backward		
Speed	Small value	Large value		
Payload quantity	Large value	Small value		
	Please check from the following gra with this combination of values.			

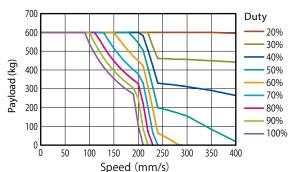
[Duty ratio]


The duty ratio is the operating rate in% of the time the actuator is operating in one cycle.

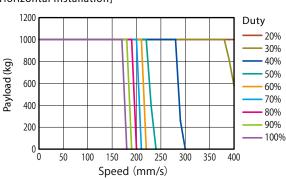

RCS3

RA15R

[Horizontal installation]


^{*}The graph above shows the case where two external regenerative resistors are installed.

The number of regenerative resistance units (RESU - 35T) can be reduced by payload, speed, and duty.


For details, please contact our sales representative.

RA20R

[Vertical installation]

[Horizontal installation]

^{*}The graph above shows the case where two external regenerative resistors are installed.

The number of regenerative resistance units (RESU - 35T) can be reduced by payload, speed, and duty.

For details, please contact our sales representative.

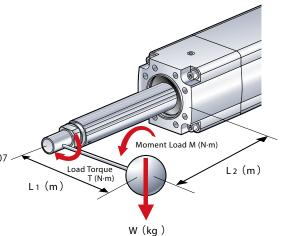
Information on Moment Selection

RCS3-RCS2 Series

Rod type (without load cell)

RCS2

RA13R This can apply a load on


the rod within the range of conditions calculated below.

RCS 2 - RA 13 R (without load cell) can apply a load on the rod within the range of conditions calculated below.

 $M+T \le 120 (N \cdot m)$ Moment Load $M = Wg \times L2$ Load Torque $T = Wg \times L1$

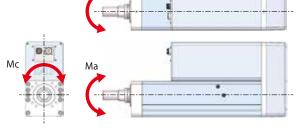
- * g = gravitational acceleration 9.8
- * L1 = Distance from rod center to work center of gravity
- * L2 = Distance from actuator mounting surface to work center of gravity + 0.07

If the above conditions are not satis ed, please pay attention so that no load is applied to the rod by providing guides to the outside.

RCS3

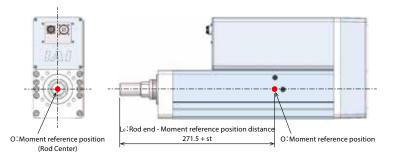
RCS3-RA15R/RA20R The load can be applied to the rod within the following two conditions.

Condition 1. The radial load applied is less than the allowable maximum radial load.

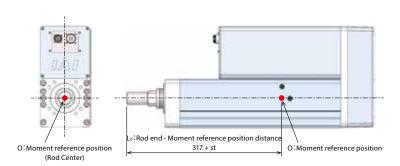

Condition 2. The moment applied should meet the following formula.

 $M \ge Ma + Mb + K \cdot Mc$

M: Allowable moment (see table below) Ma, Mb, Mc: Load moment (see the right figure)


K: Equivalent coefficient RCS3-RA15R: 0.36

RCS3-RA20R: 0.37


RCS3-RA15R

Stroke (mm)	100	200	300	400	500
Maximum allowable Radial load (N)	ole 392				
Allowable moment (Nm)	140	135	130	125	120

RCS3-RA20R

Stroke (mm)	100	200	300	400	500	
Maximum allowable Radial load (N)	e 540					
Allowable moment (Nm)	230	220	210	200	190	

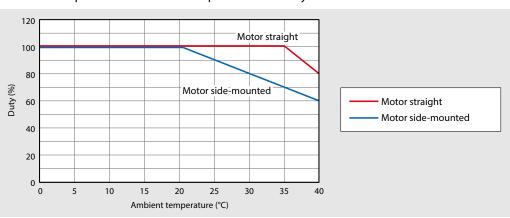
Duty

Duty refers to the operating rate of the actuator (the time during which the actuator is operating during one cycle).

Please note that the calculation method of the duty is different between the pulse motor type and the AC servo motor type actuator.

<Pulse motor>

Regarding the pulse motor specification, the duty can be operated at 100%. For models that require duty restrictions, please check the following.


In the case of EC

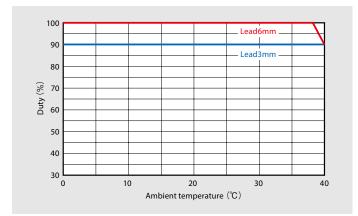
Duty of the S3/S4, RR3/RR4, R, GS, GD, TC and TW is 100% at an ambient temperature of 0-40 $^{\circ}$ C.

■ Relationship between ambient temperature and duty ratio

[Duty ratio]

The duty ratio is the operating rate in% of the time the actuator is operating in one cycle.

In the case of RCP 6 S (CR)


Duty ratio by type

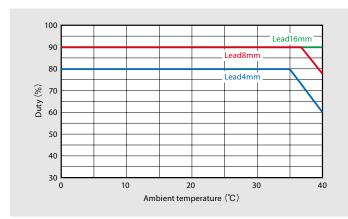
RCP6S series	Duty ratio
☐35 pulse motor type SA4 / RRA4 / RA4 / TA4 / WSA10 / WRA10 (Motor straight / Motor turn back common)	100%
42 pulse motor type SA6 / RRA6 / RA6 / TA6 / WSA12 / WRA12 (Motor straight / Motor turn back common)	See graph on P1-287
☐56 pulse motor type SA7 / RRA7 / RA7 / TA7 / WSA14 / WRA14 (Motor straight / Motor turn back common)	See graph on P1-287
□56 High Thrust Pulse Motor Type SA8 / WSA 16 (Motor straight / Motor turn back common)	100%
☐60 High Thrust Pulse Motor Type RRA 8 / RA 8 / WRA 16 (Motor straight / Motor turn back common)	70%

IAI

Duty

■ Relationship between ambient temperature and duty ratio of 42 pulse motor type.

☐42 pulse motor type


SA6/RRA6/RA6/TA6/WSA12/WRA12

(Common in motor straight / motor side-mounted)

Lead	3mm	6mm	12mm/20mm
Limit on duty ratio	90% or less	38°C or less 100% 40°C 90% or less	100%

(Note) There is no 20mm for RCP6W.

■ Relationship between ambient temperature and duty ratio of 56 pulse motor type (except for high-thrust motor).

☐56 pulse motor type

SA7/RRA7/RA7/TA7/WSA14/WRA14

(Common in motor straight / motor side-mounted)

Lead	4mm	8mm	16mm	24mm	
Limit on duty ratio	35°C or less 80% 40°C 60% or less	37°C or less 90% 40°C 78% or less	90% or less	100%	

(Note) There is no 24mm for RCP6W.

<AC servomotor>

Since the standard of the usable duty varies depending on the operating conditions (conveying mass, acceleration / deceleration etc.), calculate the load factor LF and the acceleration / deceleration time ratio tod from the following calculation formula and obtain it from the graph.

• Calculate the load factor LF from the following formula.

The load factor LF calculation formula varies depending on the model. Please check the target model and calculate the load factor.

1 In case of IF/RCA/RCA2/RCS2 series

$$\text{(A)Load factor: LF}_{\text{(1)}} = \frac{\mathsf{M} \times \alpha}{\mathsf{M}_{1} \times \alpha_{1}} \quad \text{(%)}$$

· Payload capacity at rated acceleration : M1

· Rated acceleration / deceleration : α1

Actual carrying mass
 Command acceleration / deceleration
 ∴ a (a≤a1)

(Note) Please refer to model / spec table of each model for payload capacity and rated acceleration / deceleration at rated acceleration / deceleration.

When operating under the following operating conditions, the load factor is as follows.

<example 1=""></example>		<example 2=""></example>		<example 3=""></example>	
Actual conveying mass	: 5 kg	Actual conveying mass	: 2.5 kg	Actual conveying mass	: 5 kg
Command acceleration / deceleration: 0.3 G		Command acceleration / deceleration : 0.3 G		Command acceleration / deceleration : 0.15	
Load capacity at rated acceleration	/	Load capacity at rated acceleration /	1	Load capacity at rated acceleration	1
deceleration	: 5 kg	deceleration	: 5 kg	deceleration	: 5 kg
Rated acceleration / deceleration	: 0.3 G	Rated acceleration / deceleration	: 0.3 G	Rated acceleration / deceleration	: 0.3 G
Load factor: LF ①	= 100%	Load factor: LF n	= 50%	Load factor: LF n	= 50%

2 In case of IS(P)B/SSPA/IS(P)A/IS(P)DB/NSA/NS/IS(P)DBCR/SSPDACR/IS(P)DACR/RCS4/RCS3/TTA series

Acceleration / deceleration above the rating is set for the above compatible models.

Depending on command acceleration / deceleration, the calculation formula to be used is different.

- (1) When the specified acceleration/deceleration is less than the rated values, use the above formula (A).
- (2) When the command acceleration / deceleration is not less than the rated acceleration / deceleration, please use calculation formula (B).

®Load factor: LF② =
$$\frac{M \times \alpha}{M_2 \times \alpha}$$
 = $\frac{M}{M_2}$ (%)

· Actual conveying mass : M

· Command command

acceleration / deceleration : α

· Payload quantity of command

acceleration / deceleration : M 2 (M ≤ M 2)

(Note) For payload capacity corresponding to acceleration / deceleration and acceleration / deceleration of each model, please refer to the acceleration weighted payload quantity table of each model.

When operating under the following operating conditions, the load factor is as follows.

As an example, we will use the acceleration weighted payload table of "RCS 3 - SA 8 C 150 W Lead 30".

Model	Tuno	Motor outpu	Lead	Payload quantity by acceleration [kg]				
Model	Туре	Motor outpu	[mm]	0.3G	0.5G	0.7G	1G	
RCS3	SA8C	150W	30	12	10	6	2	

(Note) When horizontal use, Low speed acceleration / deceleration 0.3G

<example 1=""></example>		<example 2=""></example>		<example 2=""></example>	
Actual conveying mass	: 2 kg	Actual conveying mass	:5 kg	Actual conveying mass	:5 kg
Command acceleration / deceleration	:1.0 G	Command acceleration / deceleration	: 0.5 G	Command acceleration / deceleration	: 0.5 G
Payload quantity of command		Payload quantity of command		Payload quantity of command	
acceleration / deceleration	: 2 kg	acceleration / deceleration	: 10 kg	acceleration / deceleration	: 10 kg
Load factor: LF ②	= 100%	Load factor: LF ②	= 50%	Load factor: LF ②	= 50%

Duty

3 RCA, RCS 2 For high acceleration / deceleration option use model

Calculate the load factor LF ③ from the calculation formula ⑥. Even in case of high acceleration / deceleration specification,

the rated acceleration is the same value as the standard specification.

©Load factor: LF
$$_{3} = \frac{M \times \alpha_{2}}{M_{1} \times \alpha_{1}}$$
 %

- · Actual conveying mass : M
- · Command acceleration / deceleration : a2
- · Payload quantity at rated acceleration / deceleration : M1
- · Rated acceleration /

deceleration $: \alpha 1 (0.3G)$

<Example 1>

Actual conveying mass :2 kg Command acceleration / deceleration : 0.6 G Load capacity at rated

acceleration / deceleration :2 kg Rated acceleration / deceleration : 0.3 G Load factor: LF ③ = 200% <Example 2>

Actual conveying mass : 1 kg Command acceleration / deceleration : 0.9 G

Load capacity at rated

acceleration / deceleration :2 kg Rated acceleration / deceleration :0.3 G Load factor: LF ③ = 150% Maximum acceleration / deceleration by model: α max $(M \leq M_1, \alpha_1 < \alpha_2 \leq \alpha \max)$ α max (maximum acceleration / deceleration by model) list

		,
Model	Lead	αmax
RCA/RCS2-SA4C	10	1
NCA/NC32-3A4C	5	1
RCA/RCS2-SA5C	12	0.8
RCA/RC32-3A3C	6	0.8
RCA/RCS2-SA6C	12	1
NCA/NC32-3A0C	6	1
RCS2-SA7C	16	1
RC32-3A/C	8	0.8
RCA-RA3C	10	1
NCA-NASC	5	1
RCA-RA4C 30W	12	1
NCA-NA4C 30W	6	1
RCS2-RA5C 100W	16	1
RC32-RA3C 100W	10 5 12 6 12 6 16 8 10 5 12 6	1

2 Calculate the acceleration / deceleration time ratio tod from the following calculation formula.

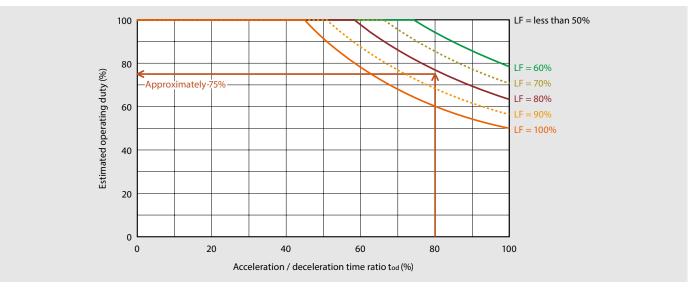
* Calculation is not needed for the NSA series. Skip ② and ③. Go to ④.

Acceleration / deceleration time ratio:
$$tod = \frac{Acceleration time + deceleration time}{Operating time}$$
%

$$\mbox{Acceleration time} = \frac{\mbox{Speed (mm / s)}}{\mbox{Acceleration (mm/s}^2)} \mbox{ (sec)}$$

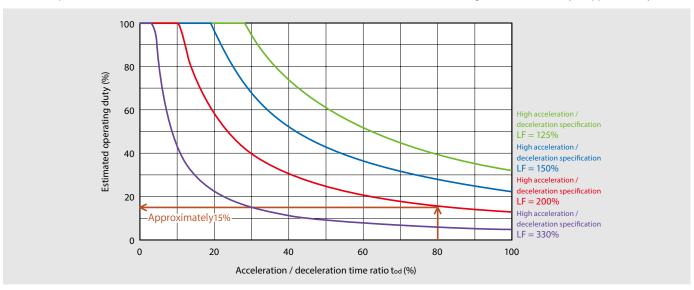
Acceleration (mm/s²) = Acceleration (G) \times 9,800mm/s²

Deceleration time =
$$\frac{\text{Speed (mm/s)}}{\text{Deceleration (mm/s}^2)} \text{ (sec)}$$


Deceleration (mm/s²) = Deceleration (G) \times 9,800mm/s²

3 Read the standard of duty from the calculated "load factor" and "acceleration / deceleration time ratio".

For RCA, RCS2 high acceleration / deceleration option use model, please use "Duty guide 2 (for high acceleration / deceleration specification)").


Duty measure guide 1 (for standard use)

Example: When the load factor is 80% and the acceleration / deceleration time ratio is 80%, the guideline for the duty is approximately 75%.

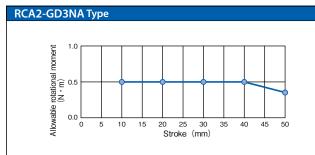
Duty guide 2 (for high acceleration / deceleration specification)

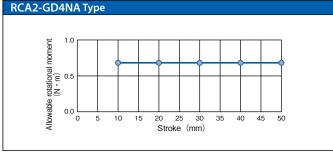
Example: When the load factor is 200% and the acceleration / deceleration time ratio is 80%, the guideline for the duty is approximately 15%.

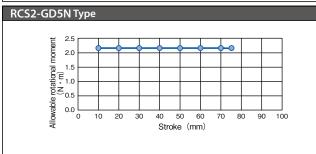
4 [NSA series] Confirm the guide duty from the calculated "load factor."

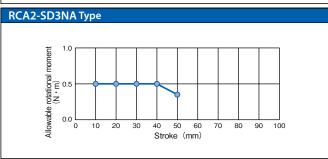
The guide duty of the NSA series is determined according to the load factor LF as specified in the table below.

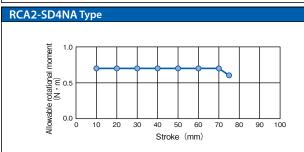
Load factor LF	100%	90%	80%	70%	60%	50% or less
Duty	50%	56%	63%	70%	78%	100%

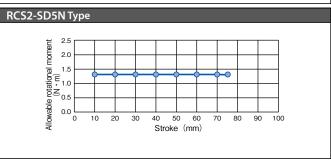

(Note) M size lead 30 is operated at duty 50% regardless of the conditions such as load factor.

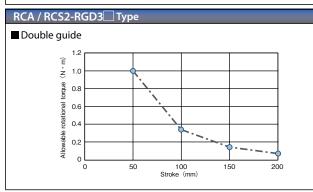

Guide-Equipped Type RCA2/RCP2/RCA/RCS2

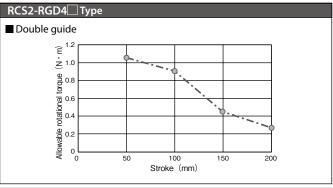

Allowable rotating torque

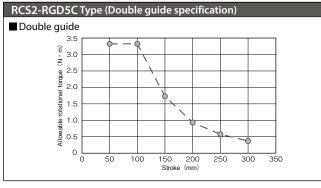

The allowable torque of each model is as shown below.

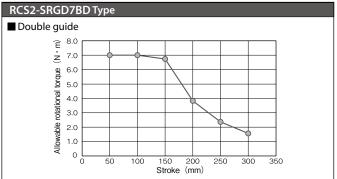

When giving rotational torque, please use within the range of the following values. In addition, single guide type can not receive rotational torque.

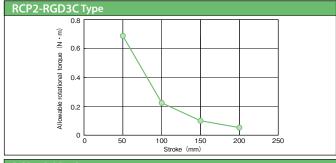


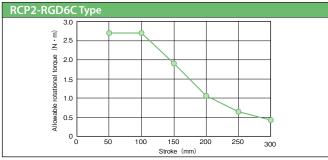


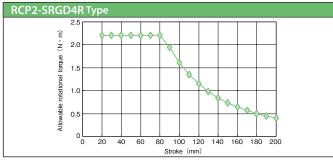






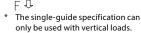




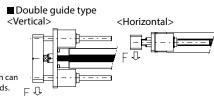


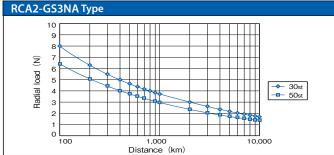
1-291 Technical Reference

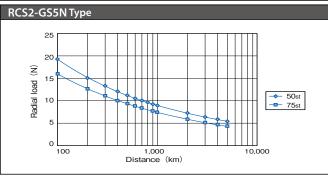
RCP2-RGD4C Type 3.0 (ii) 2.5 (iii) 2.5 (iii) 2.0 (iii)

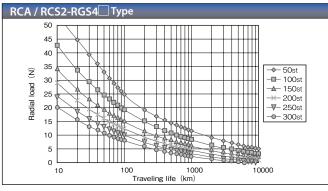


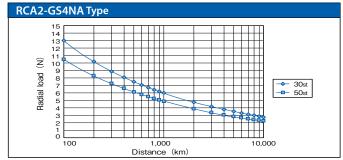
Relationship between tip allowable load and running life

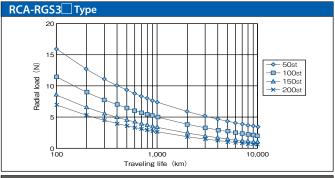

The longer the load at the guide tip becomes, the lower its life. Please select the model considering considering the balance between the load and the life span.

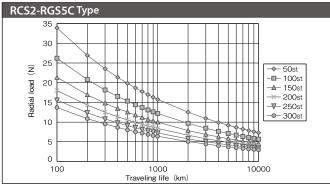

Single guide

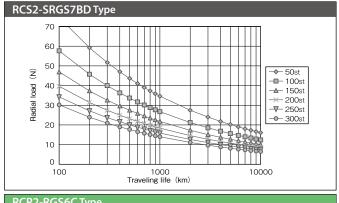


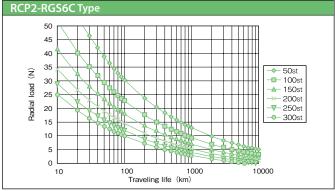


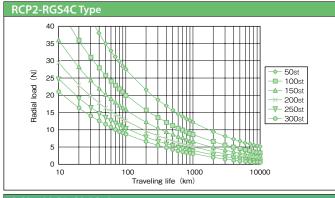

■ Single guide type

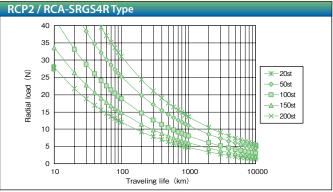


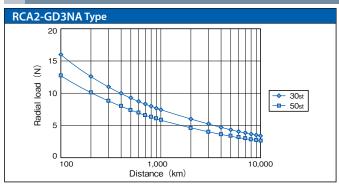


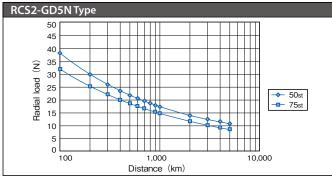


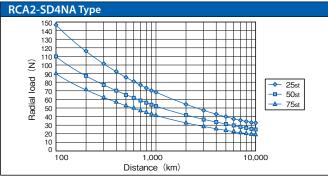


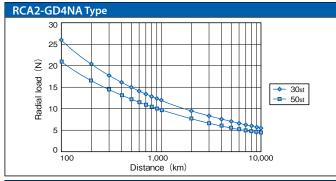


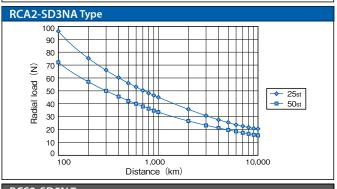


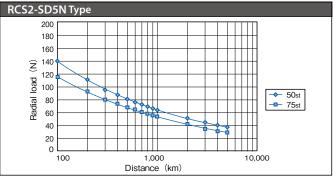


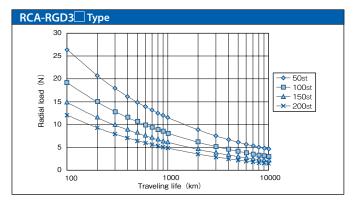


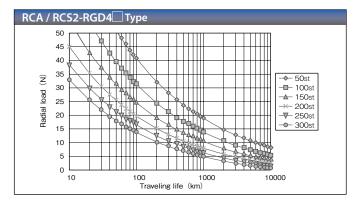


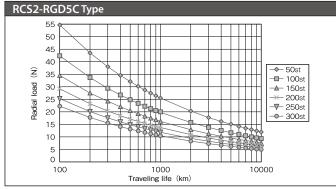


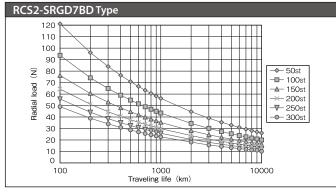

Double guide

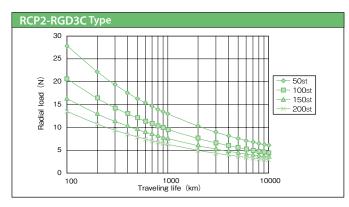


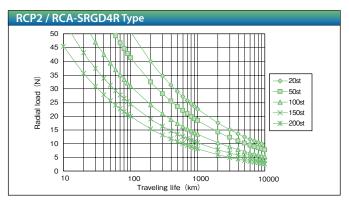


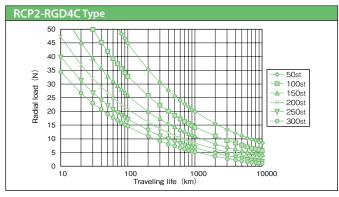


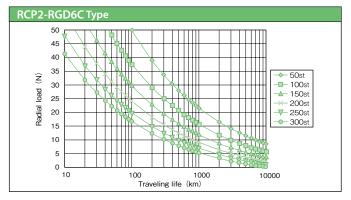





1-293 Technical Reference



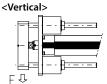




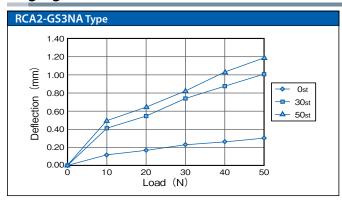
Radial load and tip deflection

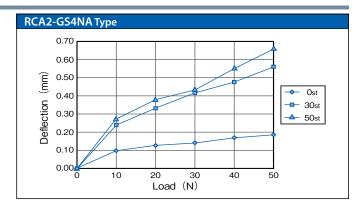
It is a correlation diagram between the load applied to the guide tip and the amount of deflection at that time.

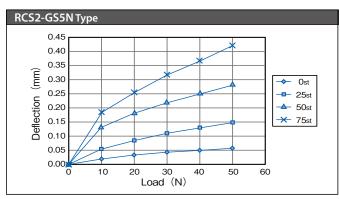
Caution

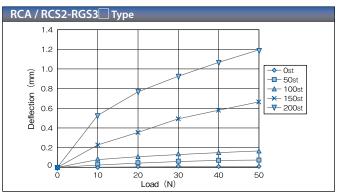

The load on the graph does not show the allowable load. Lifetime greatly decreases as the load increases. Please refer to "Relationship between tip allowable load and running life"

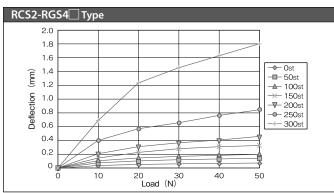
■ Single-guide type

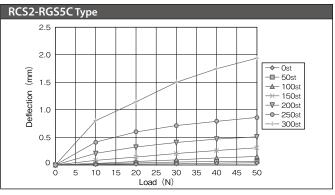

* The single-guide specification can only be used with vertical loads.

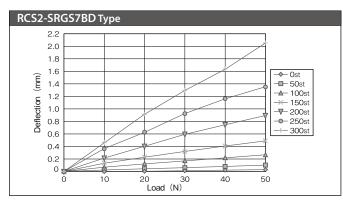

■Double-guide type

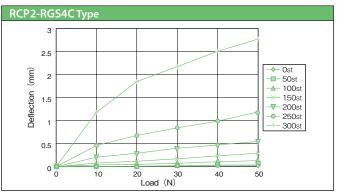


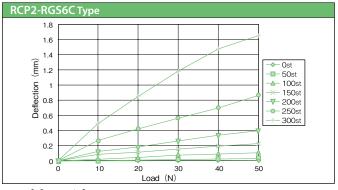

<Horizontal>

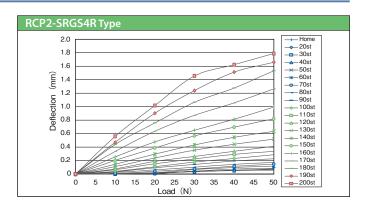

Single guide

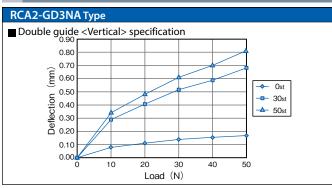


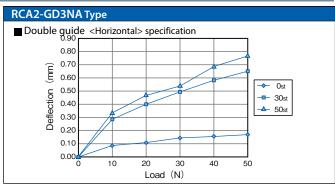


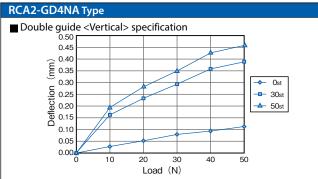


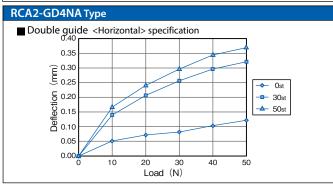


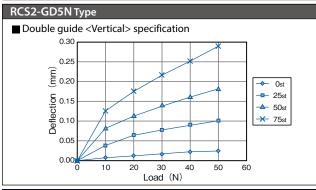


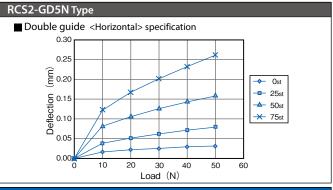


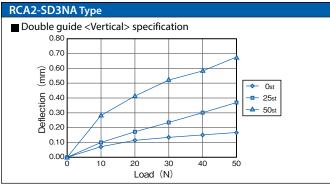

1-295 Technical Reference

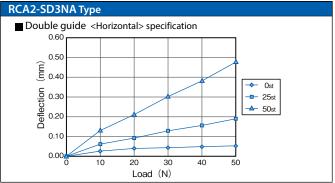


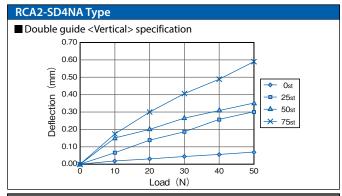


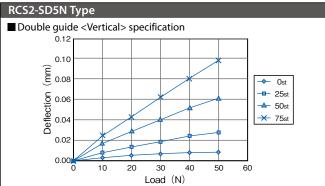

Double guide

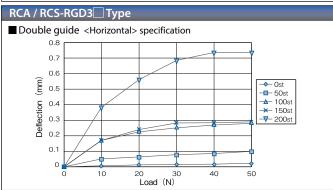


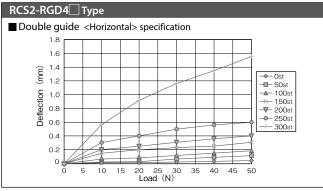


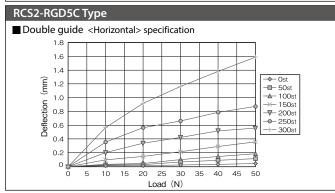


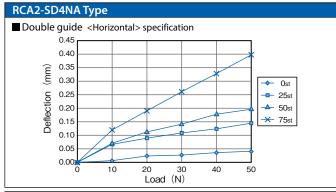


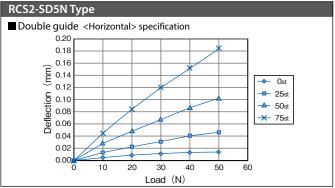


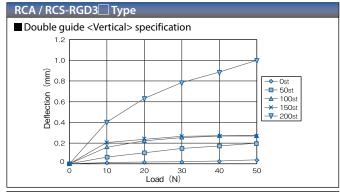


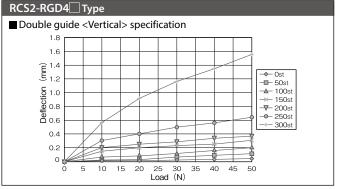

IAI

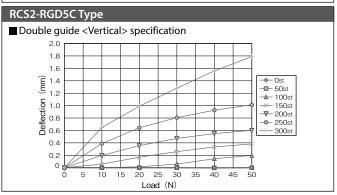


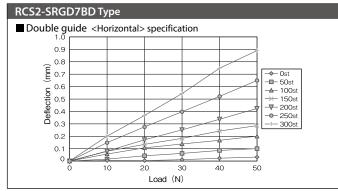


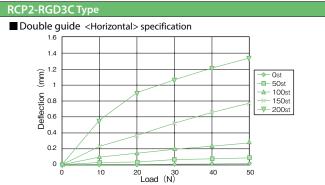


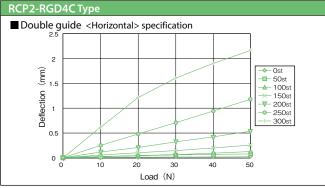


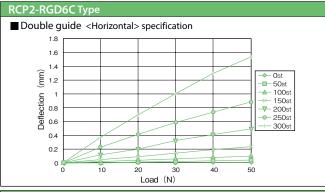


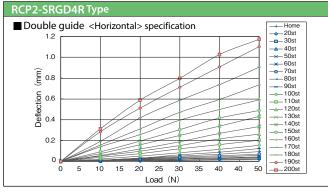


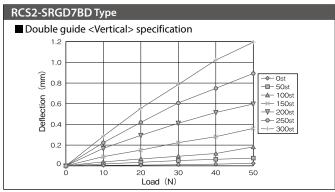


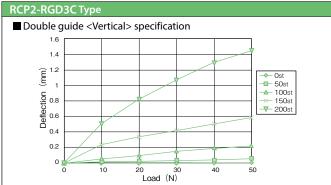


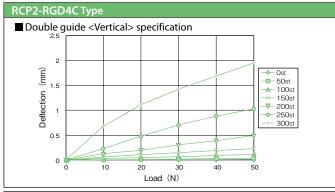


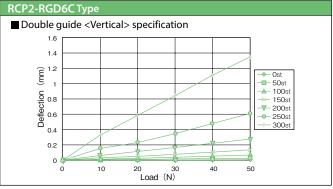


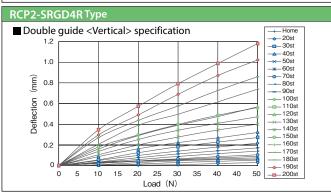


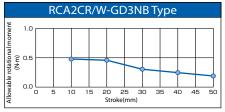


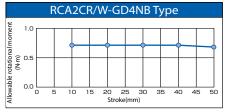


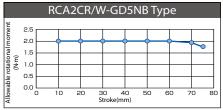




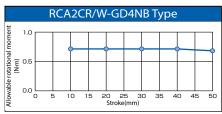


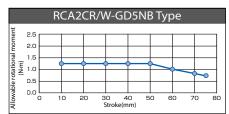


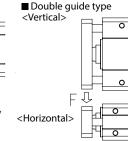

Guide-Equipped Type Technical Reference (CR/W)

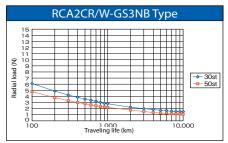

Allowable rotating torque

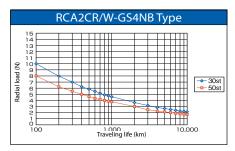

The allowable torque of each model is as shown below.

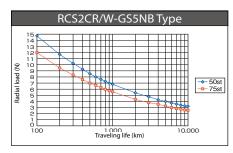

 $When giving \ rotational \ torque, please \ use \ within \ the \ range \ of \ the \ following \ values. \ In \ addition, single \ guide \ type \ can \ not \ receive \ rotational \ torque.$

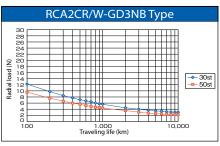


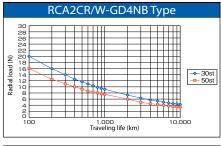

Relationship between tip allowable load and running life

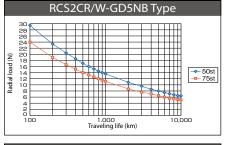

The longer the load at the guide tip becomes, the lower its life. Please select the model considering considering the balance between the load and the life span.

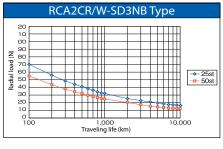


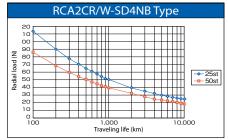


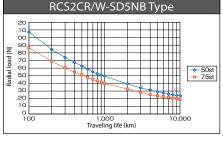

* The single-guide specification can only be used with vertical loads.

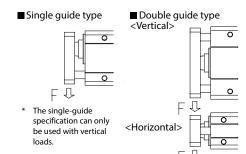


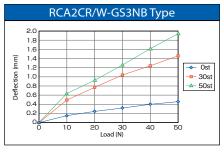




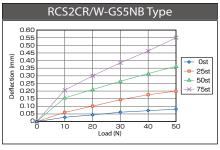


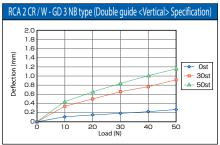


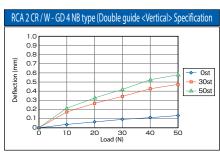


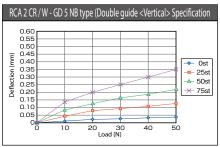


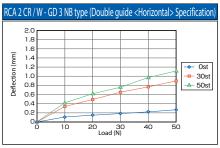
1-299 Technical Reference

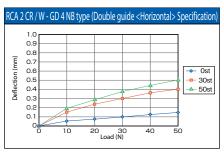

Radial load and tip deflection

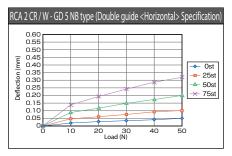

It is a correlation diagram between the load applied to the guide tip and the amount of deflection at that time.

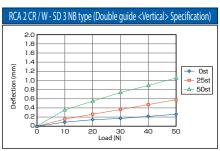


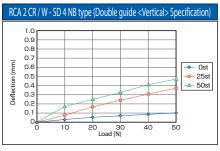


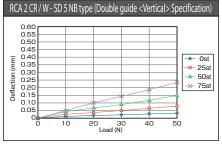


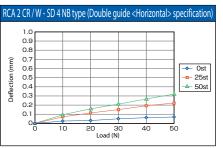


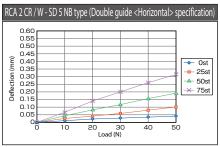


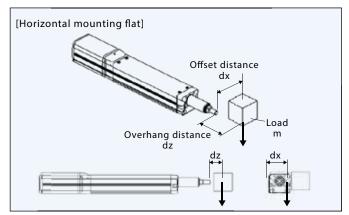


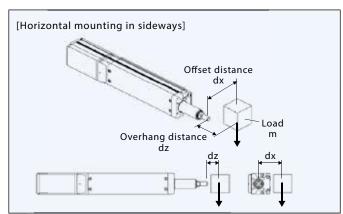




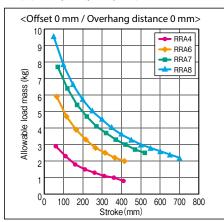


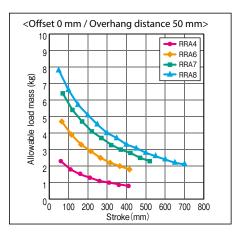


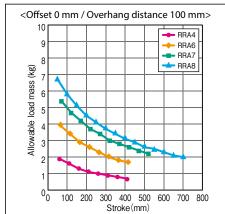


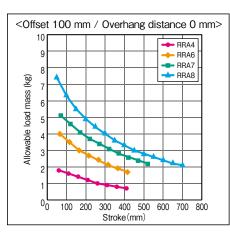

Selection Guideline for Allowable Radial Cylinder Load Mass

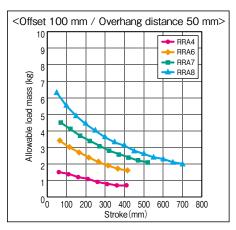
Since the radial cylinder has a built-in guide, it can apply a constant load to the rod even without an external guide. Please refer to the graph below for allowable load mass.

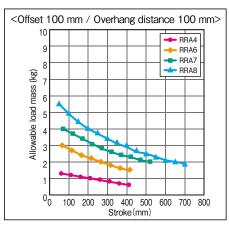

In addition, when the conditions necessary for operation exceed the allowable load, please use the external guide.

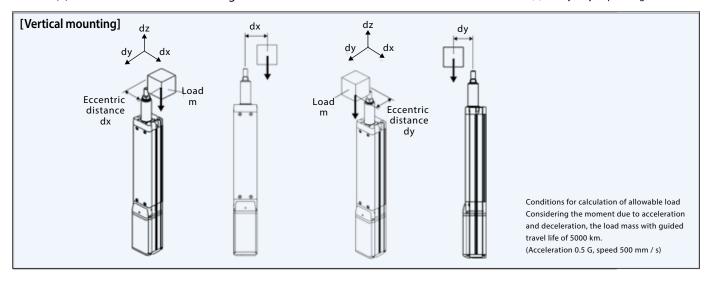

RCP6-RRA series Horizontal mounting Allowable load mass



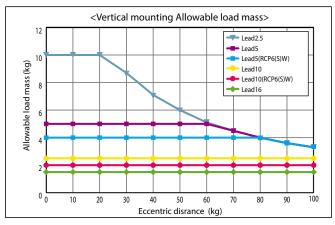



■ RCP6-RRA4/RRA6/RRA7/RRA8

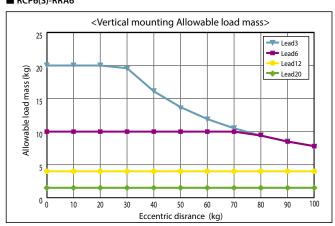


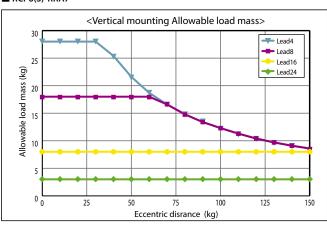

Conditions for calculation of allowable load

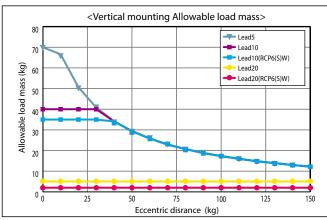
Considering the moment due to acceleration and deceleration, the load mass with guided travel life of 5000 km. (Acceleration 1 G, speed 500 mm/s)


1-301 Technical Reference

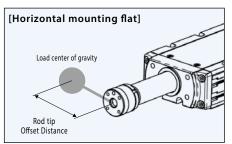
RCP6(S) -RRA series Vertical mounting Allowable load mass

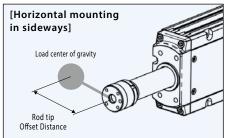

* RCP6(S)W may vary depending on the lead.

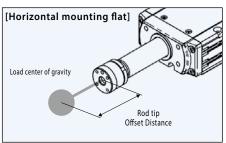

■ RCP6(S)-RRA4

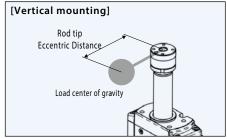

■ RCP6(S)-RRA6

■ RCP6(S)-RRA7

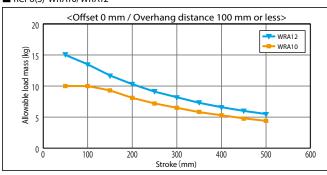

■ RCP6(S)-RRA8

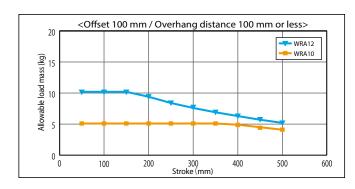


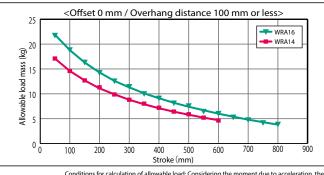

Selection Guideline for Allowable Radial Cylinder Load Mass

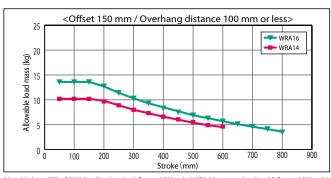

RCS6(S)-WRA series Allowable load mass

* RCP6(S)W may vary depending on the lead.





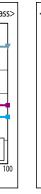


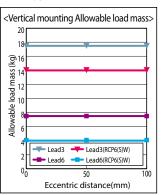

■ RCP6(S)-WRA10/WRA12

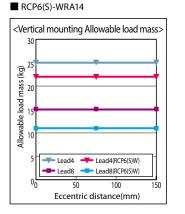
RCP6(S)-WRA14/WRA16

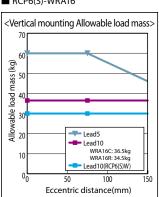
Conditions for calculation of allowable load: Considering the moment due to acceleration, the load mass with guided travel life of 5000 km. (Acceleration 1 G, speed 500 m / s * WRA 16 type acceleration: 0.2 G, speed 500 m / s).

RCP6(S)-WRA12

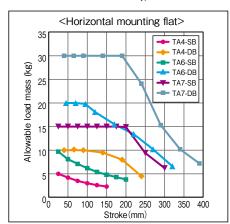

RCP6(S)-WRA14

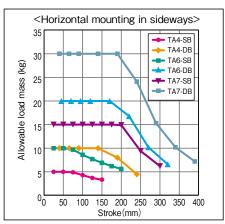

RCP6(S)-WRA16

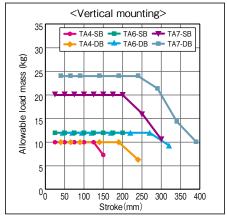

<Vertical mounting Allowable load mass>


- Lead2 5

Allowable load mass

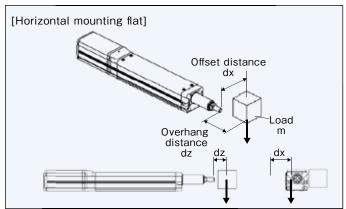


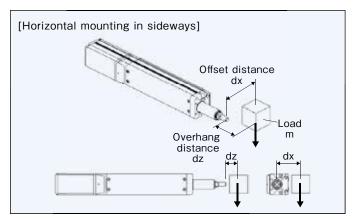

1-303 Technical Reference

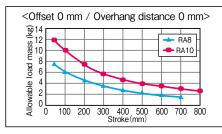

Eccentric distance(mm)

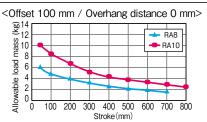
■ (Table type) RCP 6(S)-TA series Allowable load mass

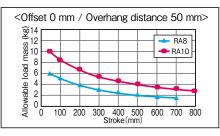
Allowable load mass of the table type decreases as the stroke becomes longer due to the mechanical restriction.

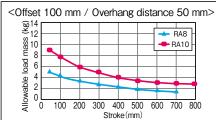


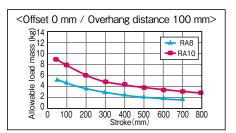


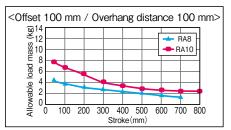

Conditions for calculation of allowable load: Considering the moment due to acceleration, the load mass with guided travel life of 5000 km. (Acceleration 0.5 G, speed 500 m / s * WRA 16 type acceleration: 0.2 G, speed 500 m / s).

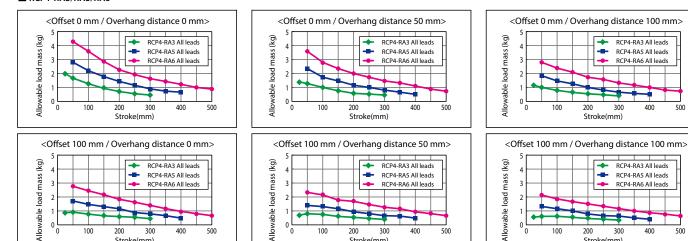

■ RCP5/RCP4 horizontal mounting Allowable load mass





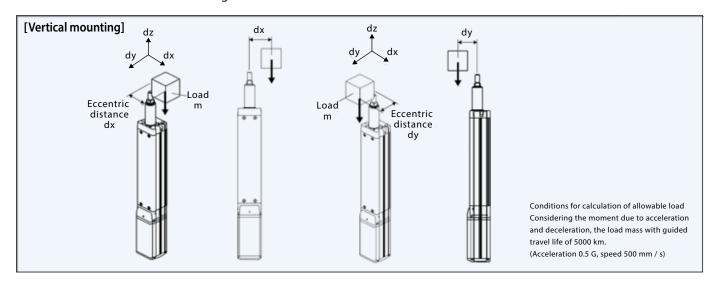

■ RCP5-RA8/RA10



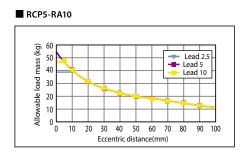


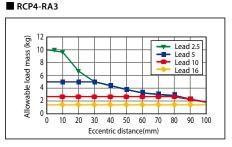
Selection Guideline for Allowable Radial Cylinder Load Mass

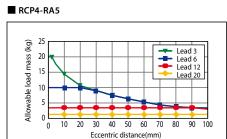
■ RCP4-RA3/RA5/RA6



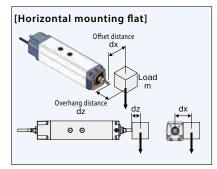
Considering the moment due to acceleration, the load mass with guided travel life of 5000 km. (Acceleration 1 G, speed 500 m / s)

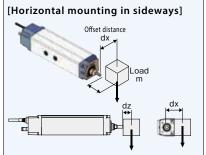

RCP5/RCP4 series Vertical mounting Allowable load mass

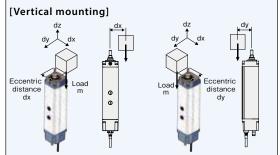

400


300

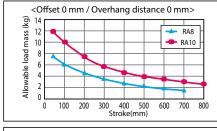
400

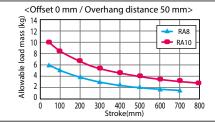


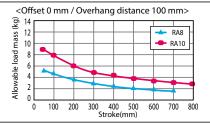


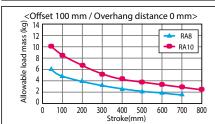

200

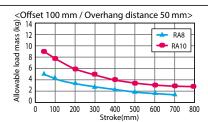
400

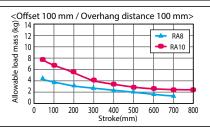

■ RCP5W-RA10C series Horizontal mounting Allowable load mass

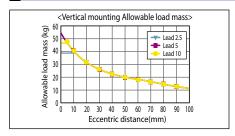




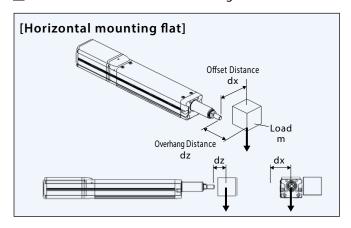


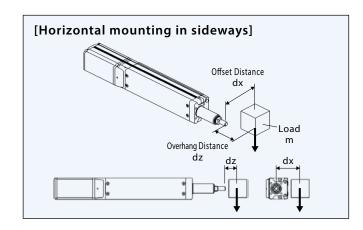

RCP5W-RA10C



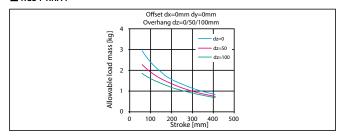


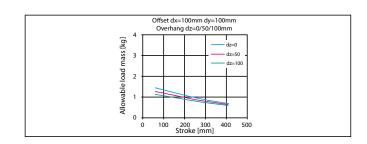
IAI

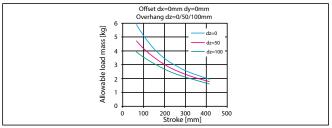

RCP5W-RA10C

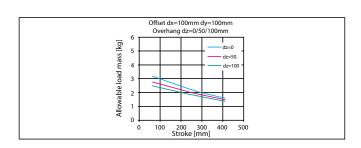


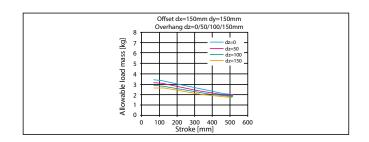
Conditions for calculation of allowable load: Considering the moment due to acceleration, the load mass with guided travel life of $5000\,\mathrm{km}$. (RA10C: Acceleration $0.04\,\mathrm{G}$, speed $250\,\mathrm{m/s}$).

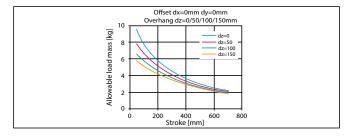

Selection Guideline for Allowable Radial Cylinder Load Mass

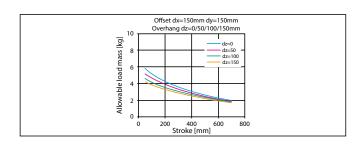

RCS4-RRA series Horizontal mounting Allowable load mass

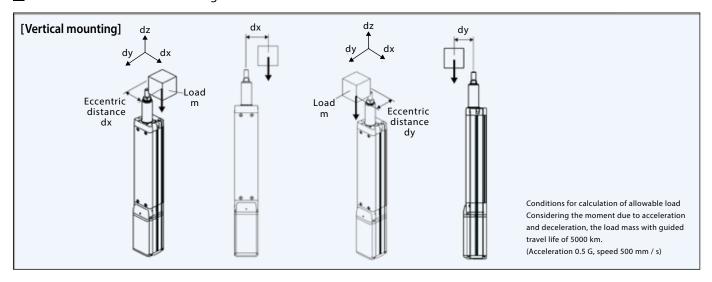


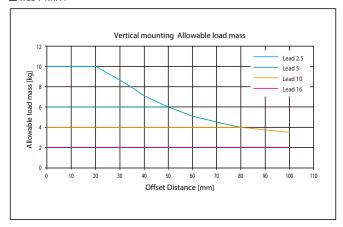

■ RCS4-RRA4


■ RCS4-RRA6



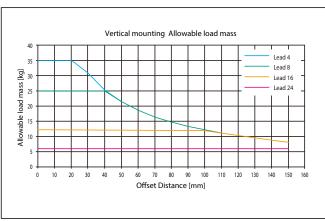

■ RCS4-RRA7

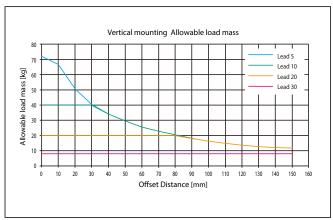

■ RCS4-RRA8



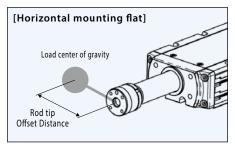
1-307 Technical Reference

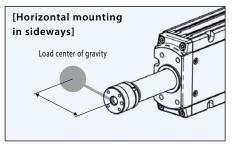
RCS4-RRA series Vertical mounting Allowable load mass

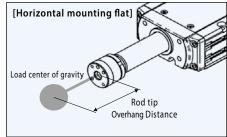

■ RCS4-RRA4


RCS4-RRA6

RCS4-RRA7

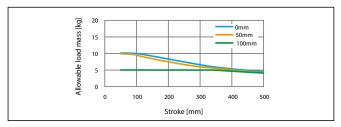


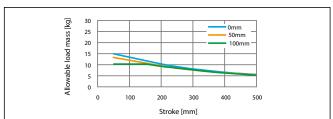

RCS4-RRA8



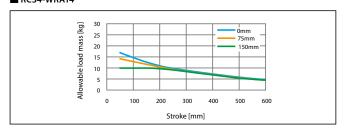
Selection Guideline for Allowable Radial Cylinder Load Mass

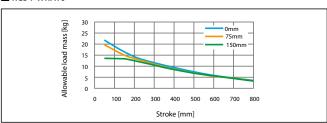
RCS4-WRA series Horizontal mounting Allowable load mass

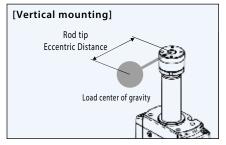




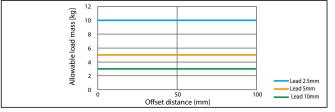
Offset=0mm/50mm/100mm Overhang=100mm or less


RCS4-WRA10

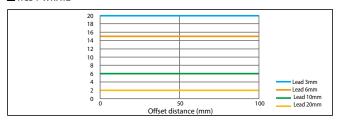



RCS4-WRA14

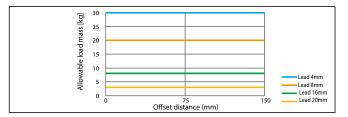
RCS4-WRA16

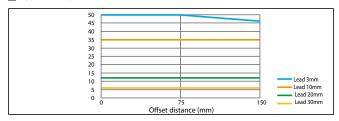


RCS4-WRA series Vertical mounting Allowable load mass



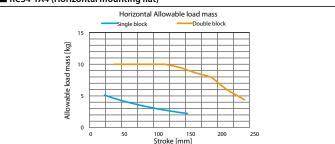
Offset=0mm/50mm/100mm Overhang=100mm or less


RCS4-WRA10

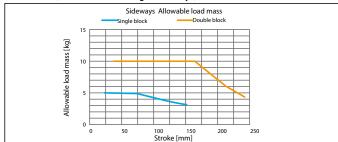

RCS4-WRA12

RCS4-WRA14

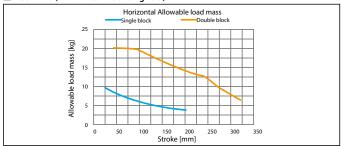
RCS4-WRA16



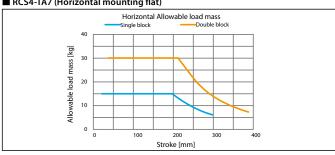
1-309 Technical Reference

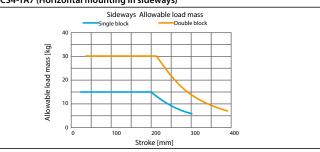

■ (Table type) RCS4 - TA series Horizontal mounting Allowable load mass

The allowable load mass of the table type decreases as the stroke becomes longer due to the mechanical limitation.

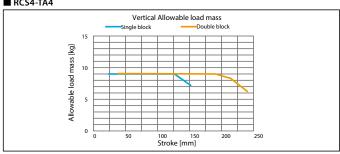

■ RCS4-TA4 (Horizontal mounting flat)


■ RCS4-TA4 (Horizontal mounting in sideways)

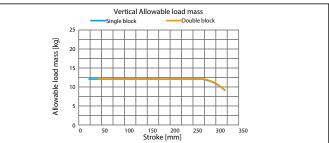

■ RCS4-TA6 (Horizontal mounting flatl)


■ RCS4-TA6 (Horizontal mounting in sideways)

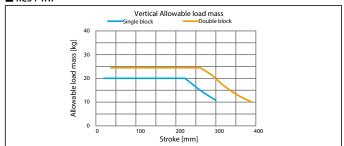
■ RCS4-TA7 (Horizontal mounting flat)


■ RCS4-TA7 (Horizontal mounting in sideways)

■ (Table type) RCS4 - TA series Horizontal mounting Allowable load mass


The allowable load mass of the table type decreases as the stroke becomes longer due to the mechanical limitation.

■ RCS4-TA4



■ RCS4-TA6

IAI

■ RCS4-TA7

Gripper Selection Method

Slide type

Step 1

Check necessary gripping force and transportable work part weight

Step 2

Check distance to gripping point

Step 3

Check external force applied to the finger attachment

Step 1

Check necessary gripping force and transportable work part weight

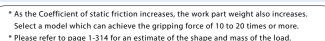
When gripping with frictional force, calculate the necessary gripping force as shown below.

1 Normal transportation

- F: Gripping force [N] Sum of push forces
- $\mu~:~$ Coefficient of static friction between the finger attachment and the work part
- m: Work part weight [kg]
- g: Gravitational acceleration [= 9.8m/s²]
- A condition in which a work part does not drop when the work part is

$$F\mu>W$$
 $F>\frac{mg}{\mu}$

 Necessary gripping force as the recommended safety factor of 2 in normal transportation:

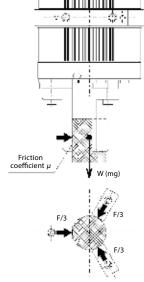

$$F > \frac{mg}{\mu} \times 2$$
 (safety factor)

• When the friction coefficient μ is between 0.1 and 0.2:

$$F > \frac{mg}{0.1 \sim 0.2} \times 2 = (10 \sim 20) \times mg$$

Normal work part transportation

Necessary gripping force 10 to 20 times the work part weight or more
Transportable work part weight One-tenth to one-twentieth or less of gripping force

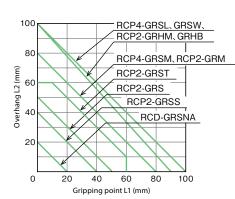


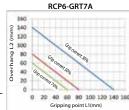
② When remarkable acceleration, deceleration and/or impact occur

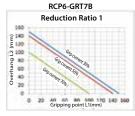
at work part transportation Stronger inertial force is applied to a work part by gravity. In this case, consider the sufficient safety rate when selecting a model.

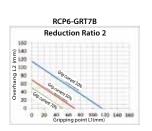
When remarkable acceleration, deceleration and/or impact occur

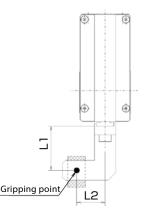
Necessary gripping force 30 to 50 times the work part weight or more
Transportable work part weight One-thirtieth to one-fiftieth or less of
gripping force

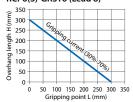


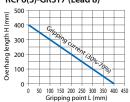

Step 2 Distance between finger attachment (claw) to gripping point


Keep the distance (L, H) from the finger (claw) mounting surface to the gripping point within the following range.


If such distance does not fall within such range, excessive moment applies to the finger sliding parts and internal mechanism and the service life may be affected.

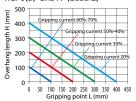

♦ For 2-finger gripper

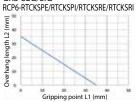


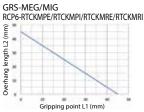


1-311 Technical Reference

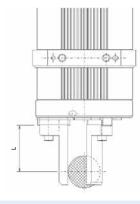

RCP6(S)-GRST6 (Lead 8)


RCP6(S)-GRST7 (Lead 8)

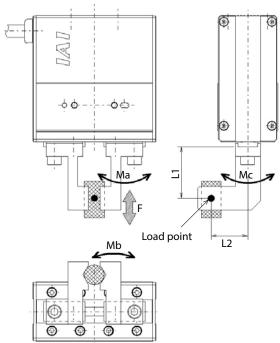

RCP6(S)-GRST6 (Lead 2)



RCP6(S)-GRST7 (Lead 2)


GRS-SEG/SIG

◆ For 3-finger gripper



Keep the fingers mounted to the actuator as small and light as possible, even if the distance to the gripping point falls within a restricted range. There are cases in which performance will be decreased or the guides will be adversely affected by inertial forces or bending moment if the finger is too long or too heavy.

Step 3 Checking external force applied to finger

1 Allowable vertical load

Confirm that the vertical load applied to each finger is the allowable load or less.

- * The above load point indicates the load position on the fingers.
 - The position varies depending on the type of load.
 - · Load due to grasping force: Grasping point
 - · Gravity load: Center of gravity position
 - · Inertial force during movement, centrifugal force during turning: Center of gravity position

The load moment is the total value calculated for each type of load.

* Finger weight and work part weight are also a part of the external force. Centrifugal force when the gripper rotated gripping a work part and inertial force due to acceleration or deceleration when moving are also the external force applied to the finger.

Gripper Selection Method

2 Allowable load moment

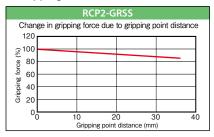
Calculate Ma and Mc using L1 and Mb using L2. Confirm that the moment applied to each finger is less than the maximum allowable load moment.

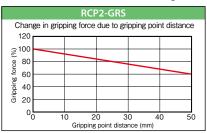
 Allowable external force when the moment load is applied to each claw is

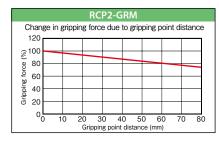
Allowable load F(N)> $\frac{\text{M (max. allowable moment (N•m))}}{\text{L (mm)}\times 10^{-3}}$

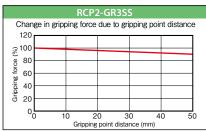
Calculate both the allowable loads F (N), L1 and L2. Confirm that the external force applied to finger is equal to or less than the calculated allowable loads F (N), L1 or L2, whichever is smaller.

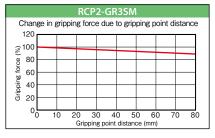
Model	Allowable	Max. allowable load moment (N·m)			
Model	vertical load F(N)	Ma	Mb	Мс	
RCD-GRSNA	14	0.04	0.04	0.07	
RCP4-GRSML	356	1.9	2.7	4.6	
RCP4-GRSLL	558	3.8	5.5	9.5	
RCP4-GRSWL	651	5.1	7.2	12.4	
RCP2-GRSS	60	0.5	0.5	1.5	
RCP2-GRS	253	6.3	6.3	7.0	
RCP2-GRM	253	6.3	6.3	8.3	
RCP2-GRHM	390	11.7	16.7	46.5	
RCP2-GRHB	502	15.7	26.4	59.8	
RCP2-GRST	275	2.93	2.93	5.0	
RCP2-GR3SS	169	3.8	3.8	3.0	
RCP2-GR3SM	253	6.3	6.3	5.7	
RCP6-GRT7A	598	3.6	3.6	10.2	
RCP6-GRT7B	898	7.5	7.5	15.3	
RCP(S)-GRST6	1080	48.5	69.3	103	
RCP(S)-GRST7	1400	115	115	229	
GRS-SEG/SIG	150	0.62	0.62	0.99	
GRS-MEG/MIG	240	1.08	1.08	2.64	

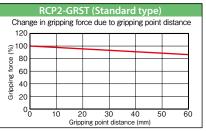

^{1.} The above allowable values show static values.

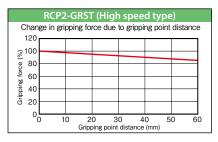

1-313 Technical Reference

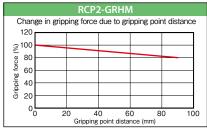

^{2.} The allowable values per finger are shown.

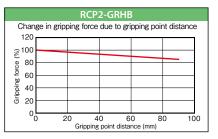

Approximate grip point distance and grip force

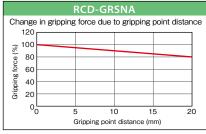

- 1. The graph shows the gripping force according to the gripping point distance when the maximum gripping force is taken as 100%.
- 2. The gripping point distance indicates the vertical distance from the finger attachment mounting surface to the gripping point.
- 3. Gripping force has variations due to individual differences. Please refer as a guide.

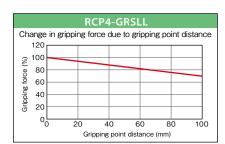


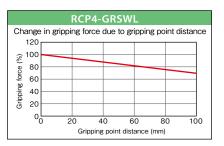


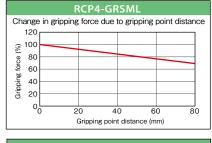


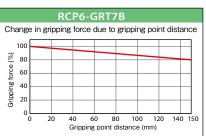


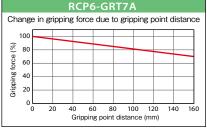


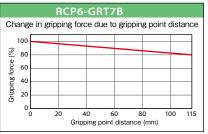












Gripper Selection Method

Rotary chuck RCP6-RTCK

Step 1

Check necessary gripping force and transportable workpiece weight

Step 2

Confirming the gripping point distance

Step 3

Checking external force applied to finger

Step 4

Checking moment of inertia

Step 1

Check necessary gripping force and transportable workpiece weight

When gripping with frictional force, calculate the necessary gripping force as shown below.

1 Normal transportation

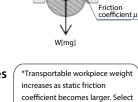
- F: Gripping force [N] Sum of push forces
- μ : Coefficient of static friction between the finger attachment and the work part
- m: Work part weight [kg]
- g: Gravitational acceleration [= 9.8m/s²]
- A condition in which a workpiece does not drop when the work part is:

$$F \mu > W$$
 $F > \frac{mg}{\mu}$

 Necessary gripping force that allows the recommended safety factor of 2 in normal transportation:

$$F > \frac{mg}{u} \times 2$$
 (Safety factor)

• When the friction coefficient μ is 0.1 - 0.2


$$F > \frac{mg}{0.1 \sim 0.2} \times 2 = (10 \sim 20) \times mg$$

Normal transport

Necessary gripping force

Weight of the transportable workpiece weight

10 to 20 times the workpiece weight or more Less than 1/10 to 1/20 of gripping force

DAID

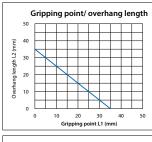
② When considerable acceleration, deceleration and/or impact occurs during transportation of the workpieces

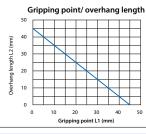
Larger moment is applied to the workpiece in addition to the gravity. In such a case, consider a sufficient safety factor when selecting a model.

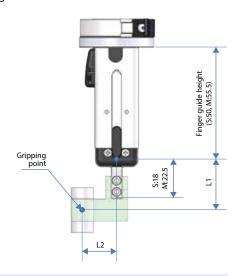
When large moment and impact are applied.

Necessary gripping force

Weight of the transportable workpiece


30 to 50 times the workpiece weight or more Less than 1/30 to 1/50 of gripping force *Transportable workpiece weight increases as static friction coefficient becomes larger. Select a model that has more than 10 to 20 times of the gripping force to the workpiece considering safety.


Step 2 Confirming the gripping point distance


Keep the distance (L1, L2) from the finger (claw) mounting surface to the gripping point within the range shown in the following diagram. If it exceeds the range, excessive moment applies to the finger sliding part and internal mechanism, causing adverse effects on the service life.

RCP6-RTCKSPE/ RTCKSPI/ RTCKSRE/ RTCKSRI

Keep the finger attachment as small and light as possible, even if the distance to the gripping point distance falls within the limited range. If the finger is too long or too heavy, performance may be decreased or the guides may damaged due to inertial forces or bending moment.

Checking external force applied to finger

1 Allowable vertical load

Confirm that the vertical load applied to each finger is less than the allowable load.

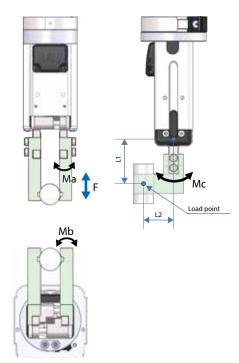
2 Allowable load moment

Calculate Ma and Mc using L1 and Mb using L2. Confirm that the moment applied to each finger is less than the maximum allowable load moment.

• Allowable external force when moment load is applied to each claw:

M (max. allowable moment (N·m)) Allowable load F(N) >

Calculate the allowable loads F (N) for both of L1 and L2.


Confirm that the external force applied to finger is less than the calculated allowable load F (N) (L1 or L2, whichever is smaller).

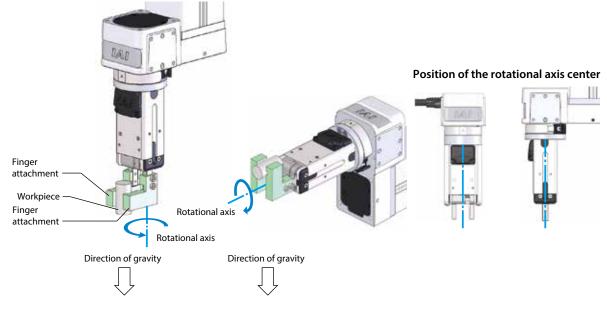
Model	Allowable vertical load F(N)	Max. allowable load moment (N·m)		
		Ma	Mb	Мс
RCP6-RTCKSPE/RTCKSPI RTCKSRE/RTCKSRI	150	0.62	0.62	0.99
RCP6-RTCKMPE/RTCKMPI RTCKMRE/RTCKMRI	240	1.08	1.08	2.64

(Note) The above allowable values indicate the load position on the fingers. (Note) The allowable values per finger are shown.

*Finger weight and work part weight are also a part of the external force.

Centrifugal force when the gripper rotated gripping a work part and inertial force due to acceleration or deceleration when moving are also the external force applied to the finger.

*The above load point indicates the load position on the fingers.


The position varies depending on the type of load. · Load due to gripping force: Gripping point

- · Gravity load: Center of gravity position
- · Inertial force during moving, centrifugal force during turning and center of gravity position

The load moment is the total value calculated for each type of load.

Checking the allowable moment of inertia

Calculate the moment of inertia of the transporting object such as workpiece, and confirm that it is under the allowable moment of inertia. Refer to the "Calculation method of moment of inertia for typical shape" on P1-336.

Allowable moment of inertia

Туре	Allowable moment of inertial (kg·m²)	
RCP6-RTCKSPE/RTCKSPI/RTCKSRE/RTCKSRI	2.30×10 ⁻⁴	
RCP6-RTCKMPE/RTCKMPI/RTCKMRE/RTCKMRI	3.60×10 ⁻⁴	

Gripper Selection Method

Gripper Lever Type

Step 1

Check necessary gripping force and transportable work part weight

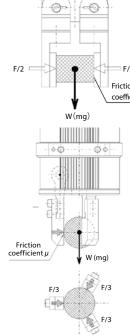
Step 2

Check moment of inertia of the finger attachment (claw)

Check external force applied to the finger

Step 1

Check necessary gripping force and transportable work part weight

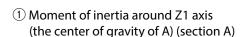

Like Step 1 of Slide type, calculate the necessary gripping force and confirm that the gripping force meets conditions.

Normal work transportation

▶ 10 to 20 times the work part weight or more Necessary gripping force Transportable work part weight One-tenth to one-twentieth or less of gripping force

When remarkable acceleration, deceleration and/or impact occur

- Necessary gripping force
- ▶ 30 to 50 times the work part weight or more
- Transportable work part weight Done-thirtieth to one-fiftieth or less of gripping force



Step 3

Step 2

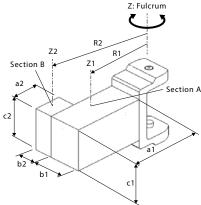
Check moment of inertia of the finger attachment (claw)

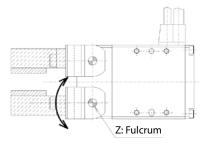
Confirm that all moments of inertia around the Z axis (fulcrum) of the finger attachment (claw) fall within an allowable area. Depending on the configuration and/or shape of the finger, divide it into several elements when calculating. For your reference, an example of calculation by dividing into two elements is shown below.

m1: Weight of A [kg]

a1, b1, c1: Dimension of Section A [mm]

m1 [kg] = $a1 \times b1 \times c1 \times specific gravity \times 10^{-c}$

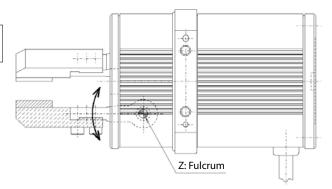

$$IZ1 (kg.m2) = \frac{m1 (a12+b12) \times 10^{-6}}{12}$$


② Moment of inertia around the Z2 axis (the center of gravity of B) (section B)

> m2: Weight of B [kg] a2, b2, c2: Dimension of Section B [mm]

m2 [kg] = $a2 \times b2 \times c2 \times specific gravity \times 10^{-6}$

$$IZ2(kg.m^2) = \frac{m2(a2^2+b2^2) \times 10^{-6}}{12}$$


③ All moments of inertia around the Z axis (fulcrum)

R1: Distance from the center of gravity of A to the finger opening/closing fulcrum [mm]

R2: Distance from the center of gravity of B to the finger [mm]

$$I (kg.m2) = (IZ1+m1R12×10-6) + (IZ2+m2R22×10-6)$$

Model	Allowable moment of inertia [kg•m²]	Weight (Reference) [kg]
RCD-GRLS	1.5×10 ₋₄	0.07
RCP4-GRLM	6.0×10 ^{-⁴}	0.15
RCP4-GRLL	1.3×10 ⁻³	0.25
RCP4-GRLW	3.0×10 ⁻³	0.4
RCP2-GR3LS	3.0×10 ⁻⁴	0.15
RCP2-GR3LM	9.0×10 ⁻⁴	0.5

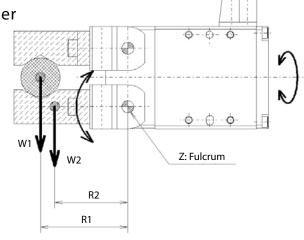
Step 3 Check external force applied to the finger

1 Allowable load torque

Confirm that the load torque applied to the finger is the maximum allowable load torque or less.

The load torque is calculated by finger and work part weight as stated below.

m1: Work part weight


R1 : Distance from the center of gravity of work part to the finger opening/ closing fulcrum

m2: Claw weight

R2: Distance from the center of gravity of the claw to the finger opening/closing fulcrum

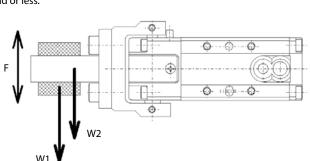
g : gravitational acceleration (9.8 m / s²)

$$T = (W1 \times R1 \times 10^{-3}) + (W2 \times R2 \times 10^{-3}) + (\text{other load torque})$$

= $(m1g \times R1 \times 10^{-3}) + (m2g \times R2 \times 10^{-3}) + (\text{other load torque})$

* Centrifugal force when the gripper rotated gripping a work part and inertial force due to acceleration or deceleration when moving horizontally are also the load
torque applied to the finger.

If applicable, confirm that the total torque including the torque above is the maximum allowable load torque or less.


Model	Maximum allowable load torque T [N•m]
RCP2-GRLS	0.05
RCP4-GRLM	0.35
RCP4-GRLL	0.70
RCP4-GRLW	1.50
RCP2-GR3LS	0.15
RCP2-GR3LM	0.4

2 Allowable thrust load

Confirm that the thrust load of finger opening/closing the axis is the allowable load or less.

F =W1+W2+(other thrust load)
=m1g+m2g+(other thrust load)

Model	Allowable thrust load F [N]
RCP2-GRLS	15
RCP4-GRLM	20
RCP4-GRLL	25
RCP4-GRLW	30
RCP2-GR3LS	-
RCP2-GR3LM	_

R₂

R1

Z: Fulcrum

Rotary Selection Method

When selecting a rotation axis, it is necessary to calculate the moment of inertia of the condition to be used and to use a model that allows the moment of inertia.

Please calculate the moment of inertia of the work to be used and the mounting jig by calculating the moment of inertia of the representative shape shown below. (Please refer to the correlation diagram of the shape and mass of the attached item is posted on the next page.)

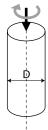
In addition to the allowable moment of inertia, it is also necessary to check the load moment. Please select the model that can tolerate the moment generated from the shape and size.

■ Inertial Moment

Inertial moment represents the amount of inertia in a rotational motion, and corresponds to weight for linear motion.

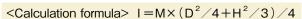
The greater the inertial moment, the more difficult it is for that object to move and stop.

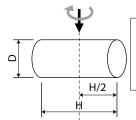
Inertial moment differs with the weight and shape of the object, but refer to the calculation formula in the typical example illustrated


The allowable inertial moment value for a ROBO Rotary is shown as load inertia.

A ROBO Rotary can be used if the calculated inertial moment is less than its load inertia.

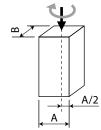
Calculating the Moment of Inertia for Typical Shapes


- - (1) Moment of inertia of cylinder 1
 - * The same formula can be applied irrespective of the height of the cylinder (even on a circular plate)


<Calculation formula $> I = M \times D^2 / 8$

Moment of inertia of cylinder: I (kg \cdot m²) Mass of cylinder: M (unit kg) Diameter of cylinder: D (m)

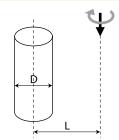
(2) Moment of inertia of cylinder 2



Moment of inertia of cylinder: I (kg \cdot m²) Mass of cylinder: M (unit kg) Diameter of cylinder: D (m) Cylinder length: H (m)

- (3) Moment of inertia of prisms 1
- * The same formula can be applied irrespective of the height of the cylinder (even on a circular plate)

<Calculation formula $> I = M \times (A^2 + B^2) / 12$

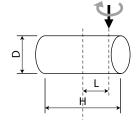


Moment of inertia of prisms: I (kg · m2) One side of a rectangular column: A (m) One side of the rectangular column: B (m)

1. When the rotation axis passes through the center of the object \(\) 2. When the center of the object is offset from the rotation axis

- (4) Moment of inertia of cylinder 3
- * The same formula can be applied irrespective of the height of the cylinder (even on a circular plate)

<Calculation formula $> I = M \times D^2 / 8 + M \times L^2$



Moment of inertia of cylinder: I (kg \cdot m²) Mass of cylinder: M (unit kg) Diameter of cylinder: D (m)

Distance from rotation axis to center: L (m)

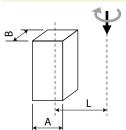
(5) Moment of inertia of cylinder 4

<Calculation formula $> I = M \times (D^2/4 + H^2/3)/4 + M \times L^2$

Moment of inertia of cylinder: I (kg \cdot m²)

Mass of cylinder: M (unit kg)

Diameter of cylinder: D (m)


Cylinder length: H (m)

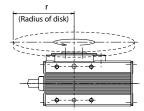
Distance from rotation axis to center: L (m)

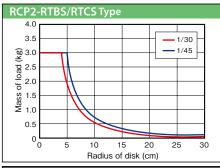
(6) Moment of inertia of prisms 2

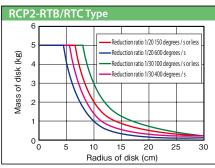
* The same formula can be applied irrespective of the height of the cylinder (even on a circular plate)

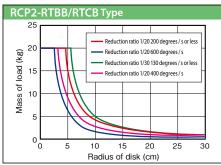
<Calculation formula $> I = M \times (A^2 + B^2) / 12 + M \times L^2$

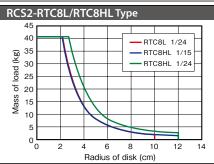
Moment of inertia of prisms: I (kg · m²)

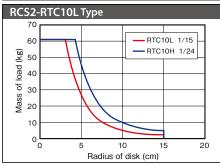

Mass of prism: M (kg)

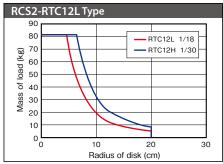

One side of a rectangular column: A (m) One side of the rectangular column: B (m)

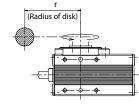

Distance from rotation axis to center: L (m)

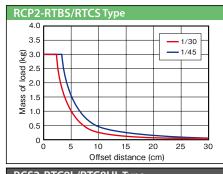

■ Estimate of load shape and mass

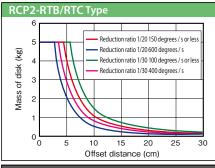

A. In the case of disc shaped loads centered on the output shaft

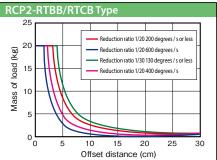


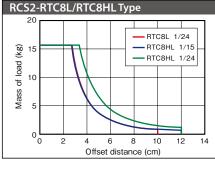


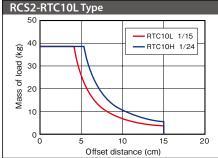


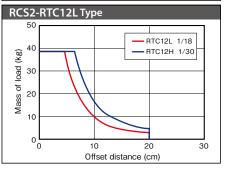







B. In the case of a load that is offset from the center of the output shaft



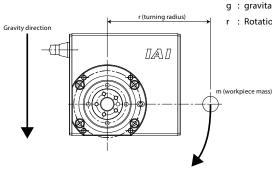


Rotary Selection Method

■ Calculation method for sideways installation

When using the rotary part of the rotary perpendicular to the floor surface, please check whether it can be used by the following formula.

1. Calculate the differential torque. * The difference torque is the difference between the maximum torque of the main unit and the torque calculated in ①.


$$\Delta T = (Tmax - Wg) \cdots 2$$

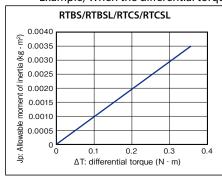
 $Wg = mgr [N \cdot m] \cdots 1$

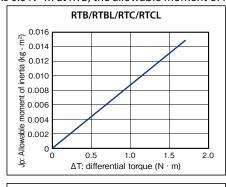
Tmax: Output shaft maximum torque [N·m]

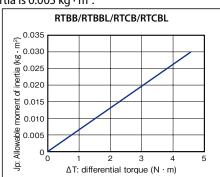
g : gravitational acceleration [m/s²]

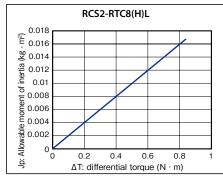
m: Work mass [kg]

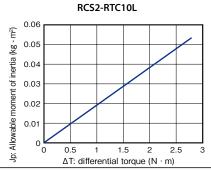
Model	Reduction ratio	Maximum torque
RTBS, RTBSL, RTCS, RTCSL	1/30	0.24
RIDS, RIDSL, RICS, RICSL	1/45	0.36
RTB, RTBL, RTC, RTCL	1/20	1.1
NID, NIDL, NIC, NICL	1/30	1.7
RTBB, RTBBL, RTCB, RTCBL	1/20	3.0
RIDD, RIDDL, RICD, RICDL	1/30	4.6
RTC8L	1/24	0.55
RTC8HL	1/15	0.53
RICOTL	1/24	0.85
RTC10L	1/15	1.7
KICIOL	1/24	2.8
RTC12L	1/18	5.2
RICIZL	1/30	8.6

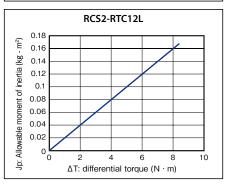

2. Check the difference torque to see if the desired model meets the torque.


 $\Delta T \leq 0$ ····· Unusable. It is necessary to change to a high torque model or reduce the mass and turning radius.


 $\Delta T > 0$ ····· Available. Proceed to the next confirmation.


3. Calculate the allowable moment of inertia (Jp) when installing in sideways from the differential torque (ΔT) calculated in \hat{Q} . Since the allowable moment of inertia varies depending on the model, calculate from the graph below. There is no difference depending on the speed reduction ratio of each model.


Example) When the differential torque is 0.6 N \cdot m at RTB, the allowable moment of inertia is 0.005 kg \cdot m².



4. Determination of allowable moment of inertia

It can be used if the calculated allowable moment of inertia (Jp) is larger than the moment of inertia (Jw) of the workpiece.

Allowable moment of inertia Jp> Moment of inertia Jw · · · · · · It is available.

Allowable moment of inertia $Jp \le moment$ of inertia $Jw \cdot \cdot \cdot \cdot \cdot lt$ is unusable.

(It is necessary to change to a high torque model or reduce the mass and turning radius.)

Load Moment

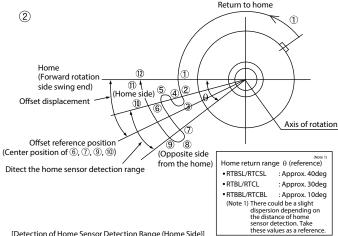
If the inertial moment is a controllable (electrical) guide, the load moment is a guide for the limit to forced (mechanical) use.

Using the actuator body end of the output shaft mounting base as the reference position for moment, check whether the load moment exerted on the output axis is within the load moment tolerances in the catalog.

Use in excess of the allowable load moment may cause damage and shortened service life.

Thrust load Load Moment

■ Notes on the origin of the RCP 2 rotary type


There are two types of "330 degree type" and "360 degree type" with different operating ranges for rotary type. Both have the same home position, but please be careful about the following points when you change the home return operation and the operation (rotation) direction.

		330 degree type	360 degree type		
Home return method (standard specification) Reverse home specification (reverse rotation specification)		It rotates counterclockwise from the current position, pushes to the stopper, and reverses and becomes home. (See ① below)	It rotates counterclockwise from the current position, it becomes the home after confirming the position by reciprocating the home sensor detection range after sensing the sensor. (See ② below)		
		When returning to the home position, rotate clockwise from the current position, push to the stopper reverses and becomes home. In addition, the position of the stopper is different from the standard specification. Therefore, please note that the standard specification can not be reversed to the home origin later.	When returning to the home position, it rotates clockwise from the current position, it is the home after confirming the position by reciprocating the home detection range after sensing the sensor. Since there is no stopper, it is possible to change the standard specification later to the reverse home specification later.		
Home	Small size	within ±0.05°	within ±0.05°		
return	Medium size	within ±0.01°	within ±0.05°		
accuracy Large size		within ±0.01°	within ±0.03°		

330 degree rotation specification

Operating range (330 degrees) (1) Return to hon (Forward rotation side swing end) Offset displacement Mechanical stopper Axis of rotation

Multi-turn specification RTBSL/RTCSL, RTBL/RTCL, RTBBL/RTCBL

[Detection of Home Sensor Detection Range (Home Side)]

- ① Home return start (search for the Home sensor detection range) ② Home sensor detection range (Home side) detected (B contact: falling signal or detection of signal OFF)
- Inversion (Search for non-detection range of Home sensor)
- $\stackrel{ ext{\textcircled{4}}}{ ext{\textcircled{4}}}$ Home sensor non-detection range (Detects the Home (rise of signal at B contact or detection of signal ON)
- [Detection of four points (6, 7, 9, 0) of the origin sensor detection range. Set the center position of (6, 7, 9, 0) to (6) Home sensor detection range (Home side) detected (B contact: falling signal or signal OFF detected), move to the
- home sensor non-detection range (anti-origin side)
- $\textcircled{7} \ \, \text{Detection of home sensor non-detection range (The opposite side from home) (at B Contact: signal rise or signal on the opposite side from home) and the opposite side from home (at B Contact: signal rise or signal on the opposite side from home) and the opposite side from home (at B Contact: signal rise or signal on the opposite side from home) and the opposite side from home (at B Contact: signal rise or signal on the opposite side from home) and the opposite side from home (at B Contact: signal rise or signal on the opposite side from home) and the opposite side from home (at B Contact: signal rise or signal on the opposite side from home) and the opposite side from home (at B Contact: signal rise or signal on the opposite side from home) and the opposite side from home (at B Contact: signal rise or signal on the opposite side from home) and the opposite side from home (at B Contact: signal rise or signal r$
- \$ Move to the detection range of the inversion and origin (The opposite side from the home)
- 9 Ditect the home sensor detection range (The opposite side from the home)(At B contact: falling edge of signal or detection of signal OFF), and move to the home sensor non-detection range (the home side)
- (i) Ditect home sensor Detects non-detection range (home side) (B contact: rising of signal or detection of signal ON) [Offset Movement Operation]
 ① Determine the offset reference position from the center of ⑥, ⑦, ⑨, ⑩.
- The position moved from the offset reference position by the offset movement amount is the home. Move from the current position to the home.

Rotary Selection Method

■ Notice on selection of rotary actuator

Please note that it can not be operated in the index mode when used in combination with the following table. *1

Co	ombinations that can not operate in index mo	ode				
Actuator	Encoder	Controller				
RCP2(CR)(W)-RTBBL						
RCP2(CR)(W)-RTBL		PCON-CB/CGB PCON-PLB/POB				
RCP2(CR)(W)-RTBSL		MCON-C/CG				
RCP2(CR)(W)-RTCBL	ı	* 2 The above pulse train control				
RCP2(CR) (W)-RTCL		MECHATROLINK III				
RCP2(CR)(W)-RTCSL		SSCNET				
RCS2-RTC10L						
RCS2-RTC12L						
RCS2-RTC8HL	1	SCON-CB/CGB				
RCS2-RTC8L		* 2 The above pulse train control				
RS All models		MECHATROLINK III				
DD/DDA (CR) (W) All models	AI					
RCS2-RTC10L						
RCS2-RTC12L						
RCS2-RTC8HL	Α	SCON CD/CCD				
RCS2-RTC8L		SCON-CB/CGB				
RS All models						
DD/DDA (CR) (W) All models	AM					

^{* 1} Operation in normal mode is possible. However, when SSCNET is selected, since home return operation is required, please do not select absolute specification (including simple absolute). For DD / DDA, please select the encoder type "AM" (multi revolution absolute type).

1-323 Technical Reference

^{* 2} The network that can be selected differs depending on the controller.

Hollow Type Rotary (RCP6-RTFML) Selection Method

When using, it is necessary to meet the following conditions.

Step 1

Checking moment of inertia.

- (1) In case load torque is not applied
- (2) In case load torque is applied

*The checking method is different depending on whether or not a load torque is applied.

(1) When load torque is not applied

When used as shown below, load torque by gravity is not applied. Calculate only the moment of inertia of the load and confirm that it is under the allowable inertial moment.

Calculate the tools and moment of inertia, referring to the "Calculation method for moment of inertia of typical shapes" on P1-336.

Ex. 1

Center of gravity of the load:
Center of output shaft
Mounting of the unit:
Output shaft upward or downward

Ex. 2

Center of gravity of the load:
Center of output shaft
Mounting of the unit:
Output shaft side mounted

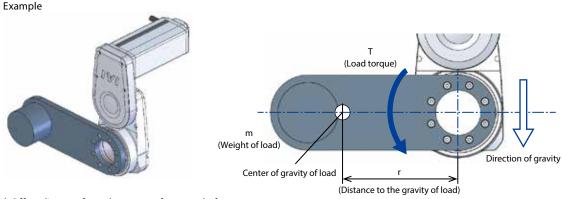
Ex. 3

Center of gravity of the load:

Offset from the center of output shaft
Mounting of the unit:

Output shaft upward or downward

[Allowable moment of inertia by speed, acceleration / deceleration]


(unit: kg·m²)

acceleration, acce.	eration,	(unit. kg·iii)
Speed	Acceleration/	/Deceleration
(degree/s)	0.3G	0.7G
0	0.080	0.054
100	0.080	0.054
200	0.072	0.036
300	0.063	0.032
400	0.059	0.032
500	0.050	0.027
600	0.041	0.018
700	0.018	0.009
800	0.014	0.005

Hollow Type Rotary (RCP6-RTFML) Selection Method

(2) In case load torque is applied

When used as shown below, load torque by gravity is applied and allowable moment of inertia is decreased. First, calculate the load torque to obtain calibrated moment of inertia. Then, calculate the moment of inertia and confirm that it is under the calibrated moment of inertia. A calculation example is shown based on the illustrations below.

Load: Offset distance from the center of output shaft Mounting of the main unit: Output shaft side mounted

(Step 1) Calculation of load torque T

 $T = mgr \times 10^{-3} [N \cdot m]$

m: Weight of the transporting object [kg]

g: Acceleration of gravity [m/s²]

r: Center of gravity of the transporting object [mm]

(Step 2) Calculating calibration coefficient Cj of allowable moment of inertia

$$Cj + \frac{T_{max} - T}{T_{max}}$$

Tmax: Output torque [N·m]

(Output torque by speed Tmax)

(unit: N·m)

Speed (degree/s)	Output torque
0	5.2
100	5.2
200	4.3
300	3.7
400	3.0
500	2.6
600	2.1
700	1.7
800	1.4

1-325 Technical Reference

^{*} Refer to the table below for output torque, Tmax.

(Step 3) Calculating calibrated allowable moment of inertia Jt1.

 $J_{t1} = Jmax \times Cj [kg \cdot m^2]$

Jmax: Allowable moment of inertia [kg·m²]

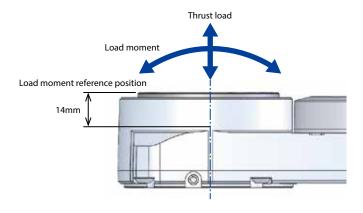
* Refer to the table below for allowable moment of inertia Jmax.

[Allowable inertial moment by speed and acceleration Jmax]

(unit: kg·m²)

Speed	Acceleration	/deceleration
(degree/s)	0.3G	0.7G
0	0.080	0.054
100	0.080	0.054
200	0.072	0.036
300	0.063	0.032
400	0.059	0.032
500	0.050	0.027
600	0.041	0.018
700	0.018	0.009
800	0.014	0.005

(Step 4) Checking inertial moment of transporting object


Calculate moment of inertia of the load, referring to the "Calculation method of inertial moment of typical shapes" on P1-336, and confirm that it is under the calibrated allowable moment of inertia obtained in Step 3.

Step 2

Checking load moment and thrust load

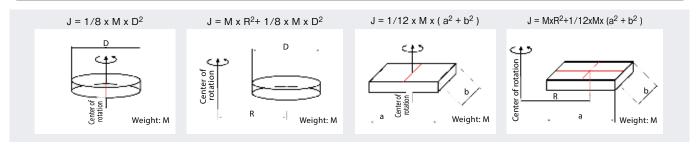
Confirm that the load moment and thrust load applied to the output shaft are less than the allowable values. Use with excess values causes failures or reduced service life.

ltem	Load / moment
Dynamic allowable thrust load	600N
Dynamic allowable load moment	30N·m

DD Motor Selection Method

Selection condition

Please confirm the following contents as to whether this product can be used under customer's desired conditions.


1 Check load condition

For the following three points, confirm that the conditions actually used are below the allowable value of the product.

① Thrust load	Total load of items to be mounted on actuator
② Load moment load	Total load moment of items to be mounted on actuator
③ Load inertia	Load inertia of the object to be mounted on the actuator

To calculate the load condition, calculate the load inertia of the object to be mounted on the actuator and check with the DD motor selection software. Then, we will post a load inertia calculation formula of a typical shape, so please refer to it.

DD motor selection software download address http://www.iai-robot.co.jp/download/index.html

2 Confirm operating condition

From the conditions such as actual distance, speed, acceleration, deceleration, and stop time, check whether the specifications of DD motor can be used under operating conditions.

For calculation of operating conditions, please use DD motor selection software.

DD motor selection software download address http://www.iai-robot.co.jp/download/index.html

3 Estimated travel time

The travel time varies depending on load inertia. Please confirm the standard of travel time from the table below.

* Since the figures in the table are approximate, it is not a guarantee of traveling time.

DD-LT18/DDA-LT18C

Load inertia lower limit [kg·m²]	0	0.005	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09	0.1	0.2	0.3	0.4	0.5
Load inertia upper limit [kg·m²]	0.005	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09	0.1	0.2	0.3	0.4	0.5	0.6
45 degree travel time [sec]	0.09	0.10	0.11	0.12	0.13	0.14	0.15	0.17	0.19	0.21	0.23	0.39	0.62	0.70	0.87	1.11
90 degree movement time [sec]	0.12	0.12	0.14	0.16	0.17	0.18	0.20	0.22	0.24	0.26	0.29	0.48	0.73	0.83	1.02	1.23
180 degree movement time [sec]	0.17	0.17	0.19	0.21	0.23	0.24	0.27	0.29	0.32	0.35	0.37	0.60	0.89	1.01	1.22	1.42
270 degree movement time [sec]	0.22	0.22	0.24	0.26	0.27	0.29	0.32	0.35	0.38	0.41	0.44	0.69	1.00	1.14	1.36	1.68

(Note) The time in the above table is the time from receipt of the movement command until convergence to the positioning width 0.028 degrees (about 100 angular seconds).

DD-LH18/DDA-LH18C

Load inertia lower limit [kg·m ²]	0	0.005	0.01	0.02	0.02	0.03	0.04	0.06	0.08	0.10	0.15	0.2	0.3	0.4	0.6	0.8	1.0	1.2	1.4
Load inertia upper limit [kg·m ²]	0.005	0.01	0.015	0.02	0.03	0.04	0.06	0.08	0.1	0.15	0.2	0.3	0.4	0.6	0.8	1	1.2	1.4	1.8
45 degree travel time [sec]	0.098	0.096	0.096	0.097	0.099	0.104	0.113	0.12	0.126	0.14	0.157	0.207	0.257	0.352	0.447	0.53	0.629	0.795	0.875
90 degree movement time [sec]	0.129	0.128	0.127	0.128	0.131	0.136	0.144	0.153	0.163	0.184	0.208	0.268	0.329	0.44	0.549	0.646	0.758	0.941	1.035
180 degree movement time [sec]	0.192	0.19	0.19	0.191	0.193	0.199	0.207	0.215	0.225	0.249	0.279	0.354	0.428	0.562	0.692	0.806	0.933	1.133	1.257
270 degree movement time [sec]	0.254	0.252	0.252	0.253	0.256	0.262	0.27	0.278	0.288	0.312	0.341	0.42	0.504	0.655	0.8	0.925	1.064	1.274	1.415
(4) - 1 = 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1					1 4														

(Note) The time in the above table is the time from receipt of the movement command until convergence to the positioning width 0.028 degrees (about 100 angular seconds)

Notes

Operation type

Two types of operation can be selected for this product depending on usage conditions.

Please check the features and caution points of each type before use.

In the case of 20 bits in ()

Operation type	Index abs	olute type	Multi-turn a	bsolute type			
Controller type	SCON-CB(*5)	XSEL(*1)	SCON-CB XSEL(*1)				
Operating range	0~359.999° Up to ± 9999° (± 25						
Maximum movement amount of one movement command	360°	0° 180°(*2) The operating range					
Infinite rotation action	Possib	le (*3)	Impossible				
Home return operation	No r	need	Unnecessary (*4)				
Absolute battery	No r	need	nece	ssary			

- (*1) High resolution specification can not be connected to XSEL-P / Q.
- (*2) When moving the index absolute type of XSEL 180 ° or more from the current position, it moves to the target position by rotating in the direction of less movement amount.

 Please note that the direction of rotation changes depending on the current position and amount of movement.

 To specify the moving direction, use SCON CB.
- (*3) The index absolute type can rotate indefinitely in the same direction, however since one movement amount of XSEL is 180 degrees maximum, it can not rotate continuously in the same direction without stopping like a motor.

 Please use SCON-CB when you want to perform continuous rotation.
- (*4) Multiple revolution absolute requires home return when initial setting or when absolute battery is replaced.
- (*5) When SCON-CB index absolute type and pulse string control is used, it is necessary to change the parameters. For details, please refer to the instruction manual.

Controller

- Although the motor output of the DD motor is 200 W, the external dimension of the SCON CB controller is 400 W spec. (Refer to P7-196 for outer dimensions of SCON-CB.)
- ullet When operating the DD motor with SCON CB, one regenerative resistor unit is required for LT18 \Box and two LH 18 \Box .
- When operating the DD motor with the XSEL controller, the regenerative resistance unit is required as follows.

Number of DD motors		1	2	3	4	5	6	7	8	
Regereneative resistor	LT18□	1		2		;	3	4		
units	LH18□	2	4	(Can not connect)						

- When connecting multiple DD motors to the XSEL controller, up to 8 LT18 types and up to 2 LH 18 types are connected.
- When operating the DD motor with SCON CB, please note that it can not be connected to the robot cylinder gateway function of the XSEL controller.
- For LT18 type, calculate the power capacity as 600W single phase specification 200W, three phase specification 200W for LH18 type, single phase specification 1200W · three phase specification 600W.

RS Series Selection Method

When selecting a model, decide from the following points, taking into consideration the operation, the load of loads to be installed, etc.

Speed and load inertia of each model

For the required operation speed by the use method, the load inertia is obtained from the weight and the shape such as the arm chuck to attach to the spindle tip, and the value indicated by the catalog load inertia, please use the model that is larger than this load inertia demanded.

Model	RS-30W		RS-60W	
Reduction ratio	1/50	1/100	1/50	1/100
Rated speed (degrees / S)	360	180	360	180
Load inertia kg ⋅ m² (kgf ⋅ cm - S²)	0.058 (0.59)	0.23 (2.35)	0.11 (1.1)	0.42 (4.3)

Motor load capacity and load inertia

The load inertia is determined by the intrinsic value of the object determined by mass and shape, $J = \int r^2 dM$, and those with simple shape are represented by $J = MK^2$.

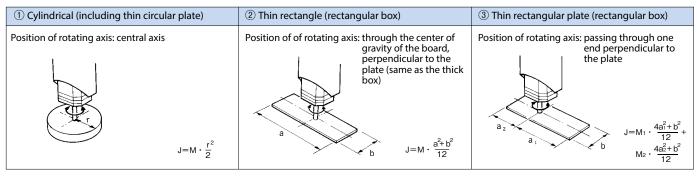
The RS series (rotary actuator) is an actuator that provides rotational power to the loading, resulting in rotational motion of the loaded object. The torque is used to represent the rotational force, and the torque is also called the moment of force. When the linear motion is compared with the rotational motion, the force is applied to the mass (inertia), and the acceleration is generated in the direction of the force.

Q: Acceleration cm/s²

In the rotational force, the relationship between this force, mass and acceleration becomes torque, load inertia, angular acceleration. When torque is applied to an object with load inertia, angular acceleration is generated. Therefore, the load capacity is expressed in rotary with this load inertia.

 $T = J \cdot \omega$ T: Torque $N \cdot m$ (kgf·cm)

 $J \quad : Load \ inertia \qquad \qquad kg \cdot m^2 \ \left(kgf \cdot cm \text{-} s^2 \right)$

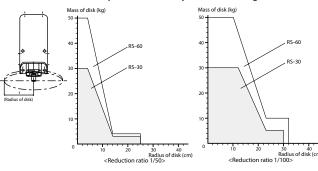

ω: Angular acceleration rad rad/s²

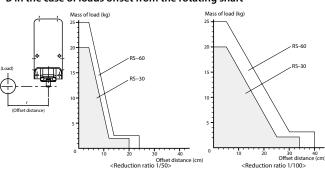
Calculation method of load inertia of typical shape

Calculation of Load Inertia J / J: Load inertia kg/m²

M: Load weight kg

r, a, a₁, A₂, B: Distance m



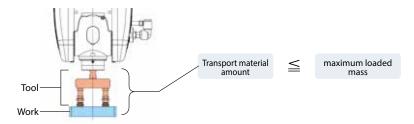

●Reference for model selection

Depending on the state of the load of the load on the rotary shaft output shaft, select the model based on the following chart as a reference.

A In the case of disc shaped load directly under rotating shaft

B In the case of loads offset from the rotating shaft

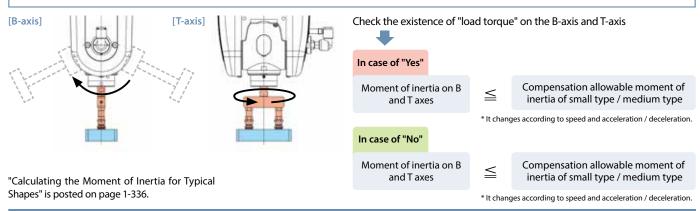
MEMO



Wrist Unit (WU) Selection method

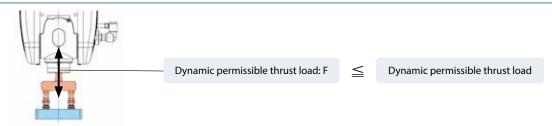
Follow steps 1-4 to confirm. Please check the following page for the selection example.

Step 1


Check the amount of transported material

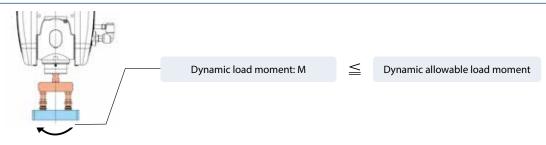
Step 2

Check moment of inertia


If the load torque is applied to the B-axis or T-axis, the allowable moment of inertia of the wrist unit decreases. First, calculate the load torque and obtain the allowable moment of inertia of compensation.

Step 3

Check dynamic allowable thrust load


Make sure that the thrust load (the load in the vertical direction to the mounting surface) is less than the dynamic permissible thrust load.

Step 4

Check the dynamic allowable load moment

Make sure that the load moment is less than the dynamic allowable moment.

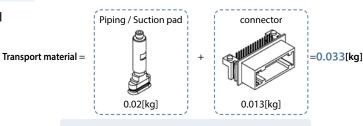
1-331 Technical Reference

Wrist unit (WU) Model selection Example

The model selection example is posted based on application examples "Inspection Device for Automotive Connector" (P1-76).

Inspection Device for Automotive Connector Inspection camera Suction pad Wrist unit Connector (Work)

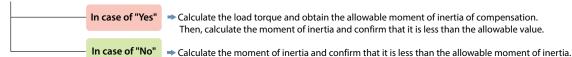
[Overview]

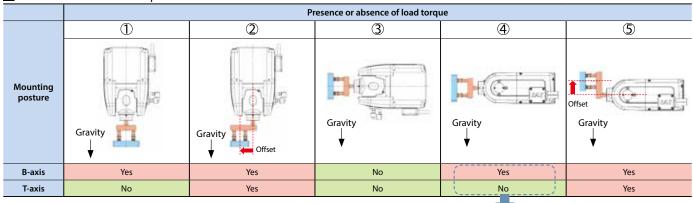

It is a device to inspect the exterior of the automobile connector with a camera.

Rotate the connector with the wrist unit and inspect from various angles.

Step 1 Check the amount of transported material

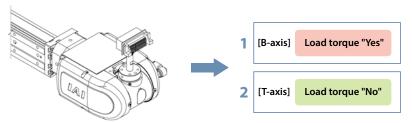
- < Amount of transport material
- = Mass of tool + Mass of work piece>


	Maximum loaded mass
WU-S: Small type	1kg
WU-M: Medium type	2kg


Both WU-S (small) and WU-M (medium) can be used

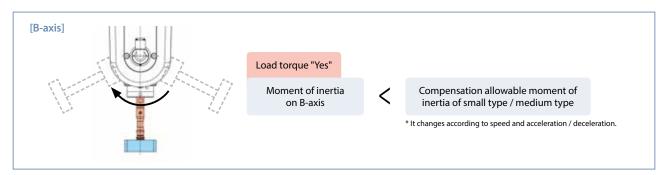
Step 2 Check moment of inertia

Check the existence of "load torque" on the B-axis and T-axis



Conditions under load torque

Inspection device for automotive connector [Case study]


Because this case "Inspection device for automotive connector" is applied to it, we calculate and confirm check about B-axis and T-axis as described below.

Wrist unit (WU) Model selection Example

■ 1. Check B-axis

(1) Calculation of load torque Tl

 T_{IT} : Load torque by tool weight $[N \cdot m]$ T_{IW} : Load torque by weight of work $[N \cdot m]$ m_T: Mass of tool [kg]

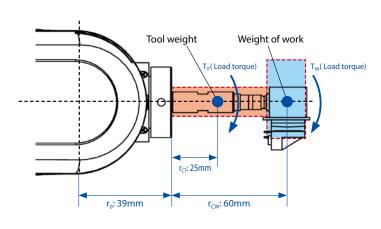
mw: Mass of work [kg]

g: Gravitational acceleration[m/s²]

r₀: Mounting surface distance[mm]

 r_{CT} : Position of tool center of gravity [mm]

r_{cw}: Position of workpiece center of gravity [mm]



 $= m_T \cdot g(r_0 + r_{CT}) \times 10^{-3} + m_W \cdot g(r_0 + r_{CW}) \times 10^{-3}$

 $=0.02\times9.8\times(39+25)\times10^{-3}+0.013\times9.8\times(39+60)\times10^{-3}$

=0.025[Nm]

Calculation result

(2) Calculation of allowable moment of inertia compensation coefficient CJ

T_{max}: Output torque (Right table) [Nm] T_i: Calculation result of load torque (1)

[Operating conditions of the wrist unit]

B-axis rotation

Speed: 600 [degrees / s] Acceleration: 0.3 [G]

Calculate by the numerical value of small size (s)

$$C_{j} = \frac{T_{max} - T_{l}}{T_{max}}$$
$$= \frac{0.58 - 0.025}{0.58}$$

=0.96

Calculation result

Output torque of inertia by speed [Nm]

WU-S: Small type

Wo S. Siriuli type			
Speed	B-axis	T-axis	
Degrees / s	D-axis	I-dXIS	
0	0.65	0.65	
150	0.65	0.65	
300	0.62	0.62	
450	0.6	0.6	
600	0.58	0.58	
750	0.52	0.52	
900		0.45	
1050		0.45	
1200		0.45	

WU-M: Medium type

Speed	B-axis	T-axis
Degrees / s	Daxis	I UNIS
0	1.65	1.65
150	1.65	1.65
300	1.65	1.65
450	1.65	1.65
600	1.58	1.58
750	1.36	1.36
900	1.14	1.14
1050		0.96
1200		0.79

(3) Calculation of compensation allowable moment of inertia Jtl

$J_{tl}=J_{max}C_{j}$ (kgm²)

J_{max}: Allowable moment of inertia (right table)[kgm²] C_i: Calculation result of allowable moment of inertia moment (2)

 $J_{t1}=0.008\times0.96$

=0.0077

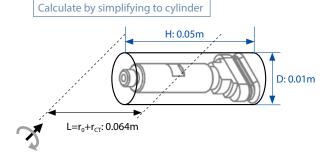
Calculation result

■ Allowable moment of inertia by speed acceleration[kgm²]

WU-S: Small type

WO-3. Siliali type			
Speed	B-axis	T-axis	
speed	Acceleration / deceleration		
Degrees / s	0.3G	0.3G	
0	0.008	0.0035	
150	0.008	0.0035	
300	0.008	0.0035	
450	0.008	0.0035	
600	0.008	0.0035	
750		0.0035	
900		0.0035	
1050		0.0035	
1200		0.0025	

WU-M: Medium type				
Speed	B-axis	T-axis		
Speed	Acceleration /	Acceleration / deceleration		
Degrees / s	0.3G	0.3G		
0	0.0150	0.0126		
150	0.0150	0.0126		
300	0.0118	0.0072		
450	0.0055	0.0054		
600	0.0055	0.0054		
750		0.0054		
900		0.0036		
1050		0.0036		
1200		0.0036		


(4) Check the moment of inertia of transport material

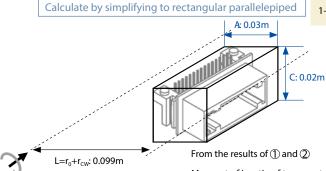
Calculate the moment of inertia of the tool and the workpiece in the formula for calculating the moment of inertia of a typical shape (P1-336), and check that the calibrated allowable moment of inertia obtained by (3) is less than $(4) \le (3)$.

Point

The shape can be calculated easily by simplifying it.

 \bigcirc Moment of inertia of piping and suction pads: J_{BT}

Use the formula 2.(5) on P1-336.


m_T: Mass of cylinder 0.02 [kg] D: Cylinder diameter 0.01 [m] H: Cylinder length 0.05 [m]

$$J_{BT} = \frac{m_T \left(-\frac{D^2}{4} + \frac{H^2}{3} \right)}{4} + m_T (r_0 + r_{CT})^2$$

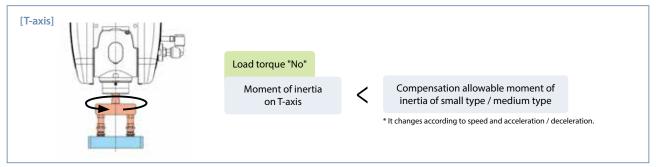
$$= \frac{0.02 \times \left(-\frac{0.01^2}{4} + \frac{0.05^2}{3} \right)}{4} + 0.02 \times (0.039 + 0.025)^2$$

$$= 8.62 \times 10^{-5}$$

2 Moment of inertia of the connector: J_{BW}

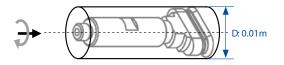
1-336 page 2. (6) is used

m_w: Mass of rectangular parallelepiped 0.013 [kg] A: One side of the rectangular parallelepiped 0.03 [m] C: One side of a rectangular parallelepiped 0.02 [m]


$$\begin{split} J_{BW} &= \frac{m_W (A^2 + C^2)}{12} + m_W (r_0 + r_{CW})^2 \\ &= \frac{0.013 \times (0.03^2 + 0.02^2)}{12} + 0.13 \times (0.039 + 0.06)^2 \\ &= 1.28 \times 10^{-4} \end{split}$$

Moment of inertia of transport material around B axis

$$=J_{BT}+J_{BW}$$
=8.62×10⁻⁵+1.28×10⁻⁴
=2.1×10⁻⁴

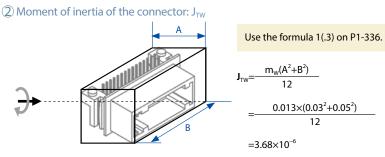

Available because it is less than the compensation allowable moment of inertia.

■ 2. Check T-axis

When no load torque is applied, calculate the moment of inertia of the tool and the workpiece in the formula for calculating the moment of inertia of a typical shape (page 1-336), and check that it is less than allowable moment of inertia.

 \bigcirc Moment of inertia of piping and suction pads: J_{TT}

Use the formula 2.(1) on P1-336.


 m_T : Mass of cylinder 0.02 [kg] D: Diameter of cylinder 0.01 m

$$J_{TT} = \frac{m_T \times D^2}{8}$$

$$= \frac{0.02 \times 0.01^2}{8}$$

$$= 2.50 \times 10^{-7}$$

Wrist unit (WU) Model selection Example

mw: Mass of rectangular parallelepiped 0.013 [kg] A: One side of the rectangular parallelepiped 0.03 [m] B: One side of a rectangular parallelepiped 0.05 [m]

From the results of 1 and 2

Moment of inertia of transport material around T axis

- $=J_{TT}+J_{TW}$
- = $2.50 \times 10^{-7} + 3.68 \times 10^{-6}$ = $3.9 \times 10^{-6} [\text{kgm}^2]$

From the allowable moment of inertia (table below), WU-S (compact) is available.

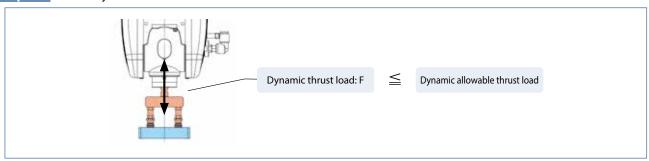
[Operating conditions of the wrist unit]

T axis rotation

Speed: 600 [degrees / s]

Acceleration: 0.3 [G]

■ Allowable moment of inertia by speed acceleration [kgm²]


WU-S: Small type

Speed	B-a	ixis	T-a	xis
speed	Acceleration / deceleration			
Degrees / s	0.3G	0.7G	0.3G	0.7G
0	0.0085	0.0065	0.0075	0.0035
150	0.0085	0.0065	0.0075	0.0035
300	0.0085	0.005	0.0065	0.0035
450	0.0085	0.005	0.0065	0.0025
600	0.0085	0.005	0.0065	0.0025
750		0.005	0.0065	0.0025
900			0.0065	0.0025
1050			0.0065	0.0025
1200			0.0065	0.0025

WU-M: Medium type

Coood	B-a	ıxis	T-a	xis
Speed		Acceleration / deceleration		
Degrees / s	0.3G	0.7G	0.3G	0.7G
0	0.0150	0.0145	0.0165	0.0126
150	0.0150	0.0145	0.0165	0.0126
300	0.0150	0.0127	0.0165	0.0090
450	0.0099	0.0045	0.0126	0.0063
600	0.0090	0.0036	0.0108	0.0054
750		0.0036	0.0099	0.0054
900		0.0036	0.0099	0.0045
1050			0.0081	0.0045
1200			0.0081	0.0045

Step 3 Check dynamic allowable thrust load

Gravity 1 G

 $F=(m_T+m_W)\cdot(a+g)\cdot9.8[N]$

m_T: Mass of tool 0.02 [kg]

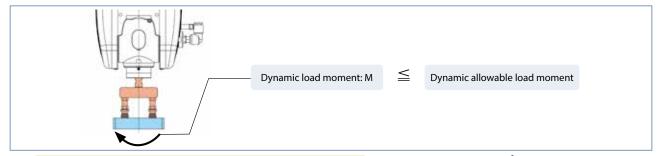
m_w: Mass of workpiece 0.013 [kg]

g: Gravitational acceleration 1.0 [G]

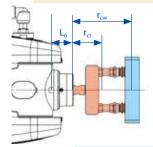
a: Z axis movement acceleration 0.3 [G]

F=(0.02+0.13)×(0.3+1.0)×9.8

=0.033×1.3×9.8


=0.42[N]

From dynamic allowable thrust load (lower table), Wu-s (small) is available.


■ Dynamic allowable thrust load

	Allowable thrust load
WU-S: Small type	330N
WU-M: Medium type	450N

Check the dynamic allowable load moment

$M=m_T \cdot a \cdot 9.8(L_0+r_{CT}) \times 10^{-3} + m_W \cdot a \cdot 9.8(L_0+r_{CW}) \times 10^{-3}$ [Nm]

m_T: Mass of tool 0.02 [kg] m_w:Mass of workpiece 0.013 [kg] a: X axis movement acceleration 0.3 [G] L₀: Load moment reference position WU-S (Small) 17.5 [mm] WU-M (medium size) 21.5 [mm] $r_{CT}T$: Tool center of gravity position 25 [mm] r_{cw}: Work center of gravity position 60 [mm] $M=0.02\times0.3\times9.8\times(17.5+25)\times10^{-3}$

- $+0.013\times0.3\times9.8\times(17.5+60)\times10^{-3}$
- =0.0025+0.0030
- =0.0055 [Nm]

From dynamic allowable thrust load (lower table), Wu-s (small) is available.

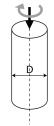
■ Dynamic allowable thrust load

	Allowable thrust load
WU-S: Small type	1.4Nm
WU-M: Medium type	4.2Nm

2. The center of the object is offset from the rotation axis

WU-S (Compact) is available from the result of Procedure 1.4

Calculation method of inertia moment of typical shape


1. The rotation axis passes through the center of the object

(1) Moment of inertia of the cylinder 1

*Regardless of the height of the cylinder (even disc), the same formula can be applied.

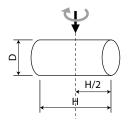
<Calculation formula>I=M×D²/8

Moment of inertia of cylinder: I (kg·m²) Mass of cylinder: M (kg) Diameter of cylinder: D (m)

the same formula can be applied. <Calculation formula>I=M×D2/8+M×L2

(4) Moment of inertia of the cylinder 3

Moment of inertia of cylinder: I (kg·m²) Mass of cylinder: M (kg) Diameter of cylinder: D (m)

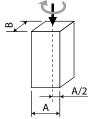

Distance from rotation axis to center: L (m)

*Regardless of the height of the cylinder (even disc)

(2) Moment of inertia of the cylinder 2

<Calculation formula>I= $M\times(D^2/4+H^2/3)/4$

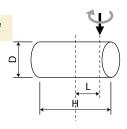
Moment of inertia of cylinder: I (kg·m²) Mass of cylinder: M (kg) Diameter of cylinder: D (m) Cylinder length: H (m)



(3) Moment of inertia of the prism 1

* Regardless of the height of the prism (even on the four sides plate), the same formula can be applied.

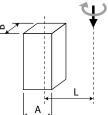
<Calculation formula>I= $M\times(A^2+B^2)/12$


Moment of inertia of cylinder: I (kg·m²) One side of a rectangular column: A (m) One side of the rectangular column: B (m)

(5) Moment of inertia of the cylinder 4

<Calculation formula>I= $M\times(D^2/4+H^2/3)/4+M\times L^2$

Moment of inertia of cylinder: I (kg·m²) Mass of cylinder: M (kg) Diameter of cylinder: D (m) Cylinder length: H (m) Distance from rotation axis to center: L (m)



(6) Moment of inertia of the prism 2

* Regardless of the height of the prism (even on the four sides plate), the same formula can be applied.

<Calculation formula>I= $M\times(A^2+B^2)/12+M\times L^2$

Moment of inertia of cylinder: I (kg·m²) Mass of cylinder: M (kg) One side of a rectangular column: A (m) One side of the rectangular column: B (m) Distance from rotation axis to center: L (m)

International System of Unit SI Excerpt from JIS Z 8203 (2000)

■International unit system (SI) and its usage

1. Scope This standard specifies how to use units in the International System of Units (SI) and international unit systems, as well as units used in conjunction with international unit systems and units that may be used together.

2. Terms and Definitions The main terms used in this standard and their definitions shall be as follows.

(1) International System of Units (SI) Consistent unit system adopted and recommended at the International Association of

Measurement and Measurement. It consists of basic units, ancillary units and assembly

units assembled from them and their integer multiplier of ten.

SI is an abbreviation for the international unit system.

A general term for basic units, auxiliary units and assembly units in the International Unit System (SI).

- Basic unit The one shown in Table 1 is the basic unit.

- Auxiliary unit The one shown in Table 2 shall be an auxiliary unit.

- Assembled Unit The unit represented by an algebraic method (using multiplicative / divisional mathematical symbols) using the basic unit and auxiliary unit is an assembly unit. Assembly units with unique names are given in Table 4.

Table 1. Basic unit

(2) SI unit

Amount	Name of unit	Unit symbol	Definition
Length	meters	m	The meter is the length of travel that the light travels through the vacuum in the time of 299,792,458 minutes.
Mass	kilogram	kg	Kilogram is a unit of mass (neither weight nor force), which is equal to the mass of the international kilogram prototype.
Time	Seconds	S	Seconds is the duration of 9, 192, 631, 770 cycles of radiation corresponding to the transition between the two hyperfine levels of the ground state of the cesium 133 atom.
Current	Ampere	А	Ampere , a constant current that flows through each of the infinitely long two straight conductors that have an infinitely small circular cross-sectional area, placed parallel at a distance of 1 meter in a vacuum, and each of these conductors exert a power of 2×10 -7 newton per meter long.
Thermodynamic temperature	Kelvin	K	Kelvin is a 273.16 of the thermodynamic temperature of the triple point of water.
Substance quantity	Mol	mol	Mol is the amount of substance in a system composed of a number of element particles or aggregates of element particles (limited to compositions whose composition is clarified) equal to the number of atoms present in 0.012 kilograms of carbon 12. Element particles are used by specifying an aggregate of element particles.
Luminous	candela	cd	Candela emits monochromatic radiation with a frequency of 540×10 12 Hertz and the intensity in that direction of the light source whose radiation intensity in a given direction is 683 watts per steradian.

Table 2. Auxiliary unit

Amount	Name of unit	Unit symbol	Definition
Plane angle	radian	rad	Radian is a plane angle included between two radii cutting off an arc of a length equal to the length of its radius on the circumference of the circle.
Solid angle	steradian	sr	A steradian is a solid angle in which the center of the sphere is the vertex, and the area equal to the square area of the sphere is cut off on the surface of the sphere.

Table 3. Examples of assembly units

	•	
Amount	Name of unit	Unit symbol
Area	square meters	m²
Volume	cubic meter	m³
Speed	meter per second	m/s
Acceleration	meter per second per second	m/s²
Wave number	per meter	m ⁻¹
Density	kilogram per cubic meter	kg/m³
Current density	amperes per square meter	A/m²
Magnetic field strength	ampere meter per meter	A/m
(amount of substance) Concentration of substance	Mole per cubic meter	mol/m³
Specific volume	Cubic meters per kilogram	m³/kg
Luminance	Candela per square meter	cd/m²

Table 4. Assembly unit with unique name

Amount	The second secon		
Amount	Name of unit	Unit symbol	A pair of cubic cubic or other assembly units with basic or supplementary units
frequency	Hertz	Hz	1Hz=1s ⁻¹
Power	Newton	N	1N=1kg·m/s ²
Pressure, stress	Pascal	Pa	1Pa=1N/m ²
Energy Work, calorie	Joule	J	1J=1N∙m
Power factor, power factor, power	Watt	W	1W=1J/s
Electric charge	Coulomb	С	1C=1A·s
Potential Voltage	Bolt	V	1V=1J/C
Capacitance capacitance	Farad	F	1F=1C/V
Electric resistance	Ohm	Ω	1Ω=1V/A
Conductance	Siemens	S	1S=1Ω ⁻¹
Magnetic flux	Weber	Wb	1Wb=1V·s
Magnetic flux density Magnetic induction	Tesla	Т	1T=1Wb/m ²
Inductance	Henry	Н	1H=1Wb/A
Celsius temperature	Celsius degree or degrees C	°C	1t=T-To
Luminous flux	Lumen	lm	1lm=1cd·sr
Illuminance	lux	lx	1 lx=1 lm/m ²

1-337 Technical Reference

3. Integer multiplication of 10 in SI unit

(1) Prefix The multiples and the prefix names and the prefix symbols for constituting the integer multiple of 10 in the SI unit are shown in Table 5.

Table 5. Prefixes

multiple	prefix	symbol	multiple	prefix	symbol	multiple	prefix	symbol
1018	Exa	E	10 ²	Hecto	h	10 ⁻⁹	Nano	n
1015	Peta	Р	10¹	Deca	da	10 ⁻¹²	Pico	р
1012	Peta	Т	10 ⁻¹	Digi	d	10-15	Femto	f
10 ⁹	Giga	G	10 ⁻²	Centimeter	С	10-18	Atto	а
10 ⁶	Mega	М	10 ⁻³	Milli	m			
10 ³	Km	k	10-6	Micro	и			

4. Handling of units not included in SI unit

Units not included in SI are practically important, so the units shown in Table 6 are used in conjunction with SI units.

Table 6. Units used in conjunction with SI units

Amour	t Name of unit	Unit symbol	Definition	Amount	Name of unit	Unit symbol	Definition
	Minute	min	1min=60s		Degree	0	1°=(π/180)rad
Time	Hour	h	1h=60min	Plane angle	Minute	,	1'=(1/60)°
	Day	d	1d=24h		Second	"	1"=(1/60)'
Volum	e Liter	I, L	1I=7dm ³	Mass	Ton	t	1t=103kg

5. Other

Table 7. Conversion table of main SI unit

Amount	SI unit	Weight unit (Units previously used)	Weight unit → SI unit	SI unit → dynamic unit
Mass	kg	Weight (tons)	1t=10 ³ kg	1kg=10 ⁻³ t
Power	N (Newton) (kg·m/s²)	kgf (weight kilogram) dyn (dyne)	1kgf=9.806 65 N 1dyn=10 ⁻⁵ N	1N=0.101 972 kgf 1N=10⁵dyn
Torque	N · m (Newton meters)	kgf•m	1kgf·m=9.806 65 N·m	1N·m=0.101 972 kgf·m
Pressure	Pa (Pascal) [N/m²]	kgf/cm² mmAq(mmH2O) mmHg(Torr) bar (bar)	1kgf/cm²=9.806 65 × 10⁴Pa 1mmAq=9.806 65 Pa 1mmHg=133.322 Pa 1bar=10⁵Pa	1Pa=1.019 72 × 10 ⁵ kgf/cm ² 1Pa=0.101 972mmAq 1Pa=7.500 6 × 10 ² mmHg 1Pa=10 ⁵ bar
Stress	Pa (Pascal) (N/m²)	kgf/mm²	1kgf/mm²=9.806 65 × 10 ⁴ Pa	1Pa=1.019 72 × 10 ⁻⁷ kgf/mm ²
Work, Thermal energy, Heat quantity, enthalpy, Electric energy	J(Joule) (N·m)	kcal kgf·m kW·h	1kcal=4.186 05 kJ 1kgf • m=9.806 65J 1kW • h=3.6 × 10 ⁴ J	1kJ=0.239 kcal 1J=0.101 972 × kgf · m 1J=(1/3.6) × 10⁵kW · h
Heat flow, power, electricity	W (Watt) 〔J/s〕	kcal/h kgf • m/s Ps (French horsepower, metric horsepower)	1kcal/h=1.163W 1kgf·m/s=9.806 65W 1Ps=7.355 × 10²W	1W=0.859 8 kcal/h 1W=0.101 972kgf · m/s 1W=1.359 6 × 10 ² Ps
Heat flow density	W/m²	kcal/h·m²	1kcal/h · m²=1.163W/m²	1W/m²=0.859 8 kcal/h · m²
Heat capacity	J/K	kcal/°C	1kcal/°C =4.186 05kJ/K	1kJ/K=0.239 kcal/°C
Specific heat	J/(kg·K)	kcal/kg ⋅ °C	1kcal/kg · °C =4.186 05 kJ/(kg · K)	1kJ/(kg⋅K)=0.239 kcal/kg⋅°C
Thermal conductivity	J/kg	kcal/kg	1kcal/kg=4.186 05 kJ/kg	1kJ/kg=0.239 kcal/kg
Heat passage rate	W/(m·K)	kcal/ · h · °C	1kcal/m · h · °C =1.163W/(m · K)	1W/(m · K)=0.859 8 kcal/m · h · °C
Thermal conductivity	W/(m²•K)	kcal/m² ⋅ h ⋅ °C	1kcal/m² · h · °C =1.163W/(m² · K)	1W/(m²·K)=0.859 8 kcal/m²·h·°C
Temperature	K(Kelvin)	°C (Celsius degree)	T(K)=t(°C)+273.15	t(°C)=T(K)-273.15

 $[Remarks] \qquad \hbox{(1)} \quad In this table, kcal may adopt the calorie method of weighing method. For international calories 1 kcal = 4.186 8 kJ.}$

Weight: 1 kg (f gravity unit) = $9.80665 \text{ kg} \cdot \text{m} = \text{s} (2 \text{ SI units})$

Standard atmospheric pressure: 760 mmHg (gravity unit) = 101 325 Pa (SI unit)

1 Japan frozen tones: 3 320 kcal / h (gravity unit) = 3.816 kW (SI unit)

⁽²⁾ Weight: 1 kg (SI unit) = 1 / 9.806 65 kgf \cdot s 2 / m (unit of gravity)

¹ USA (country system) frozen tons: 3 024 kcal / h (gravity unit) = 3.157 kW (SI unit)

⁽³⁾ In this manual, as a conventional unit, weighing [kgf] instead of weight [kg] is displayed.

Illustration Method of Geometric Tolerances Excerpt from JIS b0021 (1998)

■ Types of geometric tolerances and their symbols

Types	of tolerance	Characteristic symbol	Definition	n of tolerance zone	Illustration	and interpretation
	Straightness tolerance	_	ot t	If the symbol ϕ is added before the tolerance value, the tolerance zone is regulated by the cylinder of the diameter t.	\$\frac{1}{2772} \cdot \frac{1}{2772} \cdot \frac{1}{2772}	The actual (reproduced) axis of the cylinder to which the tolerance is applied must be within the cylindrical tolerance range of diameter 0.08.
	Flatness tolerance			The tolerance zone is regulated by parallel two planes that are separated by a distance t.	0.08	The actual (reproduced) surface must be between two parallel planes separated by 0.08.
Shape	Roundness tolerance	0		In the symmetrical cross section, the tolerance zone is regulated by two coaxial circles.	000.03	In any cross section of the cylinder and the surface of the cone, the actual (reproduced) radial line must be between two coaxial circles on the common plane, separated by a radius distance of 0.03.
tolerance	Cylindrical tolerance	\bowtie		The tolerance zone is regulated by two coaxial cylinders that are separated by a distance t.	₩ 0.1 	The actual (reproduced) cylindrical surface must be between two coaxial cylinders which are separated by a radius distance of 0.1.
	Line Contour Tolerance: Line contour tolerance not related to datum (ISO 1660)			The tolerance zone is regulated by the two envelopes of each circle of diameter t and the centers of these circles lie on the line with theoretically exact geometric shape.	2×R 0.04	In each section that is parallel to the projection plane in the direction indicated, the actual (reproduced) contour line is 0.04 in diameter, and the center of those circles must be between the two envelopes of the circle located on the line with the ideal geometric shape.
	Surface Contour Tolerance: Surface contour tolerance not related to datum (ISO 1660)		Søt	The tolerance zone is regulated by the two envelopes of each circle of diameter t and the centers of these circles lie on the line with theoretically exact geometric shape.	0.02	The actual (reproduced) surface must be between the enveloping surfaces of each sphere with a diameter of 0.02, the centers of which spheres lie on a surface with a theoretical exact geometric shape.

The lines used in the definition column of the tolerance zone represent the following meanings.

Thick solid line or broken line: Form

Thick dash-dotted line: Datum

Thin solid line or broken line: Tolerance area

Thin dotted line: center line

Thin two-dot chain line: Supplementary projection plane or section

Thick, two-dot chain line: projection of feature on supplemental projection plane or section

1-339 Technical Reference

Types	of tolerance	Characteristic symbol	Definition	of tolerance zone	Illustration	and interpretation		
		,	1. Parallelism tolerance of	lines related to Datum straight line	e			
			Datum B Datum A	The tolerance zone is regulated by parallel two planes that are separated by a distance t. The planes are parallel to the datum and are in the indicated direction.	/// 0.1 A B B A	The actual (reconstructed) axes must be separated by 0.1, parallel to datum axis A and between parallel two planes in the indicated direction.		
	Parallelism tolerance	//		If the symbol ϕ is added before the tolerance value, the tolerance zone is regulated by a cylinder of diameter t parallel to the datum.	// Ø0.03 A	The actual (reproduced) axis must be within the cylindrical tolerance range 0.03 in diameter parallel to the datum axis straight line A.		
			2. Parallelism tolerance of	the line associated with the datur	n plane			
			Datum B	The tolerance zone is separated by a distance t and regulated by parallel two planes parallel to datum plane B.	7// 0.01 B B	The actual (reproduced) axes must be 0.01apart and be between parallel two planes parallel to datum plane B.		
		e	1. Right angle tolerance o	f line related to datum axis line				
Attitude tolerance				The tolerance zone is separated by a distance t and regulated by parallel two planes parallel to datum plane B.	1 0.06 A	The actual (reproduced) axis must be 0.06 apart and be between parallel two planes perpendicular to datum axis line A.		
	Square tolerance		2. Linear angle tolerance of the line relative to the datum plane					
				Qt Datum A	If the symbol φ is added before the tolerance value, the tolerance zone is regulated by a cylinder of diameter t perpendicular to the datum.	⊥ \$0.1 A	The actual (reproduced) axis of the cylinder must be within the cylindrical tolerance area of diameter 0.1 perpendicular to datum axis line A.	
			1. Linear slope tolerance	relative to datum plane				
	Slope tolerance		Datum A	The tolerance zone is separated by a distance t and regulated by parallel two planes inclined at a specified angle with respect to the datum.	∠ 0.08 A 60°	The actual (reproduced) axis should be perpendicular to datum A and datum B perpendicular to each other, theoretically exactly 60 ° tilted with respect to datum plane A, and parallel two planes separated by 0.08.		
			2. Slope tolerance of the p	plane relative to datum plane				
			Datum A	The tolerance zone is separated by a distance t and regulated by parallel two planes inclined at a specified angle with respect to the datum.	(40°)	The actual (reproduced) surface should be 0.08 apart and be between parallel two planes which are theoretically exactly 40 ° inclined with respect to datum plane A.		

Illustration Method of Geometric Tolerances Excerpt from JIS b0021 (1998)

■ Types of geometric tolerances and their symbols

Type	s of tolerance	Characteristic	Definition	of tolerance zone	Illustration	and interpretation
,		symbol	1. Line position angle tol	erance		
	Position angle tolerance	+	Datum C Datum B	When the tolerance value is marked with the symbol ϕ , the tolerance zone is regulated by the cylinder of diameter t. Its axis is positioned with theoretically exact dimensions with respect to datum C, A and B.	ΦΦ0.08 C A B A M 25 B	The actual (reconstructed) axis must be within the cylindrical tolerance area with a diameter of 0.08 whose axis is at theoretically exact position with respect to datum planes C, A and B.
Position tolerance	Concentricity		Datum A	When the tolerance value is marked with the symbol ϕ , the tolerance zone is regulated by a circle of diameter t. The center of the circular tolerance zone matches Datum A	A A A A A A A A A A A A A A A A A A A	The actual (reproduced) center of the outer circle must be in a circle with diameter 0.1 concentric with datum circle A.
	tolerance and coaxiality toleranc		et J	When the tolerance value is marked with the symbol ϕ , the tolerance zone is regulated by a cylinder of diameter t. The axis of the cylindrical tolerance zone coincides with datum A.	Φ φ0.08 A-B B	The actual (reproduced) axis of the inner cylinder must be within the cylindrical tolerance range 0.08 in diameter coaxial to the common datum axis line A-B.
	Symmetry tolerance (Symmetry tolerance of center plane)		t +12	Tolerance zones are separated by t and are regulated by parallel two planes symmetrical about the datum with respect to the center plane.	A = 0.08 A	The actual (reproduced) center plane must be between two parallel planes that are 0.08 symmetrical to the datum center plane A.
			1. Circumferential runout	tolerance - radial direction	l	
	Circumferential		Form with tolerance Side view	The tolerance zone is restricted within an arbitrary transverse plane perpendicular to the axis of two coaxial circles whose radius is t and coincides with the datum axis straight line.	(O.1) A-B	The actual (reproduced) circumferential deflection should be less than 0.1 in any cross section while making one revolution around the common datum axis line A - B.
	deflection tolerance	1	2. Circumferential runout	tolerance - axis direction		
Runout tolerance			Tolerance zone	The tolerance zone is restricted within an arbitrary transverse plane perpendicular to the axis of two coaxial circles whose radius is t and coincides with the datum axis straight line.	V 0.1 D	On the cylindrical axis coinciding with the datum axis straight line D, the actual (reproduced) line in the axial direction must be between two circles 0.1 away.
	Full runout tolerance: Total runout tolerance in the circumferential direction	11	De la constant de la	The tolerance zone is separated by t and its axis is regulated by two coaxial cylinders matching the datum.	(U0.1 A-B)	The actual (reproduced) surface must be between the coaxial two cylinders with a radius difference of 0.1, whose axis coincides with the common datum axis line A-B.

1-341 Technical Reference

Normal Tolerance of Processing Dimensions Excerpt from JIS B 0405, B 0419 (1991)

■ Normal tolerance

1. Tolerance to length dimension excluding chamfer

Unit: mm

Toler	ance grade		Classification of reference dimensions								
Symbol Descrip	Description	0.5 or more* and less than 3	3 or more and less than 6	6 or more and less than 30	30 or more and less than 120	120 or more and less than 400	400 or more and less than 1000	1000 or more and less than 2000	2000 or more and less than 4000		
					toler	ance					
f	Precision	±0.05	±0.05	±0.1	±0.15	±0.2	±0.3	±0.5	-		
m	Intermediate level	±0.1	±0.1	±0.2	±0.3	±0.5	±0.8	±1.2	±2		
С	Coarse level	±0.2	±0.3	±0.5	±0.8	±1.2	±2	±3	±4		
v	Extremely coarse level	-	±0.5	±1	±1.5	±2.5	±4	±6	±8		

st For reference dimensions less than 0.5 mm, tolerance is individually indicated following the reference dimension.

Tolerance to length dimension of chamfered portion (Roundness of corner and chamfered dimension of corner)

Unit: mn

Tolera	ince grade	Classification of reference dimensions			
Symbol	Description	0.5 or more* and less than 3	3 or more and less than 6	more than 6	
		tolerance			
f	Precision				
m	Intermediate level	±0.2	±0.5	±1	
С	Coarse level				
V	Extremely coarse level	±0.4	±1	±2	

^{*} For reference dimensions less than 0.5 mm, tolerance is individually indicated following the reference dimension.

3. Angular dimension tolerance

Tolera	Tolerance grade		The division of the length (mm)of the shorter side of the target angle						
Symbol Description		less than 10	10 or more and less than 50	50 or more and less than 120	120 or more and less than 400	more than 400			
			tolerance						
f	Precision								
m	Intermediate level	±1°	±30'	±20'	±10'	±5'			
С	Coarse level	±1° 30'	±1°	±30'	±15'	±10'			
V	Extremely coarse level	±3°	±2°	±1°	±30'	±20'			

4. Normal tolerance of straight angle

Unit: mm

	Cla	ssification of sho	rter side nominal	length
Tolerance grade	less than 100	100 or more and less than 300	1000 or more and less than 3000	
		Straight a		
Н	0.2	0.3	0.4	0.5
K	0.4	0.6	0.8	1
L	0.6	1	1.5	2

5. Normal tolerance of circumferential deflection

Unit: mm

Tolerance grade	Tolerance of circumferential deflection
Н	0.1
K	0.2
L	0.5

6. Normal tolerance of straightness and flatness

Unit: mm

						Offic. Hilli						
			Classification of	nominal length								
Tolerance grade	less than 10	10 or more and less than 30	30 or more and less than 100	100 or more and less than 300	300 or more and less than 1000	1000 or more and less than 3000						
	Straightness tolerance and flatness tolerance											
Н	0.02	0.05	0.1	0.2	0.3	0.4						
K	0.05	0.1	0.2	0.4	0.6	0.8						
L	0.1	0.2	0.4	0.8	1.2	1.6						

Symbol of Quantity and Unit: Name and Symbol of Chemical Element Excerpt from JIS Z8202

■ Name and symbol of chemical element

Atomic number	Element name	Element symbol	Atomic number	Element name	Element symbol	Atomic number	Element name	Element symbol
1	Hydrogen	Н	36	Krypton	Kr	71	Lutetium	Lu
2	Helium	He	37	Rubidium	Rb	72	Hafnium	Hf
3	Lithium	Li	38	Strontium	Sr	73	Tantalum	Ta
4	Beryllium	Be	39	Yttrium	Υ	74	Tungsten	W
5	Boron	В	40	Zirconium	Zr	75	Rhenium	Re
6	Carbon	С	41	Niobium	Nb	76	Osmium	Os
7	Nitrogen	N	42	Molybdenum	Мо	77	Iridium	lr
8	Oxygen	0	43	technetium	Tc	78	Platinum	Pt
9	Fluorine	F	44	ruthenium	R	79	Gold	Au
10	Neon	Ne	45	rhodium	Rh	80	Mercury	Hg
11	Sodium	Na	46	palladium	Pd	81	Thallium	TI
12	Magnesium	Mg	47	Silver	Ag	82	Lead	Pb
13	Aluminum	Al	48	Cadmium	Cd	83	Bismuth	Bi
14	Silicon	Si	49	indium	ln	84	rhenium	Po
15	Rin	Р	50	tin	Sn	85	astatine	At
16	Sulfur	S	51	Antimony	Sb	86	Radon	Rn
17	Chlorine	Cl	52	Tellurium	Т	87	francium	Fr
18	Argon	Ar	53	lodine	I	88	Radium	Ra
19	Potassium	K	54	Xenon	Xe	89	Actinium	Ac
20	Calcium	Ca	55	Cesium	Cs	90	Thorium	Th
21	Scandium	Sc	56	Barium	Ва	91	Protactinium	Pa
22	Titanium	Ti	57	Lanthanum	La	92	Uranium	U
23	Pana	V	58	Cerium	Ce	93	Neptunium	Np
24	Chromium	Cr	59	Praseodymium	Pr	94	Plutonium	Pu
25	Manganese	Mn	60	Neodymium	Nd	95	Americium	Am
26	Iron	Fe	61	Promethium	Pm	96	Curium	Cm
27	Cobalt	Co	62	Samarium	Sm	97	Berklium	Bk
28	Nickel	Ni	63	Eurobium	Eu	98	Californium	Cf
29	Copper	Cu	64	Gadolinium	Gd	99	Einsteinium	Es
30	Zinc	Zn	65	Terbium	Tb	100	Fermium	Fm
31	Gallium	Ga	66	Dysprosium	Dy	101	Mendelebium	Md
32	Germanium	Ge	67	Holmium	Но	102	Nobelium	No
33	Arsenic	As	68	Erbium	Er	103	Laurenzium	Lr
34	Selenium	Se	69	Thulium	Tm			
35	Bromine	Br	70	Ytterbium	Yb	1		

[Remarks] This table shows Appendix A (element names and symbols) of ISO 31 / 8-1980 (Amount and unit of physicochemical and molecular physics) and Annex C (radioactivity (quantity and unit of atomic physics and nuclear physics) of ISO 31 / 9-1980 Nuclide name and symbol).

■ Quantity symbol · Unit symbol

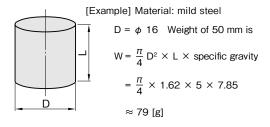
uppercase letter	Lower case	How to Read	Usual use	uppercase letter	Lower case	How to Read	Usual use
Α	α	Alpha	angle, coefficient	0	0	Omicron	
В	β	Beta	Angle, factor				Pi pi (3.14159),
Γ	γ	Gamma	angle, unit area weight (capital letters) product sign	П	π	pie	Angle (uppercase) product sign
Δ	δ	Delta	Micro change, density, displacement	Р	ρ	Low	Radius, density
E	ε	Epsilon	Small amount, strain	Σ	σ	Ciama	Stress, standard deviation,
Z	ζ	Geeta	Variable			Sigma	(uppercase) Sum of the number
Н	η	Eta	Variable	Т	τ	Tau	Time constant, time, torque
Θ	θ	Theta	Angle, temperature, time	Υ	υ	Epsilon	
Į.	l	Eota		Ф	φ	File	Angle, function, diameter
K	к	Карра	Turning radius	Х	Х	Kai	
٨	λ	Lambda	Wavelength, Eigenvalue	Ψ	ψ	Psi	Angle, relationship
М	μ	Mu	coefficient of friction 10 ⁻⁶ (micro)	Ω	ω	Omega	angular velocity = 2 π f (capital letters)
N	ν	New	frequency				Ohm = electrical resistance unit
=	٤	Osai	Variable				

[Remarks] Lowercase letters except upper case letters

1-343 Technical Reference

Method of Calculating Properties / Volume / Weight of Metal Material

■ Properties of metallic materials


Matarial	Casaifia avanitu	Coefficient of thermal expansion	Longitudinal e	lastic modulus
Material	Specific gravity	× 10 ^{−6} /°C	N/mm²	{kgf/mm²}
Mild steel	7.85	11.7	205800	{21000}
NAK80	7.8	12.5	200900	{20500}
SKD11	7.85	11.7	205800	{21000}
SKD61	7.75	10.8	205800	{21000}
SKH51	8.2	10.1	218540	{22300}
Carbide V30	14.1	6	548800	{56000}
Carbide V40	13.9	6	529200	{54000}
Cast iron	7.3	9.2 ~ 11.8	73500 ~ 102900	{7500 ~ 10500}
SUS304	8	17.3	193060	{19700}
SUS440C	7.78	10.2	199920	{20400}
Oxygen free copper C1020	8.9	17.6	114660	{11700}
6/4 brass	8.4	20.8	100940	{10300}
Beryllium copper C1720	8.3	17.1	127400	{13000}
Aluminum A1100	2.7	23.6	67620	{6900}
Duralumin A7075	2.8	23.6	70560	{7200}
Titanium	4.5	8.4	103880	{10600}

■How to calculate volume

Solid	Volume V	Solid	Volume V	Solid	Volume V	Solid	Volume V
Truncated cylinder	$V = \frac{\pi}{4} d^2h$ $= \frac{\pi}{4} d^2\left(\frac{h_1 + h_2}{2}\right)$	Ellipsoidal ring &	$V = \frac{\pi^2}{4} d^2 \frac{\sqrt{a^2 + b^2}}{2}$	Sphere	$V = \frac{2}{3} \pi r^2 h$ = 2.0944r ² h	Spherical zone	$V = \frac{\pi h}{6} (3a^2 + 3b^2 + h^2)$
Pyramid	$V = \frac{h}{3} A = \frac{h}{6} arn$	Crossover Cylinder		Torus	$V = 2\pi^2 R r^2$	Barrel shape	When the circumference forms a curvature equal to an arc
a	A=Base area r=Radius of inscribed circle a=Length of side of regular polygon n=Number of sides of a regular polygon	P	$V = \frac{\pi}{4} d^2 (1 + 1' - \frac{d}{3})$	R	$= 19.739Rr^{2}$ $= \frac{\pi^{2}}{4}Dd^{2}$ $= 2.4674Dd^{2}$	D 0	$V = \frac{\pi L}{12} (2D^2 + d^2)$ When the circumference forms a curvature equal to a parabola $V = 0.209L (2D^2Dd + 1/4d^2)$
Ball crown	$V = \frac{\pi h^2}{3} (3r - h)$ $= \frac{\pi h}{6} (3a^2 + h^2)$ a is the radius	Hollow cylinder (pipe)	$V = \frac{\pi}{4} h (D^2 - d^2)$ $= \pi th (D - t)$ $= \pi th (d+t)$	Conical	$V = \frac{\pi}{3} r^2 h$ = 1.0472r ² h		
Ellipsoid	$V = \frac{4}{3} \pi \text{ abc}$ Spheroid $V = \frac{4}{3} \pi \text{ ab}^2$	Truncated pyramid	$V = \frac{h}{3} (A + a + \sqrt{Aa})$ A,a=Area of both end faces	Ball	$V = \frac{4}{3} \pi r^3 = 4.1888 r^3$ $= \frac{\pi}{6} d^3 = 0.5236 d^3$		

■Weight calculation method

Weight W [g] = Volume [cm 3] \times Specific Gravity

Second Moment of Cross-Section, Other Calculation Method

■ Correlation table of Cross-sectional shape and cross-sectional area, Secondary moment of area, Section modulus and rotational radius.

Shape area of cross section	Cross section A	Distance from the neutral axis to the farthest position e	Sectional moment of inertia	Section modulus $Z = \frac{l}{e}$	Turning radius $p = \frac{\sqrt{I}}{A}$
a o	a ²	а	<u>a⁴</u> 3	<u>a³</u> 3	$\frac{a}{\sqrt{3}}$ =0.577a
	a ² -b ²	$\frac{1}{2}$ a	<u>a⁴-b⁴</u> 12	<u>a⁴-b⁴</u> 6a	$ \sqrt{\frac{a^2 + b^2}{12}} \\ = 0.289 \sqrt{a^2 + b^2} $
D	bd	$\frac{1}{2}$ d	bd ³ 12	bd ² 6	$\frac{d}{\sqrt{12}}$ =0.289d
b b	bd -hk	$\frac{1}{2}$ d	bd ³ -hk ³ 12	bd ³ -hk ³ 6d	$ \sqrt{\frac{bd^{3}-hk^{3}}{12(bd-hk)}} $ =0.289 $\sqrt{\frac{bd^{3}-hk^{3}}{bd-hk}}$
D D D	$\frac{1}{2}$ bd	$\frac{2}{3}$ d	bd ³ 36	bd ² 24	$\frac{d}{\sqrt{18}} = 0.236d$
D D D	$\frac{1}{2}$ bd	d	bd ³ 12	bd ² 12	$\frac{a}{\sqrt{6}}$ =0.408d
٥	$\frac{3d^2 \tan 30^{\circ}}{2} = 0.866d^2$	<u>d</u> 2	$ \frac{A}{12} \left[\frac{d^2 (1+2\cos^2 30^\circ)}{4\cos^2 30^\circ} \right] \\ =0.6d^4 $		$ \sqrt{\frac{d^2(1+2\cos^2 30^\circ)}{48\cos^2 30^\circ}} $ =0.264d
	$\frac{3d^2\tan 30^{\circ}}{2} = 0.866d^2$	$\frac{d}{2\cos 30^{\circ}} = 0.577d$	$\frac{A}{12} \left[\frac{d^2(1+2\cos^2 30^\circ)}{4\cos^2 30^\circ} \right]$ =0.6d ⁴	$\frac{A}{6} \left[\frac{d(1+2\cos^2 30^\circ)}{4\cos^2 30^\circ} \right]$ =0.104d3	$ \sqrt{\frac{d^2(1+2\cos^2 30^\circ)}{48\cos^2 30^\circ}} \\ =0.264d $
\$ o	$\frac{\pi d^2}{4} = 0.7854d^2$	<u>d</u> 2	$\frac{\pi d^4}{64} = 0.049d^4$	$\frac{\pi d^3}{32} = 0.098d^3$	<u>d</u>
	$\frac{\pi(D^2-d^2)}{4}$ =0.7854(D ² -d ²)	<u>d</u> 2	$\frac{\pi (D^4 - d^4)}{64}$ =0.049 (D ⁴ -d ⁴)	$\frac{\pi (D^{4}-d^{4})}{32D} = 0.098 \frac{D^{4}-d^{4}}{D}$	$\frac{\sqrt{D^4 - d^4}}{4}$
σ <u></u> Φ	πab=3.1416ab	а	$\frac{\pi a^3 b}{4} = 0.7854 a^3 b$	$\frac{\pi a^2 b}{4} = 0.7854a^2 b$	<u>a</u> 2
	dt+2a(s+n)	<u>d</u> 2	$I = \frac{1}{12} \left[bd^3 - \frac{1}{4g} (h^4 - I^4) \right]$ ただしg=つばのこう配	$\frac{1}{6d} \left[bd^{3} - \frac{1}{4g} (h^{4} - l^{4}) \right]$	$\frac{\sqrt{\frac{1}{12}\left[bd^3 - \frac{1}{4g}(h^4)\right]}}{dt + 2a(s+n)}$

Foundation of Fit Selection Extract of JIS usage series drafting manual (Accuracy)

■ Standard of Fit selection

			H6	H7	H8	H9	Applicable part	Functional cla	ssification	Application example
		Relaxation				с9	Especially, there may be a large gap, or a moving part that needs a gap. A part that can increase the gap to make assembly easier. A part that needs an appropriate gap even at high temperature.	A part requiring a lar of function. (Expands, position e (The fitting length is	ror is large.)	Fitting of piston ring and ring groove loose stop pin
Parts		Light rotation			d9	d9	There is a large clearance, or a part that needs a gap.	Try to lower the cost. (Production cost) (Maintenance cost)		Crank web and pin bearing (side) Exhaust valve casing and splash ring slide piston ring and ring groove
Parts are moved relatively	Clearance	otation		e7	e8	e9	There is a slightly large gap, or a moving part that needs a gap. Slightly large clearance, bearing part with good lubrication. High temperature, high speed, high load bearing part (advanced forced lubrication).	General rotation or s		Fitting of exhaust valve seat Main bearing for crankshaft General sliding section
tively		Rotation	f6	f7	f7 f8		There is a suitable clearance and fit can be exercised (fine fit). General temperature room bearing part for grease and oil lubrication.	A normal fit part. (Often decomposed)		Cooling type exhaust valve valve box insertion part General axis and bush Link device lever and bushing
		Rerotation	g5	g6			Continuous rotating part of light load precision equipment. A fit that allows for small gap movement (spikot, positioning). Precise sliding part.	Part that requires pre without rattling.	ecise exercise	Link device pin and lever Key and key groove Precise control valve stem
		Sliding	h5	h6	h7 h8	h9	If you use a lubricant you can move by hand (fitting in fine quality). Particularly precise sliding parts. A static part that is not important.			Fits the rim and the boss Fitting of a gear of a precise gear device
	_	Driving	h5 h6	js6			There is a slight interference in the mounting part. High precision positioning that prevents mutual movement during use. Fit to the extent that it can stand and disassemble with trees and lead hammers.		It is impossible to transmit force only by	Fitting between joint flanges Governor way and pin Fitting of gear rim and boss
	Intermediate fit	Driving	js5	k6			Fitting to the extent of using iron hammer / hand press for assembly / disassembly (keys and others are necessary to prevent rotation axis between parts). High precision positioning.	It can disassemble and assemble without damaging parts.	the fitting force of fitting.	Fastening of gear pump shaft and casing Reamer bolt
Parts	ť	ving	k5	m6			Assembly / disassembly is the same as above. High precision positioning where little clearance is not allowed.			Reamer bolt Hydraulic equipment Piston and shaft fixing Fitting of fitting flange and shaft
Parts cannot be moved relatively		Light press fitting	m5	n6			It requires considerable force to assemble and disassemble. High precision fixed mounting (Key and others are necessary for transmission of large torque).		lk assa ka	Flexible coupling and gear (passive side) High accuracy fit Intake valve, valve guide insertion
ved relatively		Press fitting	n5 n6	р6			Fitting that requires a large force for assembly / disassembly (key and others are required for transmission of large torque). However, in the case of non-ferrous components, the press-fitting force is lightly pressed. Standard press fitting fixation of iron and iron, bronze and copper.		It can be transmitted by the coupling force of small fitting force.	Intake valve, valve guide insertion Fixing the gear and shaft (small torque) Flexible joint shaft and gear (drive side)
	Interference fit	Stro	p5	r6			Assembly / disassembly is the same as above. For large-size parts, sintering, cold fitting, strong press fitting.	It is difficult to disassemble		Fitting and shaft
	nce fit	Strong press fitting, sintering fitting, cold fitting		s6			It is firmly fixed to each other, and the assembly	without damaging parts.	A considerable force can be transmitted by	Inserting and fixing of bearing bush
		intering fitting, co	r5	t6 u6 x6			requires sintering, cold fitting, and strong press fitting. It will be a permanent assembly without disassembly. In the case of a light alloy, it is press fit.		the fitting force of the fitting.	Inlet valve, insertion of valve seat Fitting flange and shaft fixing (large torque)
		ald fitting								Fastening of drive gear rim and boss Bearing bush fixed in

Dimensional Tolerance of Used for Most Fit Holes Extracted from JIS B0401 (1998)

■ Correlation table of standard dimension classification and hole tolerance area class

	n of reference ions (mm)								Tole	rance r	ange cl	ass of h	noles							
Over	Below	B10	C9	C10	D8	D9	D10	E7	E8	E9	F6	F7	F8	G6	G7	H6	H7	H8	H9	H10
-	3	+180 +140	+85 +60	+100 +60	+34 +20	+45 +20	+60 +20	+24 +14	+28 +14	+39 +14	+12 +6	+16 +6	+20 +6	+8 +2	+12 +2	+6 0	+10	+14 0	+25 0	+40 0
3	6	+188 +140	+100 +70	+118 +70	+48 +30	+60 +30	+78 +30	+32 +20	+38 +20	+50 +20	+18 +10	+22 +10	+28 +10	+12 +4	+16 +4	+8	+12 0	+18 0	+30	+48 0
6	10	+208 +150	+116 +80	+138 +80	+62 +40	+76 +40	+98 +40	+40 +25	+47 +25	+61 +25	+22 +13	+28 +13	+35 +13	+14 +5	+20 +5	+9 0	+15 0	+22 0	+36 0	+58 0
10	14	+220	+138	+165	+77	+93	+120	+50	+59	+75	+27	+34	+43	+17	+24	+11	+18	+27	+43	+70
14	18	+150	+95	+95	+50	+50	+50	+32	+32	+32	+16	+16	+16	+6	+6	0	0	0	0	0
18	24	+244	+162	+194	+98	+117	+149	+61	+73	+92	+33	+41	+53	+20	+28	+13	+21	+33	+52	+84
24	30	+160	+110	+110	+65	+65	+65	+40	+40	+40	+20	+20	+20	+7	+7	0	0	0	0	0
30	40	+270 +170	+182 +120	+220 +120	+119	+142	+180	+75	+89	+112	+41	+50	+64	+25	+34	+16	+25	+39	+62	+100
40	50	+280 +180	+192 +130	+230 +130	+80	+80	+80	+50	+50	+50	+25	+25	+25	+9	+9	0	0	0	0	0
50	65	+310 +190	+214 +140	+260 +140	+146	+174	+220	+90	+106	+134	+49	+60	+76	+29	+40	+19	+30	+46	+74	+120
65	80	+320 +200	+224 +150	+270 +150	+100	+100	+100	+60	+60	+60	+30	+30	+30	+10	+10	0	0	0	0	0
80	100	+360 +220	+257 +170	+310 +170	+174	+207	+260	+107	+126	+159	+58	+71	+90	+34	+47	+22	+35	+54	+87	+140
100	120	+380 +240	+267 +180	+320 +180	+120	+120	+120	+72	+72	+72	+36	+36	+36	+12	+12	0	0	0	0	0
120	140	+420 +260	+300 +200	+360 +200																
140	160	+440 +280	+310 +210	+370 +210	+208 +145	+245 +145	+305 +145	+125 +85	+148 +85	+185 +85	+68 +43	+83 +43	+106 +43	+39 +14	+54 +14	+25 0	+40	+63 0	+100 0	+160 0
160	180	+470 +310	+330 +230	+390 +230																
180	200	+525 +340	+355 +240	+425 +240																
200	225	+565 +380	+375 +260	+445 +260	+242 +170	+285 +170	+355 +170	+146 +100	+172 +100	+215 +100	+79 +50	+96 +50	+122 +50	+44 +15	+61 +15	+29	+46	+72 0	+115	+185
225	250	+605 +420	+395 +280	+465 +280																
250	280	+690 +480	+430 +300	+510 +300	+271	+320	+400	+162	+191	+240	+88	+108	+137	+49	+69	+32	+52	+81	+130	+210
280	315	+750 +540	+460 +330	+540 +330	+190	+190	+190	+110	+110	+110	+56	+56	+56	+17	+17	0	0	0	0	0
315	355	+830 +600	+500 +360	+590 +360	+299	+350	+440	+182	+214	+265	+98	+119	+151	+54	+75	+36	+57	+89	+140	+230
355	400	+910 +680	+540 +400	+630 +400	+210	+210	+210	+125	+125	+125	+62	+62	+62	+18	+18	0	0	0	0	0
400	450	+1010 +760	+595 +440	+690 +440	+327	+385	+480	+198	+232	+290	+108	+131	+165	+60	+83	+40	+63	+97	+155	+250
450	500	+1090 +840	+635 +480	+730 +480	+230	+230	+230	+135	+135	+135	+68	+68	+68	+20	+20	0	0	0	0	0

Remarks For each table, the upper side shows the upper dimensional tolerance and the lower side shows the lower dimensional tolerance.

Classificati	o of voforce															Units: µr
	n of reference ons (mm)						T	olerance	range cla	ss of hol	es					
Over	Below	JS6	JS7	K6	K7	M6	M7	N6	N7	P6	P7	R7	S7	T7	U7	X7
-	3	±3	±5	0 -6	0 -10	-2 -8	-2 -12	-4 -10	-4 -14	-6 -12	-6 -16	-10 -20	-14 -24	-	-18 -28	-20 -30
3	6	±4	±6	+2 -6	+3 -9	-1 -9	0 -12	-5 -13	-4 -16	-9 -17	-8 -20	-11 -23	-15 -27	-	-19 -31	-24 -36
6	10	±4.5	±7	+2 -7	+5 -10	-3 -12	0 -15	-7 -16	-4 -19	-12 -21	-9 -24	-13 -28	-17 -32	-	-22 -37	-28 -43
10	14	.55	±9	+2	+6	-4	0	-9	-5	-15	-11	-16	-21		-26	-33 -51
14	18	±5.5	Ξ9	-9	-12	-15	-18	-20	-23	-26	-29	-34	-39	-	-44	-38 -56
18	24	±6.5	±10	+2	+6	-4	0	-11	-7	-18	-14	-20	-27	-	-33 -54	-46 -67
24	30	±0.5	±10	-11	-15	-17	-21	-24	-28	-31	-35	-41	-48	-33 -54	-40 -61	-56 -77
30	40			+3	+7	-4	0	-12	-8	-21	-17	-25	-34	-39 -64	-51 -76	
40	50	±8	±12	-13	-18	-20	-25	-28	-33	-37	-42	-50	-59	-45 -70	-61 -86	-
50	65			+4	+9	-5	0	-14	-9	-26	-21	-30 -60	-42 -72	-55 -85	-76 -106	
65	80	±9.5	±15	-15	-21	-24	-30	-33	-39	-45	-51	-32 -62	-48 -78	-64 -94	-91 -121	-
80	100			+4	+10	-6	0	-16	-10	-30	-24	-38 -73	-58 -93	-78 -113	-111 -146	
100	120	±11	±17	-18	-25	-28	-35	-38	-45	-52	-59	-41 -76	-66 -101	-91 -126	-131 -166	-
120	140											-48 -88	-77 -117	-107 -147		
140	160	±12.5	±20	+4 -21	+12 -28	-8 -33	0 -40	-20 -45	-12 -52	-36 -61	-28 -68	-50 -90	-85 -125	-119 -159	-	-
160	180											-53 -93	-93 -133	-131 -171		
180	200											-60 -106	-105 -151			
200	225	±14.5	±23	+5 -24	+13 -33	-8 -37	0 -46	-22 -51	-14 -60	-41 -70	-33 -79	-63 -109	-113 -159	-	-	-
225	250											-67 -113	-123 -169			
250	280			+5	+16	-9	0	-25	-14	-47	-36	-74 -126				
280	315	±16	±26	-27	-36	-41	-52	-57	-66	-79	-88	-78 -130	-	-	-	-
315	355			+7	+17	-10	0	-26	-16	-51	-41	-87 -144				
355	400	±18	±28	-29	-40	-46	-57	-62	-73	-87	-98	-93 -150	-	-	-	-
400	450			+8	+18	-10	0	-27	-17	-55	-45	-103 -166				
450	500	±20	±31	-32	-45	-50	-63	-67	-80	-95	-108	-109 -172	-	-	-	-

Dimensional Tolerance of Used for Most Fit Holes Extracted from JIS B0401 (1998)

■ Correlation table of standard dimension classification and hole tolerance area class

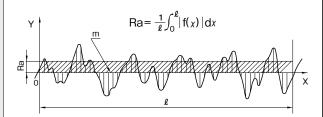
	n of reference							Tol	erance i	ange cla	ass of ho	oles						
Over	Below	b9	с9	d8	d9	e7	e8	e9	f6	f7	f8	g5	g6	h5	h6	h7	h8	h9
-	3	-140 -165	-60 -85	-20 -34	-20 -45	-14 -24	-14 -28	-14 -39	-6 -12	-6 -16	-6 -20	-2 -6	-2 -8	0 -4	0 -6	0 -10	0 -14	0 -25
3	6	-140 -170	-70 -100	-30 -48	-30 -60	-20 -32	-20 -38	-20 -50	-10 -18	-10 -22	-10 -28	-4 -9	-4 -12	0 -5	0 -8	0 -12	0 -18	0 -30
6	10	-150 -186	-80 -116	-40 -62	-40 -76	-25 -40	-25 -47	-25 -61	-13 -22	-13 -28	-13 -35	-5 -11	-5 -14	0 -6	0 -9	0 -15	0 -22	0 -36
10	14	-150	-95	-50	-50	-32	-32	-32	-16	-16	-16	-6	-6	0	0	0	0	0
14	18	-193	-138	-77	-93	-50	-59	-75	-27	-34	-43	-14	-17	-8	-11	-18	-27	-43
18	24	-160	-110	-65	-65	-40	-40	-40	-20	-20	-20	-7	-7	0	0	0	0	0
24	30	-212	-162	-98	-117	-61	-73	-92	-33	-41	-53	-16	-20	-9	-13	-21	-33	-52
30	40	-170 -232	-120 -182	-80	-80	-50	-50	-50	-25	-25	-25	-9	-9	0	0	0	0	0
40	50	-180 -242	-130 -192	-119	-142	-75	-89	-112	-41	-50	-64	-20	-25	-11	-16	-25	-39	-62
50	65	-190 -264	-140 -214	-100	-100	-60	-60	-60	-30	-30	-30	-10	-10	0	0	0	0	0
65	80	-200 -274	-150 -224	-146	-174	-90	-106	-134	-49	-60	-76	-23	-29	-13	-19	-30	-46	-74
80	100	-220 -307	-170 -257	-120	-120	-72	-72	-72	-36	-36	-36	-12	-12	0	0	0	0	0
100	120	-240 -327	-180 -267	-174	-207	-107	-126	-159	-58	-71	-90	-27	-34	-15	-22	-35	-54	-87
120	140	-260 -360	-200 -300															
140	160	-280 -380	-210 -310	-145 -208	-145 -245	-85 -125	-85 -148	-85 -185	-43 -68	-43 -83	-43 -106	-14 -32	-14 -39	0 -18	0 -25	0 -40	0 -63	0 -100
160	180	-310 -410	-230 -330															
180	200	-340 -455	-240 -355															
200	225	-380 -495	-260 -375	-170 -242	-170 -285	-100 -146	-100 -172	-100 -215	-50 -79	-50 -96	-50 -122	-15 -35	-15 -44	0 -20	0 -29	0 -46	0 -72	0 -115
225	250	-420 -535	-280 -395															
250	280	-480 -610	-300 -430	-190	-190	-110	-110	-110	-56	-56	-56	-17	-17	0	0	0	0	0
280	315	-540 -670	-330 -460	-271	-320	-162	-191	-240	-88	-108	-137	-40	-49	-23	-32	-52	-81	-130
315	355	-600 -740	-360 -500	-210	-210	-125	-125	-125	-62	-62	-62	-18	-18	0	0	0	0	0
355	400	-680 -820	-400 -540	-299	-350	-182	-214	-265	-98	-119	-151	-43	-54	-25	-36	-57	-89	-140
400	450	-760 -915	-440 -595	-230	-230	-135	-135	-135	-68	-68	-68	-20	-20	0	0	0	0	0
450	500	-840 -995	-480 -635	-327	-385	-198	-232	-290	-108	-131	-165	-47	-60	-27	-40	-63	-97	-155

Remarks For each table, the upper side shows the upper dimensional tolerance and the lower side shows the lower dimensional tolerance.

															Units: μr	
	n of reference ons (mm)						Toler	ance rang	e class of	holes						
Over	Below	js5	js6	js7	k5	k6	m5	m6	n6	р6	r6	s6	t6	иб	хб	
-	3	±2	±3	±5	+4 0	+6 0	+6 +2	+8 +2	+10 +4	+12 +6	+16 +10	+20 +14	-	+24 +18	+26 +20	
3	6	±2.5	±4	±6	+6 +1	+9 +1	+9 +4	+12 +4	+16 +8	+20 +12	+23 +15	+27 +19	-	+31 +23	+36 +28	
6	10	±3	±4.5	±7	+7 +1	+10 +1	+12 +6	+15 +6	+19 +10	+24 +15	+28 +19	+32 +23	-	+37 +28	+43 +34	
10	14					+9	+12	+15	+18	+23	+29	+34	+39		+44	+51 +40
14	18	±4	±5.5	±9	+1	+1	+7	+7	+12	+18	+23	+28	-	+33	+56 +45	
18	24				+11	+15	+17	+21	+28	+35	+41	+48	-	+54 +41	+67 +54	
24	30	±4.5	±6.5	±10	+2	+2	+8	+8	+15	+22	+28	+35	+54 +41	+61 +48	+77 +64	
30	40				+13	+18	+20	+25	+33	+42	+50	+59	+64 +48	+76 +60		
40	50	±5.5	±8	±12	+2	+2	+9	+9	+17	+26	+34	+43	+70 +54	+86 +70	-	
50	65				+15	+21	+24	+30	+39	+51	+60 +41	+72 +53	+85 +66	+106 +87		
65	80	±6.5		±9.5	±15	+2	+2	+11	+11	+20		+62 +43	+78 +59	+94 +75	+121 +102	-
80	100	±7.5			+18	+25	+28	+35	+45	+59	+73 +51	+93 +71	+113 +91	+146 +124		
100	120		±11	±17	+3	+3	+13	+13	+23	+37	+76 +54	+101 +79	+126 +104	+166 +144	-	
120	140										+88 +63	+117 +92	+147 +122			
140	160	±9	±12.5	±20	+21 +3	+28 +3	+33 +15	+40 +15	+52 +27	+68 +43	+90 +65	+125 +100	+159 +134	-	-	
160	180										+93 +68	+133 +108	+171 +146			
180	200										+106 +77	+151 +122				
200	225	±10	±14.5	±23	+24 +4	+33 +4	+37 +17	+46 +17	+60 +31	+79 +50	+109 +80	+159 +130	-	-	-	
225	250										+113 +84	+169 +140				
250	280				+27	+36	+43	+52	+66	+88	+126 +94					
280	315	±11.5	±16	±26	+4	+4	+43	+20	+34	+56	+130 +98	_	-	-	-	
315	355	±12.5			+29	+40	+46	+57	+73	+98	+144 +108					
355	400		±18	±28	+4	+40	+46	+21	+37	+62	+150 +114	_	-	-	-	
400	450				+32	+45	+50	+63	+80	+108	+166 +126					
450	500	±13.5	±20	±31	+52	+45	+50 +23	+63	+40	+108	+172 +132	_	-	-	-	

Surface Roughness Extracted from JIS B0601 (1994), JIS B0031 (1994)

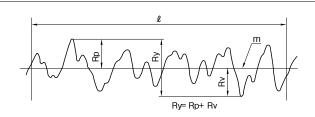
■ Types of Surface Roughness


Parameters representing the surface roughness of industrial products are defined as arithmetic average roughness (Ra), maximum height (Ry), ten-point mean roughness (Rz), average irregularities spacing (Sm), mean spacing of local peaks (S), and load length rate (tp). The surface roughness is the arithmetic mean value of each part randomly extracted from the surface of the object.

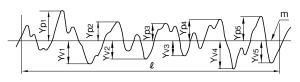
[Center line average roughness (Ra₇₅) is defined in the appendix of JIS B 0031 · JIS B 0601.]

How to obtain representative surface roughness

Arithmetic average roughness Ra


Extract only the reference length from the roughness curve in the direction of the average line and set the X axis in the direction of the average line of the extracted portion and the Y axis in the direction of the longitudinal magnification. Refers to a value obtained by the following equation expressed in micrometers (µm) when a roughness curve is expressed by y = f(x)

Maximum height Ry


From the roughness curve, extract only the reference length in the direction of the average line, measure the interval between the summit line and the valley line of this extracted portion in the direction of the longitudinal magnification of the roughness curve.

Remarks In the case of obtaining Ry, it extracts the reference length only from the portion which is out of the ordinary and which has no high mountain and low valley which is regarded as a flaw.

Ten point average roughness Rz

Extract only the reference length from the roughness curve in the direction of the average line. The average value of the absolute values of the altitudes (Yp) of the mountain peaks from the highest peak to the fifth highest measured from the average line of the extracted portion in the direction of the longitudinal magnification and the average value of the altitudes of the valleys at the lowest valley bottom (Yv), and the average of the absolute values of the absolute values. This value is expressed in micrometers (μ m).

Yp1+ Yp2+ Yp3+ Yp4+ Yp5+ | Yv1+ Yv2+ Yv3+ Yv4+ Yv5

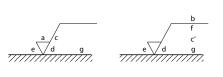
The elevation of the summit from the highest mountain peak to the fifth highest peak in the sampling length with respect to the reference

'V1 YV2 YV3 YV4 YV5

The elevation of the summit from the lowest mountain peak to the fifth lowest peak in the sampling length with respect to the reference length

Reference Relation between arithmetic average roughness (Ra) and conventional notation

		Arithmetic avera	age roughness Ra	Maximum height Ry Ten point average roughness Rz			Reference length	Conventional	
Standa sequen		Cutoff value entered c (mm)	Illustration of surface skin					of Ry · Rz ℓ (mm)	standard sequence
0.012	а	0.08		0.05	S	0.05	Z	0.08	
0.025	a	0.25		0.1	s	0.1	Z	0.08	
0.05	a	0.25	0.012/~ 0.2/	0.2	S	0.2	Z	0.25	$\nabla\nabla\nabla\nabla$
0.1	a			0.4	S	0.4	Z	0.25	
0.2	a			0.8	S	0.8	Z		
0.4	a	0.8	, ,	1.6	S	1.6	z		
0.8	a		0.4/ ~ 1.6/	3.2	S	3.2	z	0.8	$\nabla\nabla\nabla$
1.6	a		•	6.3	S	6.3	Z		
3.2	а	2.5	3.2/ ~ 6.3/	12.5	S	12.5	z		
6.3	a	2.5	3.2 ~ 6.3	25	S	25	z	2.5	$\nabla\nabla$
12.5	a	8	12.5/ ~ 25/	50	S	50	z		∇
25	a	ð	· 🛪 - 🕏	100	S	100	z	- 8	
50	a		50/ ~ 100/	200	S	200	z	8	
100	a	-	1.00	400	S	400	z	-	~

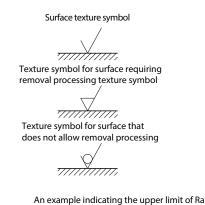

^{*}The three kinds of mutual relations represent relationships for convenience and are not strict.
*Ra: The evaluation length of Ry, Rz is a value obtained by multiplying the cutoff value and the reference length by 5 respectively.

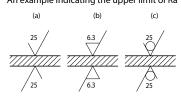
Diagrammatic Representation of Plane Surface Extracted from JIS B0031 (1994)

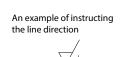
■The position of each instruction symbol with respect to the instruction symbol in the figure

Instruction marks related to the skin of the face are obtained by placing the value of the surface roughness, the cutoff value or the reference length, the processing method, the mark of the line direction, the surface waviness and the like at the position shown in FIG. 1 Represent

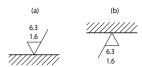
Fig. 1 Input position of each instruction symbol

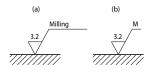

- a: Value of Ra
- b: Processing method
- c: cutoff value · evaluation length
- c ': Reference length / evaluation length
- d: Symbol of line direction
- f: Parameters other than Ra (parameter / disconnection level when tp)
- g: Surface waviness (according to JIS B 0610)

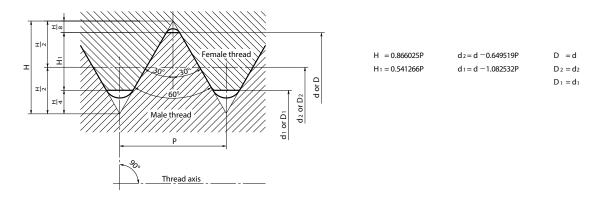

Remarks Please fill in as necessary except for a or f.


Reference In the reference e in Fig. 1, the finishing fee is to be filled in ISO 1302.

Symbol	Description	Illustration drawing
=	The direction of the stitch of the cutter by processing is parallel to the projection plane of the figure filled with the symbol Example Shaped surface	Direction of blade stitch
Т	The direction of the stitch of the cutter by machining is perpendicular to the projection plane of the drawing in which the symbol is written Example Shaped surface (state viewed from the side) Turning, cylindrical grinding surface	Direction of blade stitch
X	The direction of the stitch of the knife by machining diagonally crosses in two directions on the projection plane of the figure in which the symbol is written Example Honing surface	Direction of blade stitch
М	Cutting stitch of the cutter by processing intersects or diverges in many directions Example Lapped surface, superfinished surface, Front-face milling with cross-feed, or end mill cutting surface	#####################################
С	The stitch of the cutter by machining is almost concentric with the center of the face on which the symbol is written Example Surface ground surface	
R	Approximately radial shape of the blade stitch by machining against the center of the face on which the symbol is written	₩


■ Illustrated example of skin of the face

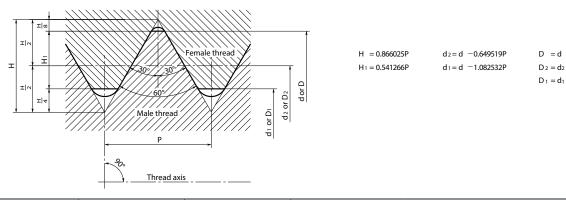




Example of instructing processing method

Metric Coarse Thread Extracted from JIS B0205 (1997) (Previous standard)

■ Metric coarse thread reference chevron, official and standard dimensions

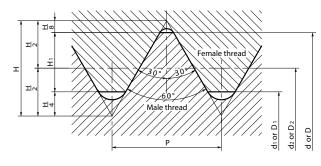

Unit: mm

Thread type*					Female thread					
'	пгеац туре	:"	Pitch	Height of snag	Diameter of valley D	Effective diameter D ₂	Inner diameter D ₁			
1	2 1	2	Р	Н1	Male thread					
1 column	2 column	3 column			Outer diameter d	Effective diameter D ₂	Diameter of valley d ₁			
M1			0.25	0.135	1.000	0.838	0.729			
	M1.1		0.25	0.135	1.100	0.938	0.829			
M1.2			0.25	0.135	1.200	1.038	0.929			
	M1.4		0.3	0.162	1.400	1.205	1.075			
M1.6	M1.8		0.35 0.35	0.189 0.189	1.600 1.800	1.373 1.573	1.221 1.421			
	1011.0									
M2	M2.2		0.4 0.45	0.217 0.244	2.000	1.740	1.567			
M2.5	IVIZ.Z		0.45	0.244	2.200 2.500	1.908 2.208	1.713 2.013			
M3	M3.5		0.5 0.6	0.271 0.325	3.000 3.500	2.675 3.110	2.459 2.850			
M4	1015.5		0.7	0.379	4.000	3.545	3.242			
	M4.5		0.75	0.406	4.500	4.013	3.688			
M5			0.8	0.433	5.000	4.480	4.134			
M6			1	0.541	6.000	5.350	4.917			
		M7	1	0.541	7.000	6.350	5.917			
M8		,	1.25	0.677	8.000	7.188	6.647			
		М9	1.25	0.677	9.000	8.188	7.647			
M10			1.5	0.812	10.000	9.026	8.376			
		M11	1.5	0.812	11.000	10.026	9.376			
M12			1.75	0.947	12.000	10.863	10.106			
	M14		2	1.083	14.000	12.701	11.835			
M16			2	1.083	16.000	14.701	13.835			
	M18		2.5	1.353	18.000	16.376	15.294			
M20			2.5	1.353	20.000	18.376	17.294			
	M22		2.5	1.353	22.000	20.376	19.294			
M24			3	1.624	24.000	22.051	20.752			
	M27		3	1.624	27.000	25.051	23.752			
M30	1422		3.5	1.894	30.000	27.727	26.211			
	M33		3.5	1.894	33.000	30.727	29.211			
M36	1420		4	2.165	36.000	33.402	31.670			
M42	M39		4 4.5	2.165 2.436	39.000 42.000	36.402 39.077	34.670 37.129			
IVI4Z	1115									
M48	M45		4.5 5	2.436 2.706	45.000 48.000	42.077 44.752	40.129 42.587			
10140	M52		5 5	2.706	52.000	44.752 48.752	42.587			
M56	11132		5.5	2.977		52.428	50.046			
IVIDO	M60		5.5 5.5	2.977	56.000 60.000	52.428 56.428	50.046			
M64	11100		6	3.248	64.000	60.103	57.505			
	M68		6	3.248	68.000	64.103	61.505			

 $[\]mbox{*}$ Select the 1 column preferentially, if necessary, in the 2nd and 3rd columns.

Metric Fine Thread Extracted from JIS B0207 (1982) (Previous standard)

■ Metric fine thread standard chevron, official and standard dimensions



Unit: mm

			Female thread					
_, ,	Pitch	Height of snag	Diameter of valley D	Effective diameter D2	Inner diameter D ₁			
Thread type	Р	H1	Male thread					
			Outer diameter d	Effective diameter d2	Diameter of valley d1			
M1×0.2	0.2	0.108	1.000	0.870	0.783			
M1.1×0.2	0.2	0.108	1.100	0.970	0.883			
M1.2×0.2	0.2	0.108	1.200	1.070	0.983			
M1.4×0.2	0.2	0.108	1.400	1.270	1.183			
M1.6×0.2	0.2	0.108	1.600	1.470	1.383			
M1.8×0.2	0.2	0.108	1.800	1.670	1.583			
M2×0.25	0.25	0.135	2.000	1.838	1.729			
M2.2×0.25	0.25	0.135	2.200	2.038	1.929			
M2.5×0.35	0.35	0.189	2.500	2.273	2.121			
M3×0.35	0.35	0.189	3.000	2.773	2.621			
M3.5×0.35	0.35	0.189	3.500	3.273	3.121			
M4×0.5	0.5	0.271	4.000	3.675	3.459			
M4.5×0.5	0.5	0.271	4.500	4.175	3.959			
M5×0.5	0.5	0.271	5.000	4.675	4.459			
M5.5×0.5	0.5	0.271	5.500	5.175	4.959			
M6×0.75	0.75	0.406	6.000	5.513	5.188			
M7×0.75	0.75	0.406	7.000	6.513	6.188			
M8×1	1	0.541	8.000	7.350	6.917			
M8×0.75	0.75	0.406	8.000	7.513	7.188			
M9×1	1	0.541	9.000	8.350	7.917			
M9×0.75	0.75	0.406	9.000	8.513	8.188			
M10×1.25	1.25	0.677	10.000	9.188	8.647			
M10×1	1	0.541	10.000	9.350	8.917			
M10×0.75	0.75	0.406	10.000	9.513	9.188			
M11×1	1	0.541	11.000	10.350	9.917			
M11×0.75	0.75	0.406	11.000	10.513	10.188			
M12×1.5	1.5	0.812	12.000	11.026	10.376			
M12×1.25	1.25	0.677	12.000	11.188	10.647			
M12×1	1	0.541	12.000	11.350	10.917			
M14×1.5	1.5	0.812	14.000	13.026	12.376			
M14×1.25	1.25	0.677	14.000	13.188	12.647			
M14×1	1	0.541	14.000	13.350	12.917			
M15×1.5	1.5	0.812	15.000	14.026	13.376			
M15×1 M16×1.5	1 1,5	0.541 0.812	15.000 16.000	14.350 15.026	13.917 14.376			
M16×1.5	1.5 1	0.541	16.000	15.350	14.376			
M16×1 M17×1.5	1.5	0.812	17.000	16.026	15.376			
M17×1	1.5	0.541	17.000	16.350	15.917			
M17×1	2	1.083	18.000	16.701	15.835			
M18×1.5	1.5	0.812	18.000	17.026	16.376			
M18×1	1	0.541	18.000	17.350	16.917			
M20×2	2	1.083	20.000	18.701	17.835			
M20×1.5	1.5	0.812	20.000	19.026	18.376			
M20×1	1	0.541	20.000	19.350	18.917			
M22×2	2	1.083	22.000	20.701	19.835			
M22×1.5	1.5	0.812	22.000	21.026	20.376			
M22×1	1	0.541	22.000	21.350	20.917			
M24×2	2	1.083	24.000	22.701	21.835			
M24×1.5	1.5	0.812	24.000	23.026	22.376			
M24×1	1	0.541	24.000	23.350	22.917			

Unified Coarse Thread/Fine Thread Extracted from JIS B0206 (1973), JIS B0208 (1973)

■ Unified coarse / fine thread standard chevron, official and standard dimensions

$$H = \frac{25.4}{n} \qquad H = \frac{0.866025}{n} \times 25.4 \qquad d = (d) \times 25.4 \qquad D = d$$

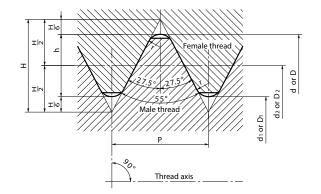
$$H_1 = \frac{0.541266}{n} \times 25.4 \qquad d_2 = \left(d - \frac{0.649519}{n} \right) \times 25.4 \qquad D_2 = d_2$$

$$d_1 = \left(d - \frac{1.082532}{n} \right) \times 25.4 \qquad D_1 = d_1$$

n: 25.4mm of Thread height

Unified coarse thread

Unified Coarse thre	eau							Unit: mm	
	Thread type*					Female thread			
	Thread type"		Number of threads	Pitch P	Height of snag	Diameter of valley D	Effective diameter D ₂	Inner diameter D ₁	
1	2	(reference)	(Per 25.4 mm)	er 25.4 mm) (reference)		Male thread			
'	2	(reference)	"			Outer diameter d	Effective diameter d2	Diameter of valley d ₁	
	No. 1-64 UNC	0.0730-64 UNC	64	0.3969	0.215	1.854	1.598	1.425	
No. 2 - 56 UNC		0.0860-56 UNC	56	0.4536	0.246	2.184	1.890	1.694	
	No. 3-48 UNC	0.0990-48 UNC	48	0.5292	0.286	2.515	2.172	1.941	
No. 4 - 40 UNC		0.1120-40 UNC	40	0.6350	0.344	2.845	2.433	2.156	
No. 5 - 40 UNC		0.1250-40 UNC	40	0.6350	0.344	3.175	2.764	2.487	
No. 6 - 32 UNC		0.1380-32 UNC	32	0.7938	0.430	3.505	2.990	2.647	
No. 8 - 32 UNC		0.1640-32 UNC	32	0.7938	0.430	4.166	3.650	3.307	
No. 10 - 24 UNC		0.1900-24 UNC	24	1.0583	0.573	4.826	4.138	3.680	
	No.12-24 UNC	0.2160-24 UNC	24	1.0583	0.573	5.486	4.798	4.341	
1/4 - 20 UNC		0.2500-20 UNC	20	1.2700	0.687	6.350	5.524	4.976	
⁵ / ₁₆ - 18 UNC		0.3125-18 UNC	18	1.4111	0.764	7.938	7.021	6.411	
3/8 - 16 UNC		0.3750-16 UNC	16	1.5875	0.859	9.525	8.494	7.805	
7/16 - 14 UNC		0.4375-14 UNC	14	1.8143	0.982	11.112	9.934	9.149	
1/2 - 13 UNC		0.5000-13 UNC	13	1.9538	1.058	12.700	11.430	10.584	
⁹ / ₁₆ - 12 UNC		0.5625-12 UNC	12	2.1167	1.146	14.288	12.913	11.996	
5/8 - 11 UNC		0.6250-11 UNC	11	2.3091	1.250	15.875	14.376	13.376	
3/4 - 10 UNC		0.7500-10 UNC	10	2.5400	1.375	19.050	17.399	16.299	
⁷ /8 - 9 UNC		0.8750- 9 UNC	9	2.8222	1.528	22.225	20.391	19.169	
1 - 8 UNC		1.0000- 8 UNC	8	3.1750	1.719	25.400	23.338	21.963	
1 ¹ /8 - 7 UNC		1.1250- 7 UNC	7	3.6286	1.964	28.575	26.218	24.648	
1 ¹ /8 - 7 UNC		1.2500- 7 UNC	7	3.6286	1.964	31.750	29.393	27.823	


^{*} Select the 1 column preferentially, if necessary, in the 2nd.In the reference column, the designation of the screw is shown in decimal form.

Unified fine thread Unit: mm No. 0 - 80 UNF 0.0600-80 UNF 80 0.3175 0.172 1.524 1.318 1.181 No. 1-72 UNF 0.0730-72 UNF 72 0.3528 0.191 1.854 1.626 1.473 No. 2 - 64 UNF 0.0860-64 UNF 64 0.3969 0.215 2.184 1.928 1.755 No. 3-56 UNF 0.0990-56 UNF 56 0.4536 0.246 2.515 2.220 2.024 No. 4 - 48 UNF 0.1120-48 UNF 48 0.5292 0.286 2.845 2.502 2.271 No. 5 - 44 UNF 0.1250-44 UNF 44 0.5773 0.312 3.175 2.799 2.550 No. 6 - 40 UNF 0.1380-40 UNF 40 0.6350 0.344 3.505 3.094 2.817 No. 8 - 36 UNF 0.1640-36 UNF 36 0.7056 0.382 4.166 3.708 3.401 No. 10 - 32 UNF 0.1900-32 UNF 32 0.7938 0.430 4.826 4.310 3.967 No.12-28 UNF 0.2160-28 UNF 28 0.9071 0.491 5.486 4.897 4.503 1/4 - 28 UNF 0.2500-28 UNF 28 0.9071 0.491 6.350 5.761 5.367 ⁵/₁₆ - 24 UNF 0.3125-24 UNF 24 1.0583 0.573 7.938 7.249 6.792 3/8 - 24 UNF 0.3750-24 UNF 24 1.0583 9.525 8.379 0.573 8.837 7/16 - 20 UNF 0.4375-20 UNF 20 1.2700 0.687 11.112 10.287 9.738 1/2 - 20 UNF0.5000-20 UNF 20 1.2700 0.687 12,700 11.874 11.326 9/16 - 18 UNF 0.5625-18 UNF 18 1.4111 0.764 14.288 13.371 12.761 ⁵/8 - 18 UNF 0.6250-18 UNF 18 1.4111 0.764 15.875 14.958 14.348 3/4 - 16 UNF 0.7500-16 UNF 16 1.5875 0.859 19.050 18.019 17.330 ⁷/8 - 14 UNF 0.8750-14 UNF 14 1.8143 0.982 22.225 21.046 20.262 1 - 12 UNF 1.0000-12 UNF 12 2.1167 25.400 24.026 23.109 1.146 1.1250-12 UNF 2.1167 1.146 28.575 27.201 26.284

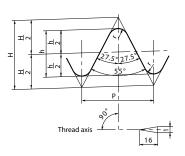
^{*} Select the 1 column preferentially, if necessary, in the 2nd. In the reference column, the designation of the screw is shown in decimal form.

Parallel Thread for Pipe Extracted from JIS B0202 (1999)

■ Standard chevron shape of parallel threads for pipes, official and standard dimensions

$$P = \frac{25.4}{n}$$
H = 0.960491 P
h = 0.640327 P
r = 0.137329 P
d₂ = d - h
D₁ = d₁
D₁ = d₁

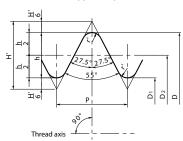
Unit: mm


	N 1 6			D 1 6 1		Male thread	
Thursday to use	Number of threads	Pitch P	Thread height	Round of peaks and valleys of	Outer diameter d	Effective diameter d2	Diameter of valley d1
Thread type	(Per 25.4 mm)	(reference)	h	mountains		Female thread	
	n			r	Diameter of valley D	Effective diameter D ₂	Inner diameter D ₁
G ¹ /16	28	0.9071	0.581	0.12	7.723	7.142	6.561
G1/8	28	0.9071	0.581	0.12	9.728	9.147	8.566
G1/4	19	1.3368	0.856	0.18	13.157	12.301	11.445
G ³ /8	19	1.3368	0.856	0.18	16.662	15.806	14.950
G ¹ /2	14	1.8143	1.162	0.25	20.955	19.793	18.631
G ⁵ /8	14	1.8143	1.162	0.25	22.911	21.749	20.587
G ³ / ₄	14	1.8143	1.162	0.25	26.441	25.279	24.117
G ⁷ /8	14	1.8143	1.162	0.25	30.201	29.039	27.877
G1	11	2.3091	1.479	0.32	33.249	31.770	30.291
G1 ¹ /8	11	2.3091	1.479	0.32	37.897	36.418	34.939
G1 ¹ / ₄	11	2.3091	1.479	0.32	41.910	40.431	38.952
G1 ¹ /2	11	2.3091	1.479	0.32	47.803	46.324	44.845
G1 ³ / ₄	11	2.3091	1.479	0.32	53.746	52.267	50.788
G2	11	2.3091	1.479	0.32	59.614	58.135	56.656
G2 ¹ / ₄	11	2.3091	1.479	0.32	65.710	64.231	62.752
G21/2	11	2.3091	1.479	0.32	75.184	73.705	72.226
G2 ³ / ₄	11	2.3091	1.479	0.32	81.534	80.055	78.576
G3	11	2.3091	1.479	0.32	87.884	86.405	84.926
G3 ¹ / ₂	11	2.3091	1.479	0.32	100.330	98.851	97.372
G4	11	2.3091	1.479	0.32	113.030	111.551	110.072
G41/2	11	2.3091	1.479	0.32	125.730	124.251	122.772
G5	11	2.3091	1.479	0.32	138.430	136.951	135.472
G5 ¹ /2	11	2.3091	1.479	0.32	151.130	149.651	148.172
G6	11	2.3091	1.479	0.32	163.830	162.351	160.872

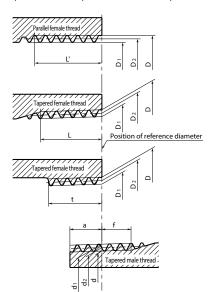
Taper Thread for Pipe Extracted from JIS B0203 (1999)

■ Standard chevron shape of pipe taper thread, official and standard size

Standard chevron applicable to taper male thread and taper female thread


Fitting of taper thread with tapered female thread or parallel female thread

The thick solid line indicates


H = 0.960 237 P = 0.640 327 P = 0.137 278 P

Standard chevrons to be applied to parallel internal threads

The thick solid line indicates

$$P = \frac{25.4}{n}$$
H' = 0.960 491 P
h = 0.640 327 P
r' = 0.137 329 P

Unit: mm

		ねじ	Щ		Re	ference diame	ter	Position o	of reference	diameter		Effecti	ve thread le	ngth (m	inimum)		
					N	∕lale threa	d	Male t	hread	Female thread		Male thread	F	emale threa	ıd		
					Outer diameter	Effective diameter	Diameter of valley	From tl er		Pipe end			When thei incomp thread po	lete	When there is no incomplete thread	carbo pipe fo	sions of on steel or piping rence)
*1 Thread type	Number of threads (Per	Pitch P (reference)	Mountain Height h	Roundness r or	d	d2 male three	dı dı				Tolerance of D, D ₂ and D ₁ of parallel internal	From the position of the reference diameter	Taper female thread	Parallel female thread	Taper female thread, Parallel female thread	(icic	refice)
	25.4 mm) n			r'	Diameter of valley D	Effective diameter D2	Inner diameter D1	Length of reference a	Axis direction Tolerance b	Axis direction Tolerance C	thread	toward the larger diameter side, f	From the position of the reference diameter toward the smaller diameter side,	From the pipe or pipe joint end l'	*2 t	Outline	Thickness
R ¹ /16 R ¹ /8	28 28	0.9071 0.9071	0.581 0.581	0.12 0.12	7.723 9.728	7.142 9.147	6.561 8.566	3.97 3.97	±0.91 ±0.91	±1.13 ±1.13	±0.071 ±0.071	2.5 2.5	6.2 6.2	7.4 7.4	4.4 4.4	- 10.5	- 2.0
R ¹ / ₄	19	1.3368	0.856	0.12	13.157	12.301	11.445	6.01	±0.91 ±1.34	±1.13 ±1.67	±0.071 ±0.104	3.7	9.4	11.0	6.7	13.8	2.3
R ³ /8 R ¹ /2	19 14	1.3368 1.8143	0.856 1.162	0.18 0.25	16.662 20.955	15.806 19.793	14.950 18.631	6.35 8.16	±1.34 ±1.81	±1.67 ±2.27	±0.104 ±0.142	3.7 5.0	9.7 12.7	11.4 15.0	7.0 9.1	17.3 21.7	2.3 2.8
R ³ / ₄	14	1.8143	1.162	0.25	26.441	25.279	24.117	9.53	±1.81	±2.27 ±2.27	±0.142 ±0.142	5.0	14.1	16.3	10.2	27.2	2.8
R1 R1 ¹ / ₄ R1 ¹ / ₂	11 11 11	2.3091 2.3091 2.3091	1.479 1.479 1.479	0.32 0.32 0.32	33.249 41.910 47.803	31.770 40.431 46.324	30.291 38.952 44.845	10.39 12.70 12.70	±2.31 ±2.31 ±2.31	±2.89 ±2.89 ±2.89	±0.181 ±0.181 ±0.181	6.4 6.4 6.4	16.2 18.5 18.5	19.1 21.4 21.4	11.6 13.4 13.4	34 42.7 48.6	3.2 3.5 3.5
R2 R2 ¹ / ₂ R3	11 11 11	2.3091 2.3091 2.3091	1.479 1.479 1.479	0.32 0.32 0.32	59.614 75.184 87.884	58.135 73.705 86.405	56.656 72.226 84.926	15.88 17.46 20.64	±2.31 ±3.46 ±3.46	±2.89 ±3.46 ±3.46	±0.181 ±0.216 ±0.216	7.5 9.2 9.2	22.8 26.7 29.8	25.7 30.1 33.3	16.9 18.6 21.1	60.5 76.3 89.1	3.8 4.2 4.2
R4 R5 R6	11 11 11	2.3091 2.3091 2.3091	1.479 1.479 1.479	0.32 0.32 0.32	113.030 138.430 163.830	111.551 136.951 162.351	110.072 135.472 160.872	25.40 28.58 28.58	±3.46 ±3.46 ±3.46	±3.46 ±3.46 ±3.46	±0.216 ±0.216 ±0.216	10.4 11.5 11.5	35.8 40.1 40.1	39.3 43.5 43.5	25.9 29.3 29.3	114.3 139.8 165.2	4.5 4.5 5.0

^{* 1} This is for taper threads. For tapered female threads and parallel female threads, let R be R or RP.
* 2 The length of the tapered screw from the position of the reference diameter toward the smaller diameter side, and the parallel female thread length from the end of the pipe or pipe joint.

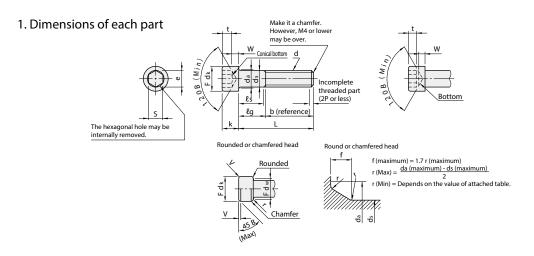
Hardness Conversion Table SAE J417 * Revised in 1983

■ Approximate conversion value for steel Rockwell C hardness (1)

(HRC)		10	hardness (HB) mm ball d 3000 kgf	Ro	ckwell hardness	5 (3)		ell Super Sup Hardness nd conical ir			Tensile strength	Rockwell C
Rockwell C scale hardness	(HV) Vickers hardness	Standard ball	Tungsten Carbide ball	(HRA) A scale Load 60 kgf Diamond conical indenter	(HRB) B scale Load 100 kgf Diameter 1.6 mm (1/16 in) ball	(HRD) D scale Load 100 kgf Diamond conical indenter	15-N scale load 15 kgf	30-N scale load 30 kgf	45-N scale load 45 kgf	(Hs) Shore hardness	(approximate value) MPa (kgf/mm²)	scale hardness (3)
68	940	-	-	85.6	-	76.9	93.2	84.4	75.4	97	-	68
67	900	-	-	85.0	-	76.1	92.9	83.6	74.2	95	-	67
66	865	-	-	84.5	-	75.4	92.5	82.8	73.3	92	-	66
65	832	-	(739)	83.9	-	74.5	92.2	81.9	72.0	91	-	65
64	800 772	-	(722) (705)	83.4 82.8	-	73.8 73.0	91.8 91.4	81.1 80.1	71.0 69.9	88 87	-	64 63
62	746	-	(688)	82.3	-	73.0	91.4	79.3	68.8	85	-	62
61	720		(670)	81.8	-	71.5	90.7	78.4	67.7	83	-	61
60	697	-	(654)	81.2	-	70.7	90.2	77.5	66.6	81	-	60
59	674	-	(634)	80.7	-	69.9	89.8	76.6	65.5	80	-	59
58	653	-	615	80.1	-	69.2	89.3	75.7	64.3	78	-	58
57	633	-	595	79.6	-	68.5	88.9	74.8	63.2	76	-	57
56	613	-	577	79.0	-	67.7	88.3	73.9	62.0	75	-	56
55	595	-	560	78.5	-	66.9	87.9	73.0	60.9	74	2075(212)	55
54	577	-	543	78.0	-	66.1	87.4	72.0	59.8	72	2015(205)	54
53	560	- (500)	525	77.4	-	65.4	86.9	71.2	58.5	71	1950(199)	53
52 51	544 528	(500) (487)	512 496	76.8 76.3	-	64.6 63.8	86.4 85.9	70.2 69.4	57.4 56.1	69 68	1880(192) 1820(186)	52 51
50	513	(487)	481	75.9	-	63.1	85.5	68.5	55.0	67	1760(179)	50
49	498	(464)	469	75.2	-	62.1	85.0	67.6	53.8	66	1695(173)	49
48	484	451	455	74.7	-	61.4	84.5	66.7	52.5	64	1635(167)	48
47	471	442	443	74.1	-	60.8	83.9	65.8	51.4	63	1580(161)	47
46	458	432	432	73.6	-	60.0	83.5	64.8	50.3	62	1530(156)	46
45	446	421	421	73.1	-	59.2	83.0	64.0	49.0	60	1480(151)	45
44	434	409	409	72.5	-	58.5	82.5	63.1	47.8	58	1435(146)	44
43	423	400	400	72.0	-	57.7	82.0	62.2	46.7	57	1385(141)	43
42	412	390	390	71.5	-	56.9	81.5	61.3	45.5	56	1340(136)	42
41	402	381	381	70.9	-	56.2	80.9	60.4	44.3	55	1295(132)	41
40	392	371	371	70.4	-	55.4	80.4	59.5	43.1	54	1250(127)	40
39	382 372	362 353	362 353	69.9 69.4	-	54.6 53.8	79.9 79.4	58.6 57.7	41.9 40.8	52 51	1215(124) 1180(120)	39 38
37	363	344	344	68.9	-	53.1	79.4	56.8	39.6	50	1160(120)	37
36	354	336	336	68.4	(109.0)	52.3	78.3	55.9	38.4	49	1115(114)	36
35	345	327	327	67.9	(108.5)	51.5	77.7	55.0	37.2	48	1080(110)	35
34	336	319	319	67.4	(108.0)	50.8	77.2	54.2	36.1	47	1055(108)	34
33	327	311	311	66.8	(107.5)	50.0	76.6	53.3	34.9	46	1025(105)	33
32	318	301	301	66.3	(107.0)	49.2	76.1	52.1	33.7	44	1000(102)	32
31	310	294	294	65.8	(106.0)	48.4	75.6	51.3	32.7	43	980(100)	31
30	302	286	286	65.3	(105.5)	47.7	75.0	50.4	31.3	42	950(97)	30
29	294	279	279	64.7	(104.5)	47.0	74.5	49.5	30.1	41	930(95)	29
28	286	271	271	64.3	(104.0)	46.1	73.9	48.6	28.9	41	910(93)	28
27	279	264	264	63.8	(103.0)	45.2	73.3	47.7	27.8	40	880(90) 860(88)	27
26 25	272 266	258 253	258 253	63.3 62.8	(102.5)	44.6 43.8	72.8 72.2	46.8 45.9	26.7 25.5	38	860(88) 840(86)	26 25
24	260	247	247	62.4	(101.5)	43.0	71.6	45.9	24.3	37	825(84)	24
23	254	243	243	62.0	100.0	42.1	71.0	44.0	23.1	36	805(82)	23
22	248	237	237	61.5	99.0	41.6	70.5	43.2	22.0	35	785(80)	22
21	243	231	231	61.0	98.5	40.9	69.9	42.3	20.7	35	770(79)	21
20	238	226	226	60.5	97.8	40.1	69.4	41.5	19.6	34	760(77)	20
(18)	230	219	219	-	96.7	-	-	-	-	33	730(75)	(18)
(16)	222	212	212	-	95.5	-	-	-	-	32	705(72)	(16)
(14)	213	203	203	-	93.9	-	-	-	-	31	675(69)	(14)
(12)	204	194	194	-	92.3	-	-	-	-	29	650(66)	(12)
(10)	196	187	187	-	90.7	-	-	-	-	28	620(63)	(10)
(8)	188	179 171	179 171	-	89.5 87.1	-	-	-	-	27 26	600(61) 580(59)	(8)
(4)	173	165	165	-	85.5	-	-	-	-	25	550(56)	(4)
(2)	166	158	158	-	83.5	-	-	-	-	24	530(54)	(2)
(0)	160	152	152	-	81.7	-	-	-	-	24	515(53)	(0)
						Note (1) Blue num	hore are based	ACTM F 140	Table 1 (CAE AC			

Note (1) Blue numbers are based on ASTM E 140 Table 1 (SAE, ASM, ASTM jointly adjusted).

(2) Units and numerical values shown with parentheses () are converted from psi by JIS Z 8413 and Z 8438 conversion tables. Note that 1 MPa = 1 N / mm²


(3) Parentheses in the table Numbers in parentheses () are those which are not used much and are shown as reference.

Hexagon Socket Head Cap Screw

Extracted from JIS B 1776 (2006)

■ Correlation table of classification of reference dimension and tolerance range class of axis

Unit: mm

	Thread ty	oe(d)15	МЗ	M4	M5	M6	M8	M10	M12	(M14)	M16	(M18)	M20	(M22)	M24	(M27)	M30
	Screw Pitc	h (P)14	0.5	0.7	0.8	1	1.25	1.5	1.75	2	2	2.5	2.5	2.5	3	3	3.5
b	Refe	rence	18	20	22	24	28	32	36	40	44	48	52	56	60	66	72
	Maximum (refer	ence dimension)*	5.5	7	8.5	10	13	16	18	21	24	27	30	33	36	40	45
dk	Maxin	num**	5.68	7.22	8.72	10.22	13.27	16.27	18.27	21.33	24.33	27.33	30.33	33.39	36.39	40.39	45.39
	Mini	mum	5.32	6.78	8.28	9.78	12.73	15.73	17.73	20.67	23.67	26.67	29.67	32.61	35.61	39.61	44.61
da	Maxi	mum	3.6	4.7	5.7	6.8	9.2	11.2	13.7	15.7	17.7	20.2	22.4	24.4	26.4	30.4	33.4
ds	Maximum (refer	ence dimension)	3	4	5	6	8	10	12	14	16	18	20	22	24	27	30
us	Mini	mum	2.86	3.82	4.82	5.82	7.78	9.78	11.73	13.73	15.73	17.73	19.67	21.67	23.67	26.67	29.67
е	Mini	mum	2.87	3.44	4.58	5.72	6.86	9.15	11.43	13.72	16.00	16.00	19.44	19.44	21.73	21.73	25.15
f	Maxi	mum	0.51	0.60	0.60	0.68	1.02	1.02	1.45	1.45	1.45	1.87	2.04	2.04	2.04	2.89	2.89
k	Maximum (refer	ence dimension)	3	4	5	6	8	10	12	14	16	18	20	22	24	27	30
,	Mini	mum	2.86	3.82	4.82	5.70	7.64	9.64	11.57	13.57	15.57	17.57	19.48	21.48	23.48	26.48	29.48
r	Mini	mum	0.1	0.2	0.2	0.25	0.4	0.4	0.6	0.6	0.6	0.6	0.8	0.8	0.8	1	1
	Type (standa	rd dimension)	2.5	3	4	5	6	8	10	12	14	14	17	17	19	19	22
s	Mini	mum	2.52	3.02	4.02	5.02	6.02	8.025	10.025	12.032	14.032	14.032	17.050	17.050	19.065	19.065	22.065
3	Maximum	1st column	2.580	3.080	4.095	5.140	6.140	8.175	10.175	12.212	14.212	14.212	17.230	17.230	19.275	19.275	22.275
	IVIAXIIIIUIII	2nd column	2.560	3.080	4.095	5.095	6.095	8.115	10.115	12.142	14.142	14.142	17.230	17.230	19.273	19.273	22.273
t	Mini	mum	1.3	2	2.5	3	4	5	6	7	8	9	10	11	12	13.5	15.5
v	Maxi	mum	0.3	0.4	0.5	0.6	0.8	1	1.2	1.4	1.6	1.8	2	2.2	2.4	2.7	3
dw	Mini	mum	5.07	6.53	8.03	9.38	12.33	15.33	17.23	20.17	23.17	25.87	28.87	31.81	34.81	38.61	43.61
w	Mini	mum	1.15	1.4	1.9	2.3	3.3	4	4.8	5.8	6.8	7.7	8.6	9.5	10.4	12.1	13.1

The first column of s (maximum) is applied to those of strength classes 8.8 and 10.9 and those of property class A2-50, A2-70, and the second column is applied to those of intensity class 12.9. However, according to the agreement between the delivering parties, one column can be applied to those with an intensity class of 12.9. In addition, s (maximum) of screw nominal M 20 or more is applied to all strength classifications and property classifications.

Note(15) Do not use screw brackets with parentheses as much as possible.

Remarks 1. On the side of the head, attach a knurl or a knurled knurl [see JIS B 0951 (knurled eye)]. In this case, dK (maximum) shall be the value of the ** mark shown in this table.

Also, if you need something without knurling, the ordering person specifies. However, its dK (maximum) shall be the value of * indicated in this table.

2. Recommended nominal length (ℓ) for screw calls shall be within the bold frame.

If ℓ is shorter than the position indicated by the dotted line, all threads shall be used, and the incomplete thread length at the neck lower portion shall be about 3P.

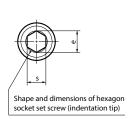
3. ℓ g (maximum) and ℓ s (minimum) for those whose nominal length (ℓ) is longer than the position indicated by the dotted line are given by the following expressions. ℓ_g (max) = call length (ℓ) - b

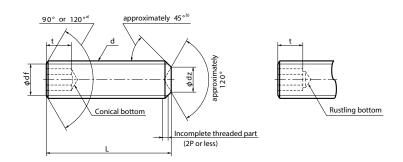
 ℓ_s (minimum) = ℓ_g (maximum) - 5P

DV

Reference: Dimensions of	of the hole and holt hole	s for hexagon-slotted bolts

Refe	rence: Dimensions	of the ho	ole and b	oft notes	for nexa	igon-sio	ted bolt	S								Jnit: mm
Tł	hread type(d)	М3	M4	M5	M6	M8	M10	M12	M14	M16	M18	M20	M22	M24	M27	M30
	ds	3	4	5	6	8	10	12	14	16	18	20	22	24	27	30
	d'	3.4	4.5	5.5	6.6	9	11	14	16	18	20	22	24	26	30	33
	dk	5.5	7	8.5	10	13	16	18	21	24	27	30	33	36	40	45
	D'	6.5	8	9.5	11	14	17.5	20	23	26	29	32	35	39	43	48
	K	3	4	5	6	8	10	12	14	16	18	20	22	24	27	30
	H'	2.7	3.6	4.6	5.5	7.4	9.2	11	12.8	14.5	16.5	18.5	20.5	22.5	25	28
	H"	3.3	4.4	5.4	6.5	8.6	10.8	13	15.2	17.5	19.5	21.5	23.5	25.5	29	32
	d ₂	2.6	3.4	4.3	5.1	6.9	8.6	10.4	12.2	14.2	15.7	17.7	19.7	21.2	24.2	26.7


2. L and ℓs and ℓg of hexagon socket head bolts


Unit: mm

Thre	ead type (d)	N	13	N	14	N	15	N	16	N	18	М	10	М	12	(M	14)	М	16	(M	18)	M	20	(M:	22)	M.	24	(M	27)	M:	30 It: mm
	L										-					ℓs m	nin ar	ndlg	max		-											
Length	min	max	ls min	lg min	ls min	lg min	ls min	ℓ _g min	ls min	lg min	ls min	lg min	ls min	ℓ _g min	ls min	lg min	ls min	lg min	ℓs min	ℓg min	ls min	ℓg min	ls min	ℓ _g min	ls min	ℓ _g min	ls min	ℓg min	ls min	ℓg min	ls min	ℓ _g min
5	4.76	5.24																														
6	5.76	6.24																														
8	7.71	8.29																														
10	9.71	10.29																														
12	11.65	12.35																														
16	15.65	16.35																														
20	19.58	20.42																														
25	24.58	25.42	4.5	7																												
30	29.58	30.42	9.5	12	6.5	10	4	8																								
35	34.5	35.5			11.5	15	9	13	6	11																						
40	39.5	40.5			16.5	20	14	18	11	16	5.75	12																				
45	44.5	45.5					19	23	16	21	10.75	17	5.5	13																		
50	49.5	50.5					24	28	21	26	15.75	22	10.5	18																		
55	54.4	55.6							26	31	20.75	27	15.5	23	10.25	19																
60	59.4	60.6							31	36	25.75	32	20.5	28	15.25	24	10	20														
65	64.4	65.6									30.75	37	25.5	33	20.25	29	15	25	11	21	4.5	17										
70	69.4	70.6									35.75	42	30.5	38	25.25	34	20	30	16	26	9.5	22										
80	79.4	80.6									45.75	52	40.5	48	35.25	44	30	40	26	36	19.5	32	15.5	28	11.5	24						
90	89.3	90.7											50.5	58	45.25	54	40	50	36	46	29.5	42	25.5	38	21.5	34	15	30	9	24		
100	99.3	100.7											60.5	68	55.25	64	50	60	46	56	39.5	52	35.5	48	31.5	44	25	40	19	34		
110	109.3	110.7													65.25	74	60	70	56	66	49.5	62	45.5	58	41.5	54	35	50	29	44	20.5	38
120	119.3	120.7													75.25	84	70	80	66	76	59.5	72	55.5	68	51.5	64	45	60	39	54	30.5	48
130	129.2	130.8															80	90	76	86	69.5	82	65.5	78	61.5	74	55	70	49	64	40.5	58
140	139.2	140.8															90	100	86	96	79.5	92	75.5	88	71.5	84	65	80	59	74	60.5	68
150	149.2	150.8																	96	106	89.5	102	85.5	98	81.5	94	75	90	69	84	60.5	78
160	159.2	160.8																	106	116	99.5	112	95.5	108	91.5	104	85	100	79	94	70.5	88
180	179.2	180.8																			119.5	132	115.5	128	111.5	124	105	120	99	114	90.5	108
200	199.05	200.95																					135.5	148	131.5	144	125	140	119	134	1105	128
220	219.05	220.95																											139	154	130.5	148
240	239.05	240.95																											159	174	150.5	168
260	258.95	261.05																											179	194	1705	188
280	278.95	281.05																											199	214	190.5	208
300	298.95	301.05																											219	234	210.5	228

Hexagon Socket Set Screw Extracted from JIS B1177 (2007)

■ Shape and dimensions of hexagon socket set screw (dent tip)

Unit: mm

															Unit: mm
Т	hread type (d)	M1.6	M2	M2.5	M3	M4	M5	M6	M8	M10	M12	M16	M20	M24
	P ^{c)}		0.35	0.4	0.45	0.5	0.7	0.8	1	1.25	1.5	1.75	2	2.5	3
.1	Maxi	mum	0.8	1	1.2	1.4	2	2.5	3	5	6	8	10	14	16
dz	Mini	mum	0.55	0.75	0.95	1.15	1.75	2.25	2.75	4.7	5.7	7.64	9.64	13.57	15.57
	df						Diame	ter of approx	imately the b	oottom of the	screw				
e ^{d),e)}	Mini	mum	0.809	1.011	1.454	1.733	2.303	2.873	3.443	4.583	5.723	6.863	9.149	11.42	13.71
	Ту	/pe	0.7	0.9	1.3	1.5	2	2.5	3	4	5	6	8	10	12
S	Maxi	mum	0.724	0.913	1.300	1.58	2.08	2.58	3.08	4.095	5.14	6.14	8.175	10.17	12.21
	Mini	mum	0.71	0.887	1.275	1.52	2.02	2.52	3.02	4.02	5.02	6.02	8.025	10.02	12.03
t	Minimum	f)	0.7	0.8	1.2	1.2	1.5	2	2	3	4	4.8	6.4	8	10
t	Minimum	g)	1.5	1.7	2	2	2.5	3	3.5	5	6	8	10	12	15
	L					/unfo		····	per 100 piece	na umitlum (Da	maitro 7 OFloa	/alma ³ \			
Length	Minimum	Maximum				(reie	rence) Appro	ximate mass	per 100 piece	es, unitkg (De	risity: 7.65kg	rum)			
2	1.8	2.2	0.019	0.029											
2.5	2.3	2.7	0.025	0.037	0.063										
3	2.8	3.2	0.029	0.044	0.075	0.1									
4	3.76	4.24	0.037	0.059	0.1	0.14	0.23								
5	4.76	5.24	0.046	0.074	0.125	0.18	0.305	0.42							
6	5.76	6.24	0.054	0.089	0.15	0.22	0.38	0.54	0.74						
8	7.71	8.29	0.07	0.119	0.199	0.3	0.53	0.78	1.09	1.88					
10	9.71	10.2		0.148	0.249	0.38	0.68	1.02	1.44	2.51	3.72				
12	11.6	12.3			0.299	0.46	0.83	1.26	1.79	3.14	4.73	6.7			
16	15.6	16.3				0.62	1.13	1.74	2.49	4.4	6.73	9.5	15.7		
20	19.5	20.4					1.4	2.22	3.19	5.66	8.72	12.3	20.9	31.1	
25	24.5	25.4						2.82	4.07	7.24	11.2	15.8	27.4	41.4	55.2
30	29.5	30.4							4.94	8.81	13.7	19.3	33.9	51.7	70.3
35	34.5	35.5								10.4	16.2	22.7	40.4	62	85.3
40	39.5	40.5								12	18.7	26.2	46.9	72.3	100
45	44.5	45.5									21.2	29.7	53.3	82.6	115
50	49.5	50.5									23.6	33.2	59.8	92.6	130
55	54.4	55.6										36.6	66.3	103	145
60	59.4	60.6										40.1	72.8	114	160

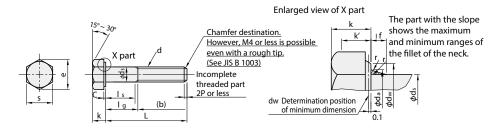
 $\label{thm:commended} \mbox{NOTE The recommended nominal length shall be within the thick line frame.}$

a) If the nominal length L is shown in the stepwise shading shown in the table above, bear the chamfer of 120 $^{\circ}$.

1-361 Technical Reference

b) An angle of about 45 ° applies to the slope below the diameter of the valley of the external thread.

c) P is the screw pitch. d) emin = 1.14 s min


e) Gauge inspection of e and s is according to JIS B 1016.

f) Apply to shaded nominal threads.

g) Applicable to nominal length screws not shaded.

Hexagon Bolt Extracted from JIS B1180 (1999)

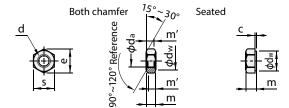
■ Shape and dimensions of hexagon bolt (part class A)

																							·		Un	nit: mm
	Coarse t	hread I column	N	12	М	3	М	4	N	15	N	16	M8	3	M.	10	M1	2			М	16	M.	20	М	124
Thread	II	column		-	-		-			-		-	-		-		-		М	14						-
type (d)		rse pitch P	0	.4	0.	5	0.	7	0	.8		1	1.2	5	1.	5	1.7		2	2	:	2	2	.5		3
-7 - ()		read I column				·	-						M8>	<1	M10)×1	M12×				M16	×1.5	M20		M2	4×2
	II	column		-			-			-		-	-		M10>	1.25	M12×	1.25	M14	×1.5		-	M20	0×2		-
b		≦125mm	1	0	1.	2	1-	4	1	6	1	8	22		2	6	30		_	4	3		4			54
(reference)		<l≦150mm< td=""><td></td><td>-</td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td>-</td><td></td><td>_</td><td>0</td><td>4</td><td></td><td>5</td><td></td><td></td><td>50</td></l≦150mm<>		-			-						-				-		_	0	4		5			50
с		1inimum	0		0.		0.		0.		0.		0.15		0.	_	0.1		0.		0		0		_).2
		laximum	_	25	0.		0.		0		_	.5	0.6		0.	_	0.6		0		0		0			0.8
da		laximum	_	.6	3.		4.		5		_	.8	9.2		11	-	13.		15		17		22			6.4
ds		mension = maximum	_	2	3		4		-	5			8		1	_	12		_	4	1		2			24
		1inimum	_	86	2.8		3.8		4.		_	82	7.78		9.7	-	11.7		13.		15		19			3.67
dw		1inimum	3.		4.5		5.8		6.			88	11.6		14.	_	16.6		*19		22		28		33	
e	-	Minimum	-	32	6.0		7.6		8.		11		14.3		17.	-	20.0	13	23		26		33.			9.98
lf		laximum	_	.8	1		1.			.2		.4	2		2	_	3		3				_	1		4
	-	dimension = Type	1		2		2.		-	.5	_	4	5.3		6.		7.5		8		1		12			15
k		Minimum	1.2		1.8		2.6		3.			85	5.15		6.2	-	7.3		8.0		9.		12.			.785
	 	laximum	1.5		2.1		2.9		3.		_	15	5.4		6.5	_	7.6		8.9		10		12.			.215
k'		Minimum	_	89	1.3		1.8		2.		_	.7	3.6		4.3	_	5.1:		6.0		6.		8).35
r		linimum	0		0.		0.			.2	_	25	0.4		0.	-	0.6		0		0		0			0.8
s		mension = maximum	_	4 82	5.3		7		7.	3	_	0 78	13 12.7		15.	-	18 17.7		20		23		29			36 5.38
	Bolt length	Minimum	3.	02	5	02	6.7	70	/.	/ 6	9.	/6	12./	es ar		/3	17.7	3	20	.07		.07	29	.67	33	.30
Manipal lauath	Doit lengti	T (L)	ls	0-	ls	0-	₽s.		ls	0-	ls	lq	ls	T	ls es	0-	ls	0-	0.	0-	ls	0	ls	0	ls	
Nominal length (Reference dimension)	Minimum	Maximum	Minimum	ℓg Maximum	Minimum	lg Maximum	Minimum	ℓg Maximum	Minimum	lg Maximum	l .	Maximum	Minimum	lg Maximum		lg Maximum	Minimum	lg Maximum	ls Minimum	lg Maximum	l	lg Maximum		lg Maximum	Minimum	lg Maximum
16	15.65	16.35	4	6																						
20	19.58	20.42	8	10	5.5	8																				
25	24.58	25.42			10.5	13	7.5	11	5	9																
30	29.58	30.42			15.5	18	12.5	16	10	14	7	12														
35	34.5	35.5					17.5	21	15	19	12	17														
40	39.5	40.5					22.5	26	20	24	17	22	11.75	18												
45	44.5	45.5							25	29	22	27	16.75	23	11.5	19										<u> </u>
50	49.5	50.5							30	34	27	32	21.75	28	16.5	24	11.25	20								
55	54.4	55.6									32	37	26.75	33	21.5	29	16.25	25								<u>↓</u>
60	59.4	60.6									37	42	31.75	38	26.5	34	21.25	30	16	26						Ь—
65	64.4	65.6											36.75	43	31.5	39	26.25	35	21	31	17	27				<u> </u>
70	69.4	70.6											41.75	48	36.5	44	31.25	40	26	36	22	32				
80	79.4	80.6											51.75	58	46.5	54	41.25	50	36	46	32	42	21.5	34		<u> </u>
90	89.3	90.7													56.5	64	51.25	60	46	56	42	52	31.5	44	21	36
100	99.3	100.7													66.5	74	61.25	70	56	66	52	62	41.5	54	31	46
110	109.3	110.7															71.25	80	66	76	62	72	51.5	64	41	56
120	119.3	120.7															81.25	90	76	86	72	82	61.5	74	51	66
130	129.2	130.8																	80	90	76	86	65.5	78	55	70
140	139.2	140.8																	90	100	86	96	75.5	88	65	80
150	149.2	150.8																			96	106	85.5	98	75	90

- The name of the thread shall be given priority in column 1. The way of expressing the call of the thread is according to JIS B 0123.

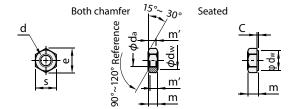
 Recommended nominal length (L) for screw calls shall be within the bold frame.

 The tolerance of the screw length (b) of the bolt which is longer than the maximum nominal length in the heavy line frame depends on the agreement between the delivering parties, but it is better in accordance
- $Ig\ maximum\ and\ Is\ minimum\ are\ as\ follows.\ Ig\ maximum\ =\ nominal\ length\ (L)\ -\ b,\ Is\ minimum\ =\ Ig\ maximum\ -5\ P\ (P=coarse\ pitch)$ The values of da and r specified in this table are in accordance with JIS B 1005.
- The "chamfered destination" and "roughness" of the thread tip shape shall conform to JIS B 1003.
- $The numerical values \ marked \ with \ *\ in \ the \ table \ are \ the \ values \ obtained \ by \ correcting \ the \ errors \ of \ the \ corresponding \ international \ standards.$


^{*} Hexagon bolt, hexagonal nut M10 and M12 which are currently circulating are also equipped by Old JIS.

Hexagon Nut Extracted from JIS B1181 (1995)

■ Hexagon nut


1. Shape and dimensions of hexagonal nut style I (part grade A)

Unit: mm

	Thread type (d)	M2	M3	M4	M5	M6	M8	M10	M12	(M14)	M16
	Pitch Reference (P)	0.4	0.5	0.7	0.8	1	1.25	1.5	1.75	2	2
_	Maximum	0.2	0.4	0.4	0.5	0.5	0.6	0.6	0.6	0.6	0.8
, c	Minimum	0.1	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.2
٦	Minimum (reference dimension)	2	3	4	5	6	8	10	12	14	16
da	Maximum	2.3	3.45	4.6	5.75	6.75	8.75	10.8	13	15.1	17.3
dw	Minimum	3.07	4.6	5.9	6.9	8.9	11.6	14.6	16.6	19.6	22.5
е	Minimum	4.32	6.01	7.66	8.79	11.05	14.38	17.77	20.03	23.35	26.75
	Maximum (reference dimension)	1.6	2.4	3.2	4.7	5.2	6.8	8.4	10.8	12.8	14.8
m	Minimum	1.35	2.15	2.9	4.4	4.9	6.44	8.04	10.37	12.1	14.1
m*	Minimum	1.08	1.72	2.32	3.52	3.92	5.15	6.43	8.3	9.68	11.28
_	Maximum (reference dimension)	4	5.5	7	8	10	13	16	18	21	24
5	Minimum	3.82	5.32	6.78	7.78	9.78	12.73	15.73	17.73	20.67	23.67

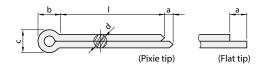
2. Shape and dimensions of hexagon nut style ${\rm I\hspace{-.1em}I}$ (part grade A)

Unit: mm

	Thread type (d)	M5	M6	M8	M10	M12	(M14)	M16
	Pitch Reference (P)	0.8	1	1.25	1.5	1.75	2	2
_	Maximum	0.5	0.5	0.6	0.6	0.6	0.6	0.8
C	Minimum	0.15	0.15	0.15	0.15	0.15	0.15	0.2
da	Minimum (reference dimension)	5	6	8	10	12	14	16
Ua	Maximum	5.75	6.75	8.75	10.8	13	15.1	17.3
dw	Minimum	6.9	8.9	11.6	14.6	16.6	19.6	22.5
е	Minimum	8.79	11.05	14.38	17.77	20.03	23.35	26.75
	Maximum (reference dimension)	5.1	5.7	7.5	9.3	12	14.1	16.4
m	Minimum	4.8	5.4	7.14	8.94	11.57	13.4	15.7
m*	Minimum	3.84	4.32	5.71	7.15	9.26	10.7	12.6
	Maximum (reference dimension)	8	10	13	16	18	21	24
S	Minimum	7.78	9.78	12.73	15.73	17.73	20.67	23.67

Remarks 1. Do no

^{1.} Do not use screw bracketed with parentheses.


^{2.} The shape of the nut shall be double sided unless otherwise specified and the seating is as specified by the orderer.

Chamfering of the threaded portion of the seat is similar to "double side removal".

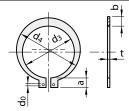
* Hexagon bolt, hexagonal nut M10 and M12 which are currently circulating are also equipped by Old JIS.

Split Pin Extracted from JIS B1351 (1987)

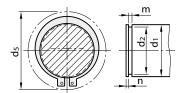
■ Shape and size of split pin

Unit: mm

	Diamete	or type	0.6	0.8	1	1.2	1.6	2	2.5	3.2	4	5	6.3	8	10	13	16	Unit: mn
	Diamete	Base dimension	0.6	0.8	0.9	1.2	1.4	1.8	2.3	2.9	3.7	4.6	5.9	7.5	9.5	12.4	15.4	19.3
	d		- 5.5	L 5.,)		L			1 5.,	0	1 5.7		1	1.2.7	0	
		Tolerance			-(ı			ı	-0.2		1			-0.3	1
	С	Base dimension	1	1.4	1.8	2	2.8	3.6	4.6	5.8	7.4	9.2	11.8	15	19	24.8	30.8	38.6
		Tolerance	-0.1	-0).2	0 -0.3		0).4	0 -0.6	0 -0.7	-0.9	0 -1.2	0 -1.5	0 -1.9	0 -2.4	-3.1	0 -3.8	-4.8
	b	approximately	2	2.4	3	3	3.2	4	5	6.4	8	10	12.6	16	20	26	32	40
	a	approximately	1.6	1.6	1.6	2.5	2.5	2.5	2.5	3.2	4	4	4	4	6.3	6.3	6.3	6.3
Ą	Bolt	Over	-	2.5	3.5	4.5	5.5	7	9	11	14	20	27	39	56	80	120	170
plical and diam		Below	2.5	3.5	4.5	5.5	7	9	11	14	20	27	39	56	80	120	170	-
Applicable bolt and pin diameter	Clevis pin	Over	-	2	3	4	5	6	8	9	12	17	23	29	44	69	110	160
후	. Cievis pini	Below	2	3	4	5	6	8	9	12	17	23	29	44	69	110	160	-
Pin hole	e diameter	(Remarks)	0.6	0.8	1	1.2	1.6	2	2.5	3.2	4	5	6.3	8	10	13	16	20
		4																
		5																
		6	±0.5															
		8																
		10		±0.5														
		12 14			±0.5													
		16		<u>.</u>														
		18				±0.5												
		20					±0.8											
		22						±0.8										
		25																
		28							±0.8									
		32								±0.8								
		36																
		40									±1.2							
	l	45																
		50								-		±1.2						
		56 63								-								
		71											±1.2					
		80																
		90												±2				
		100													±2			
		112											1					
		125																
		140														±2		
		160																
		180															±2	
		200														-		
		224														-		±2
		250																
		280																


Remarks

- 1. Nominal diameter depends on pin hole diameter. 2. d is a value between the tip and L / 2.
- 3. The shape of the tip may be either a tip or a flat tip. Please specify if you need one of them.
- 4. The length (L) is within the frame of the bold line, and the numerical value within the frame indicates the tolerance. However, in the case where r other than this table is particularly required, r specify the type.
- 5. The head should not lean significantly from the axis.


C Type Snap Ring Extracted from JIS B2804 (2001)

■C type snap ring

[For axis]

The position of the hole of the diameter do should not be hidden in the groove when it is put in the shaft to which the snap ring is applied.

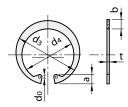
ds is the maximum diameter of the outer circumference when fitted to the shaft.

Unit: mm

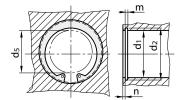
				Retaining	ring					Applical	ole wheel (re	eference)		Unit: mm		
Tuno (1)	d	l ₃	1	<u> </u>	b	a	d٥			d		1	n	n		
Type (1)	Base dimension	Tolerance	Base dimension	Tolerance	(approximately)	(approximately)	(Minimum)	ds	d1	Base dimension	Tolerance	Base dimension	Tolerance	(Minimum)		
10	9.3	±0.15			1.6	3	1.5	17	10	9.6	0 -0.09					
(11)	10.2				1.8	3.1		18	11	10.5						
12	11.1				1.8	3.2	1.5	19	12	11.5						
(13)	12		1	±0.05	1.8	3.3		20	13	12.4		1.15				
14	12.9				2	3.4		22	14	13.4	0					
15	13.8	±0.18			2.1	3.5		23	15	14.3	-0.11					
16	14.7				2.2	3.6	1.7	24	16	15.2						
17	15.7				2.2	3.7		25	17	16.2						
18	16.5				2.6	3.8		26	18	17						
(19)	17.5				2.7	3.8		27	19	18						
20	18.5				2.7	3.9		28	20	19				1.5		
(21)	19.5		1.2		2.7	4		30	21	20		1.35				
22	20.5				2.7	4.1		31	22	21						
(24)	22.2				3.1	4.2	2	33	24	22.9	0					
25	23.2	±0.2		±0.06	3.1	4.3		34	25	23.9	0 -0.21					
(26)	24.2				3.1	4.4		35	26	24.9						
28	25.9				3.1	4.6		38	28	26.6						
(29)	26.9				3.5	4.7		39	29	27.6						
30	27.9		1.6 (2)		3.5	4.8		40	30	28.6		1.75				
32	29.6				3.5	5		43	32	30.3						
(34)	31.5				4	5.3		45	34	32.3			+0.14			
35	32.2	±0.25			4	5.4		46	35	33						
(36)	33.2						4	5.4		47	36	34				
(38)	35.2				4.5	5.6		50	38	36	0					
40	37		1.8		4.5	5.8		53	40	38	0 -0.25	1.95				
(42)	38.5				4.5	6.2		55	42	39.5						
45	41.5	±0.4			4.8	6.3		58	45	42.5						
(48)	44.5				4.8	6.5		62	48	45.5						
50	45.8			±0.07	5	6.7		64	50	47				2		
(52)	47.8				5	6.8		66	52	49				-		
55	50.8				5	7	2.5	70	55	52						
(56)	51.8		2		5	7	-	71	56	53		2.2				
(58)	53.8		_		5.5	7.1		73	58	55						
60	55.8				5.5	7.2		75	60	57						
(62)	57.8				5.5	7.2		77	62	59						
(63)	58.8				5.5	7.3		78	63	60	0					
65	60.8	±0.45			6.4	7.4		81	65	62	0 -0.3					
(68)	63.5				6.4	7.8		84	68	65						
70	65.5				6.4	7.8		86	70	67						
(72)	67.5		2.5	±0.08	7	7.9		88	72	69		2.7		2.5		
75	70.5				7	7.9		92	75	72						
(78)	73.5				7.4	8.1		95	78	75						
80	74.5				7.4	8.2		97	80	76.5						

Note (1):

Prioritize except (), use one of () as necessary. Thickness (t) = 1.6 mm can be 1.5 mm for the time being. In this case, m is 1.65 mm. Note (2):


1. The minimum width of snap ring annulus shall not be smaller than plate thickness t.

2. The dimensions of the axis to be applied are indicated with reference to the recommended dimensions.


3. The d₄ dimension (mm) is preferably $d_4 = d_3 + (1.4 \text{ to } 1.5) \text{ b}$.

Reference The thickness t is based on Japan Spring Industry Association Standard JSMA No. 6-1976 (steel band for spring).

[For holes]

The position of the hole with the diameter d ${\mbox{\scriptsize 0}}$ should not get hidden in the groove when put in the hole to which the retaining ring is applied.

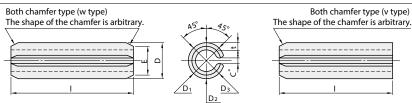
 $d_{\text{\scriptsize 5}}$ is the maximum diameter of the outer circumference when fitted to the shaft.

Unit: mm

				Retaining	ring					Applica	ble wheel (re	ference)										
Type (1)	c	l ₃	t	:	b	a	d₀			d	12	n	า	n								
Турс (1)	Base dimension	Tolerance	Base dimension	Tolerance	(approximately)	(approximately)	(Minimum)	ds	d ₁	Base dimension	Tolerance	Base dimension	Tolerance	(Minimum)								
10	10.7				1.8	3.1	1.2	3	10	10.4												
11	11.8				1.8	3.2	1.2	4	11	11.4												
12	13				1.8	3.3	1.5	5	12	12.5												
(13)	14.1	±0.18			1.8	3.5	1.5	6	13	13.6	+0.11											
14	15.1				2	3.6		7	14	14.6	0											
15	16.2				2	3.6		8	15	15.7												
16	17.3		1	±0.05	2	3.7	1.7	8	16	16.8		1.15										
(17)	18.3				2	3.8		9	17	17.8												
18	19.5				2.5	4		10	18	19												
19	20.5				2.5	4		11	19	20				1.5								
20	21.5				2.5	4		12	20	21												
(21)	22.5	±0.2			2.5	4.1		12	21	22												
22	23.5				2.5	4.1		13	22	23	+0.21 0											
(24)	25.9				2.5	4.3	2	15	24	25.2												
25	26.9				3	4.4		16	25	26.2												
(26)	27.9		1.2		3	4.6		16	26	27.2		1.35										
28	30.1		1.2		3	4.6		18	28	29.4		1.55										
30	32.1				3	4.7		20	30	31.4												
32	34.4			±0.06	3.5	5.2		21	32	33.7												
(34)	36.5	±0.25			3.5	5.2		23	34	35.7												
35	37.8	±0.23			3.5	5.2		24	35	37												
(36)	38.8		1.6 (2)								3.5	5.2		25	36	38		1.75	+0.14 0			
37	39.8				3.5	5.2		26	37	39	+0.25 0		0									
(38)	40.8												4	5.3		27	38	40				
40	43.5				4	5.7		28	40	42.5												
42	45.5	±0.4			4	5.8		30	42	44.5												
45	48.5		1.8		4.5	5.9		33	45	47.5		1.95										
47	50.5				4.5	6.1		34	47	49.5]		2								
(48)	51.5				4.5	6.2		35	48	50.5				_								
50	54.2				4.5	6.5		37	50	53												
52	56.2			±0.07	5.1	6.5	2.5	39	52	55												
55	59.2				5.1	6.5	2.3	41	55	58												
(56)	60.2		2		5.1	6.6		42	56	59		2.2										
(58)	62.2		'		5.1	6.8		44	58	61		2.2										
60	64.2	±0.45			5.5	6.8		46	60	63	+0.3 0											
62	66.2				5.5	6.9		48	62	65	0											
(63)	67.2				5.5	6.9		49	63	66												
(65)	69.2				5.5	7		50	65	68												
68	72.5		2.5		6	7.4		53	68	71												
(70)	74.5				6	7.4		55	70	73												
72	76.5			±0.08	6.6	7.4		57	72	75		2.7		2.5								
75	79.5]		6.6	7.8		60	75	78]										
(78)	82.5	±0.55			6.6	8		62	78	81	+0.35											
80	85.5	±0.55			7	8		64	80	83.5	0											

Note (1): Prioritize except (), use one of () as necessary.

Note (2): Thickness (t) = 1.6 mm can be 1.5 mm for the time being. In this case, m is 1.65 mm.


1. The minimum width of snap ring annulus shall not be smaller than plate thickness t.
2. The dimensions of the axis to be applied are indicated with reference to the recommended dimensions.
3. The d4 dimension (mm) is preferably $d_4 = d_3 + (1.4 \text{ to } 1.5)$ b.

Reference The thickness t is based on Japan Spring Industry Association Standard JSMA No. 6-1976 (steel band for spring).

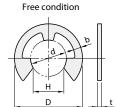
Spring Pin Extracted from JIS B2808 (1995)/E Type Snap Ring Extracted from JIS B2805 (1978)

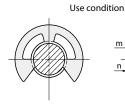
■ Shape and dimension

Spring pin shape and size

* When clearance C is inserted into the hole to which the spring pin is applied, it must be dimensioned so that the side does not touch.

Unit: mm


Both chamfer type (v type)


	Diamet	er type	1	1.2	1.4	1.5	1.6	2	2.5	3	4	5	6	8	10	13
	D (1)	Maximum	1.2	1.4	1.6	1.7	1.8	2.25	2.75	3.25	4.4	5.4	6.4	8.6	10.6	13.7
	D(I)	Minimum	1.1	1.3	1.5	1.6	1.7	2.15	2.65	3.15	4.2	5.2	6.2	8.3	10.3	13.4
Spr	+ (Deference)	For general use	0.2	0.25	0.28	0.3	0.3	0.4	0.5	0.6	0.8	1	1.2	1.6	2	2.5
	t (Reference)	For light load	0.1	0.12	0.15	0.15	0.15	0.2	0.25	0.3	0.4	0.5	0.6	-	-	-
ing	E	(maximum)	0.9	1.1	1.3	1.4	1.5	1.9	2.4	2.9	3.9	4.8	5.8	7.8	9.8	12.7
pin	Double shear Load	For general use	0.69 {70}	1.02 {104}	1.35 {138}	1.55 {158}	1.68 {171}	2.76 {281}	4.31 {440}	6.2 {633}	10.8 {1130}	17.25 {1760}	24.83 {2532}	44.13 {4500}	68.94 {7030}	112.78 {11500}
	kN {kgf} Minimum value	For light load	0.38 {39}	0.56 {57}	0.8 {82}	0.87 {89}	0.93 {95}	1.55 {158}	2.42 {247}	3.49 {356}	6.21 {633}	9.7 {989}	13.96 {1424}	-	-	-
		Diameter	1	1.2	1.4	1.5	1.6	2	2.5	3	4	5	6	8	10	13
Ар	plicable hole	Dimensional tolerance			+0.08 0				+0.09 0			+0.12 0		+(0.15 0	+0.2 0
	0	Dimensional							Diamet	er type						
	·	tolerance	1	1.2	1.4	1.5	1.6	2	2.5	3	4	5	6	8	10	13

l	Dimensional		Diameter type 1 12 14 15 16 2 25 3 4 5 6 8 10												
Ł	tolerance	1	1.2	1.4	1.5	1.6	2	2.5	3	4	5	6	8	10	13
4		0	0	0	0	0									
5	1	0	0	0	0	0	0	0							
6	+0.5		0		0	0	0	0							
8] "	0	0	0	0	0	0	0	0	0					
10		0	0	0	0	0	0	0	0	0	0				
12			0	0	0	0	0	0	0	0	0	0			
14				0	0	0	0	0	0	0	0	0			
16						0	0	0	0	0	0	0	0		
18							0	0	0	0	0	0	0	0	
20							0	0	0	0	0	0	0	0	
22	+1.0							0	0	0	0	0	0	0	0
25	0							0	0	0	0	0	0	0	
28] "									0		0			
32									0	0	0	0	0	0	0
36										0	0	0	0	0	
40										0		0	0		0
45												0	0	0	0
50											0	0	0	0	0
56												0	0	0	0
63												0	0	0	0
70	+1.5												0	0	0
80													0	0	
90														0	
100														0	
110															0
125															0
140															0

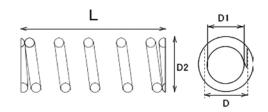
Note (1): D maximum is the maximum value on the circumference of the pin and D minimum is the average value of D 1, D 2, D 3. Reference value t is according to JSMA No. 6 (Japan Spring Industry Association standard).

Shapes and dimensions of E type retaining ring

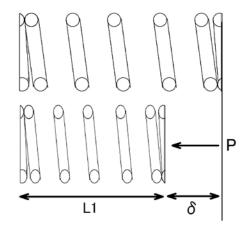
Remarks Shape shows one example

				R	etaining ring		<u> </u>					App	licable ring	(reference)		
Type	d (1)		D		Н		t		b	d10	区分	d2		m		n
71	Reference dimension	Tolerance	Reference dimension	Tolerance	Reference dimension	Tolerance	Reference dimension	Tolerance	approximately	Over	Below	Reference dimension	Tolerance	Reference dimension	Tolerance	Minimum
0.8	0.8	0 -0.08	2	±0.1	0.7		0.2	±0.02	0.3	1	1.4	0.8	+0.05 0	0.3		0.4
1.2	1.2		3		1		0.3	±0.025	0.4	1.4	2	1.2		0.4	+0.05	0.6
1.5	1.5		4		1.3	0 -0.25	0.4		0.6	2	2.5	1.5			0	0.8
2	2	0 -0.09	5		1.7	-0.23	0.4	±0.03	0.7	2.5	3.2	2	+0.06 0	0.5		
2.5	2.5	0.05	6		2.1		0.4		0.8	3.2	4	2.5	"			1
3	3		7		2.6		0.6		0.9	4	5	3				
4	4		9		3.5	_	0.6		1.1	5	7	4	. 0 075	0.7		
5	5	0 -0.12	11	±0.2	4.3	0 -0.3	0.6		1.2	6	8	5	+0.075 0		.01	1.2
6	6	0.1.2	12		5.2	0.5	0.8	±0.04	1.4	7	9	6	Ů		+0.1 0	
7	7		14		6.1		0.8		1.6	8	11	7		0.9		1.5
8	8	0	16		6.9		0.8		1.8	9	12	8	+0.09	0.9		1.8
9	9	-0.15	18		7.8	0 -0.35	0.8		2.0	10	14	9	0			2
10	10		20		8.7		1.0	±0.05	2.2	11	15	10		1.15		
12	12	0	23		10.4		1.0	±0.05	2.4	13	18	12	+0.11	1.15		2.5
15	15	-0.18	29		13	0	1.6 (2)	±0.06	2.8	16	24	15	0	1.75(2)	+0.14	3
19	19	0	37	±0.3	16.5	-045	1.6 (2)		4.0	20	31	19	+0.13	1.7 3(2)	0	3.5
24	24	-0.21	44		20.8	-8.5	2.0	±0.07	5.0	25	38	24	0	2.2		4

Note (1): Limit plug gauge is used for measuring d.


Remarks The dimensions of the axis to be applied are indicated with reference to the recommended dimensions.

Spring Calculation


Extracted from JIS B2704 (2000)

Symbol	Description
d	Wire diameter (ϕ)
D1	Coil inner diameter (mm)
D2	Coil outer diameter (mm)
D	Coil average diameter (D 1 + D 2) / 2
Na	Effective number of turns
Nt	Total turns
L	Free length (mm)
Р	Load N (Kg)
δ	Deflection of spring
k	Spring constant N / mm (Kg / mm)
G	Transverse modulus of elasticity N / mm² (Kg / mm²)
С	Spring index (D / d)
Material	Transverse elastic modulus (N / mm))
Hard steel wire	78500
Piano wire	78500
Oil-tempered wire	78500
Stainless steel wire	68500

Material	Specific gravity (g/cm³)
Iron (Fe+0.06%C)	7.87
Steel (Fe+0.8%C)	7.84
SUS304 (18Cr-8C)	7.9

* D (Coil average diameter) · · · Dimensions between center and center of line

A. Calculate the weight of the spring

Example » Piano wire ϕ 2.0 Effective number of turns 5 (Total number of turns 7) Coil diameter ϕ 15.0

1) Find the volume of the spring

Cross section of material × length of spring = volume of spring

Expression » (1.0 * 1.0 * 3.14) * (15.0 * 3.14 * 7) = 3.14 * 329.7 = 1035.258 mm³

② Find the weight of the spring

Weight \times specific gravity = weight of spring

Expression » $1035.258 \text{ mm}^3 * 0.00784 \text{ g} / \text{mm}^3 = 8.116 \text{ g}$

B. Calculate the spring constant

$$k = \frac{Gd^4}{8NaD^3}$$

Example » Piano wire ϕ 2.0 Effective number of turns 5 Coil diameter ϕ 15.0 Expression » $(78,500 * 2.0 ^4) / (8 * 5 * 15.0 ^3) = 1256000/135000 = 9.304 N / mm$

C. Calculate load (compression spring)

$$P = \delta * k$$

Example » When the free length is 30 mm and the mounting length is 25 mm as the spring characteristic of the spring,

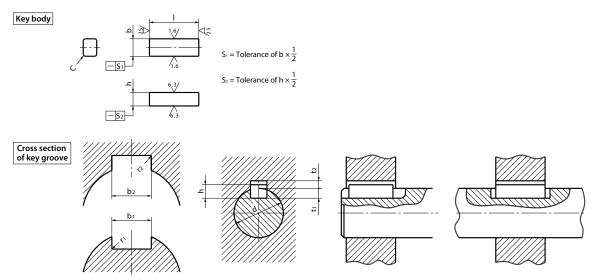
Expression » Calculate spring deflection δ = L - L 1 δ = 30 - 25 = 5 5 * 9.304 = 46.52 N

D. Calculate spring stress

$$\tau = \frac{8\kappa D}{\pi d^3} P = \frac{\kappa dG}{\pi NaD^2} \delta$$

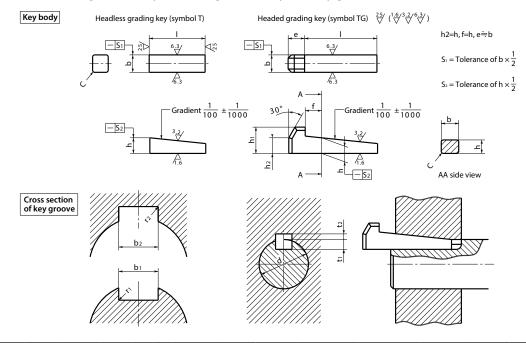
Example » In the case of the spring characteristics of the above spring,

Expression » Calculate the correction factor c = 7.5


$$\kappa = (\{4 * 7.5 - 1) (/ 4 * 7.5 - 4)\} + (0.615 / 7.5) = 1.1974$$

= 266.097 N / mm²

Key and Key Groove Extracted from JIS B1301 (1996)


■ Key and key groove

1. Shape and dimensions of parallel key and key groove

Unit: mm Reference Key dimensions Size of key groove b Sliding shape Normal form Key Applicable Nominal b1 b2 b1 and b2 Base Base r1 shaft dimensions C dimensions and dimensions dimensions Base Tolerance Base t1 and t2 diameter Tolerance bxh b1 and b2 t1 (h9) dimension dimension d Tolerance Tolerance Tolerance Tolerance Tolerance (H9) (D10) (N9) (Js9) 2 2 2 0 +0.025 +0.060 -0.004 -0.006 ±0.0125 0.08 -0.16 -0.025 -0.025 0 +0.020 -0.029 -0.031 3×3 3 3 6 - 36 3 1.8 1.4 8 - 10 0.16 4×4 4 4 8 - 45 4 2.5 1.8 10 - 12 +0.030 +0.078 -0.012 0 0 h9 10-56 ±0.0150 12 - 17 -0.030 -0.030 +0.030 -0.030 -0.042 6 14 - 70 6 3 5 17 - 22 6×6 2.8 0.25 0.16 4.0 3.3 20 - 25 (7×7) 0 +0.036 +0.098 0 -0.015±0.0180 -0.036 7 +0.040 -0.051 22 - 30 8×7 18 - 90 40 3.3 22 - 110 5.0 3.3 30 - 38 12×8 12 8 28 - 140 12 5.0 3.3 38 - 44 -0.090 9 44 - 50 14×9 14 36 - 160 14 5.5 3.8 0.25 0.40 -0 +0.043 +0.120 -0.018 0.60 0.40 (15×10) 10 ±0.0215 50 - 55 -0.043 +0.050 -0.043 -0.061 45 - 180 16 10 16 6.0 4.3 50 - 58 16×10 +0.2 50 - 200 18×11 18 11 18 7.0 4.4 58 - 65 h11 20×12 56 - 220 7.5 65 - 75 22×14 22 14 63 - 250 22 9.0 5.4 75 - 85 +0.052 +0.149 -0.022(24×16) 70 - 280 24 ±0.0260 8.4 80 - 90 -0.052 0 +0.065 -0.052 -0.074 0.60 0.40 --0.110 25×14 14 70 - 280 25 9.0 5.4 85 - 95 0.80 0.60 6.4 95 - 110 28×16 16 80 - 320 10.0 +0.062 +0.180 -0.026 32×18 11.0 7.4 110 - 130

2. Shape and dimension of gradient key · headed gradient key and key groove

Unit: mm

			Ke	ey dimen	sions						Size of key g	roove			Reference
Key Nominal	ŀ)		h					b	1 and b2					
dimensions b×h	Base dimension	Tolerance (h9)	Base dimension	Tolera	nce	h1	С	I	Base dimension	Tolerance (D10)	r1 and r2	Base dimensions t1	Base dimensions t2	Tolerance t1 and t2	Applicable shaft diameter d
2×2	2	0	2	0		-		6 - 30	2	+0.060		1.2	0.5	+0.05	6 - 8
3×3	3	-0.025	3	-0.025		-	0.16 - 0.25	6 - 36	3	+0.020	0.08 - 0.16	1.8	0.9	0	8 - 10
4×4	4		4			7		8 - 45	4			2.5	1.2		10 - 12
5×5	5	0 -0.030	5	0 -0.030	h9	8		10 - 56	5	+0.078 +0.030		3.0	1.7	+0.1	12 - 17
6×6	6		6			10		14 - 70	6			3.5	2.2	0	17 - 22
(7×7)	7	0	7.2	0 -0.036		10	0.25 - 0.40	16 - 80	7	+0.098	0.16 - 0.25	4.0	3.0		20 - 25
8×7	8	-0.036	7			11		18 - 90	8	+0.040		4.0	2.4		22 - 30
10×8	10		8	0	h11	12		22 - 110	10			5.0	2.4	+0.2	30 - 38
12×8	12		8	-0.090	''''	12		28 - 140	12			5.0	2.4	0	38 - 44
14×9	14		9			14		36 - 160	14			5.5	2.9		44 - 50
(15×10)	15	0 -0.043	10.2	0 -0.070	h10	15	0.40 - 0.60	40 - 180	15	+0.120 +0.050	0.25 - 0.40	5.0	5.0	+0.1 0	50 - 55
16×10	16		10	0 -0.090		16		45 - 180	16			6.0	3.4		50 - 58
18×11	18		11		h11	18		50 - 200	18			7.0	3.4	+0.2	58 - 65
20×12	20		12	0 -0.110		20		56 - 220	20			7.5	3.9	0	65 - 75
22×14	22		14			22		63 - 250	22			9.0	4.4		75 - 85
(24×16)	24	0 -0.052	16.2	0 -0.070	h10	24	0.60 - 0.80	70 - 280	24	+0.149 +0.065	0.40 - 0.60	8.0	8.0	+0.1 0	80 - 90
25×14	25		14			22	0.60 - 0.80	70 - 280	25		0.40 - 0.00	9.0	4.4		85 - 95
28×16	28		16	0 -0.070	h11	25		80 - 320	28			10.0	5.4	+0.2 0	95 - 110
32×18	32	0 -0.062	18	-0.070		28		90 - 360	32	+0.180 +0.080		11.0	6.4	U	110 - 130

Surface Treatment Excerpted from Mechanical Engineering Handbook of the Japan Society of Mechanical Engineers

■ Method and type of surface treatment

1. Method of surface treatment

Method	Principle and features	Material	Property
Electroplating	The material is immersed in a plating bath as a cathode, and a metal film is electrodeposited on the surface of the material by direct current.	Materials are metal, plastic (electroplating the surface with electroless plating and electroplating).	For ornamental use 1 µm or less, for corrosion prevention, for industrial use 1 - several tens of µm or more, in many cases pinholes are left.
Hot Dip Plating	The material is pulled after dipping into molten metal, solidification and coating the dissolved metal.	Materials are mainly steel materials, Al, Zn, Sn, Pb etc. as coating metal.	A thick coating is possible. Adherence and deformability depend on the properties of the alloy layer formed between the coating layer and the material.
Diffusion plating	Diffuse and infiltrate the metal element into the material surface layer. Since the processing temperature (around 1000 °C.) is high, post-heat treatment is required.	Materials are mainly steel materials, Fe group, Ni-based heat resistant alloy and so on.	Coating metals are Al, Cr, Si, etc. The alloy layer thickness is several tens - several hundred µm.
Vapor Deposition Plating	Physical vapor deposition method: Coating by vacuum evaporation, sputtering, ion plating or the like. Chemical vapor deposition method: Coating by decomposition of gas compounds.	Materials are metal, ceramic, plastic, coating material is metal, ceramic.	Physical vapor deposition methods generally have low deposition rates. The chemical vapor deposition method can not pursue high temperature treatment.
Spraying	Powder or particles of a spraying material heated to a molten state are sprayed on the surface of the material to form a film. The material temperature during thermal spraying is about 200 °C or lower.	Materials are metals, ceramics, plastics and others, spraying materials are metals, ceramics, plastics or mixtures thereof.	The adhesion strength is relatively low. The film has pores. Practical coating thickness is about 0.6 mm or less.
Laminating plate	Rolling pressure welding method, explosion welding method, etc. Processing targets are simple shapes such as board surface and cylinder inner surface.	The material is metal, mostly steel materials. The laminated plate material is metal, alloy.	In explosive welding, the thickness of the laminated plate is about 3 mm or less.
Anodization	In an electrolytic solution such as anodic oxidation sulfuric acid or oxalic acid, electrolysis is performed using the material as an anode, and an oxide film is formed on the surface of the material.	The main material is Al and its alloy. Others such as Mg.	The oxide film consists of a dense layer and a porous layer. Usually, a sealing treatment is performed. Good adhesion. Colorable.
Chemical conversion treatment	A phosphoric acid salt or chromate film is formed on the surface of the material by a dipping method or a spraying method.	Materials are steel materials, Al, Zn, etc.	Primarily, a phosphate type coating film is applied to the steel material, and a chromate film is applied to Al.
Carburizing	Diffuse and permeate carbon into the material surface layer. Processing temperature is 850 - 950 °C. Perform quenching after treatment.	The material is steel with a C content of 0.2% or less (hardened steel)	The carburized depth is 0.5 - 5 mm, the hardness is 700 - 850 HV. Beware of material deformation due to quenching after treatment.
Nitriding	Diffusion penetration of nitrogen into the material surface layer. Processing temperature is 475 - 580 °C. Heat treatment and machining can be done before processing.	Materials are nitrided steel (containing Cr, Mo, Al, etc.) in gas nitriding. Most of the steel types in ion nitriding.	Nitriding depth is 0.9 mm or less. Hardness is 600 - 1150 HV. The deformation of the material is small.
Carbonitriding	Simultaneously with carburizing, nitriding is performed. The treatment temperature is 700 - 900 °C. Perform quenching after treatment.	The material is the same as for carburizing. It can also be applied to carbon steel.	Carbonitriding depth is 1 mm or less. The hardness is about 800HV.
Infiltration	Diffuse and penetrate sulfur into the material surface layer. The treatment temperature is 400 - 600 °C.	Materials are steel and steel types.	The friction coefficient decreases from the thickness of the iron sulfide film of 0.2 µm.
Sulfonitridation	Simultaneously with the sulfurization, nitriding is performed. The treatment temperature is 560 - 570 °C.	The material is the same as nitriding.	The nitrosyl nitrification depth is 0.1 - 0.5 mm.
Induction quenching	The induction hardened material surface is rapidly heated by high-frequency induction current - quenched and quenched.	The material is steel materials. Especially medium carbon steel, alloy steel, cast and forged products.	The thickness of the hardened layer is 0.4 - 5 mm. Working time is short. The deformation of the material is small.
Flame quenching	Quickly heat the material surface with oxygen- fuel flame - quench and quench.	Same as above	The thickness of the hardened layer is 1 - several mm.
Other surface quenching	Rapid heat-quenching of the material surface with laser beam and electron beam.	There is no particular limitation on the material as long as it has hardenability.	long as it has hardenability. The hardened layer is extremely thin. Local curing is possible.
Plastic lining	Cover material surface by sheet lining method, thermal spraying method, and coating method etc.	Coating materials are polyethylene, vinyl chloride, fluorine resin, rubber and so on.	A thick coating is possible. It may be 1 mm or more.
Ceramic coating	Cover material surface by evaporation method, spraying method, baking method and so on.	Glassy ceramic (enamel) as a covering material. Various ceramics.	Adhesion is not very good. Repeated heating and cooling may cause cracks in the film.

1-371 Technical Reference

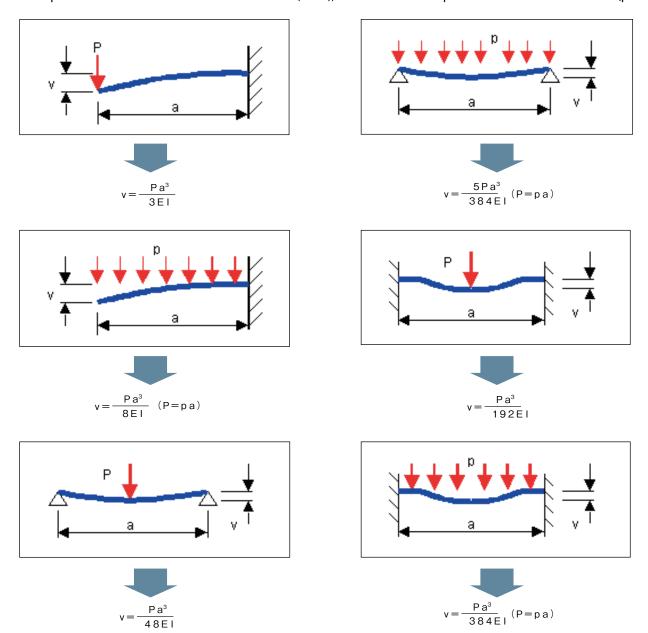
2. Types of Surface Treatment, Usage Examples, Features

Nam	ne	Layer thickness (µm)	Materials that can be processed	Example of use	Purpose / feature	Remarks
Zinc pl	ated	3~20	Steel	Thin Wire	· Anti-rust, low price · No good appearance	-
Chromate	plating	1~2	Steel	Sheet metal part bolt and nut	Anti-rust, low price Suitable for mass production products	_
Unichrome	plating	1~2	Steel	-	• The appearance of nickel-plated fall Alternative	
Trivalent Cl	hromate	1~2	Steel	bolt and nut	Anti-rust, low price It does not contain hexavalent chromium	-
Nickel p	lating	-	Steel Copper Brass	-	Corrosion resistance improvement, decoration Chrome plating is more corrosion- resistant in the atmosphere	· Coat copper base plating as necessary · Deep dent is impossible
Electro Nickel p		Addressable	Steel Stainless Copper	Parts that can not be plated with nickel	· 10 times more price than nickel plating · Easy film thickness control · Corrosion resistance and abrasion resistance large · Conductivity of nonmetals possible	
Kanigen _I	olating	Audressable	Aluminum alloy Glass Plastic	Parts to be subjected to hardening treatment after plating	Same as the feature of electroless nickel plating It can be hardened by heat treatment after plating	
Chrome-	plated	-	Steel Copper Brass	-	Shiny appearance Corrosion resistance good Sliding of chrome plating is easily seizure	· If necessary, base plating of nickel · Deep dent is impossible
Tetraferric o		-	Steel	bolt nut Measuring instrument	Painting base Appearance (glossy) Easy to rust than Taft ride	·To produce a tetraferric oxide (black)
Low Temp Blac Chrome-	k	1~2	Steel Copper Stainless	Accuracy required Corrosion resistance is desired more than black dye	Long-term rust prevention ability Excellent corrosion resistance Ultra thin film	Because of low temperature treatment, there is no influence of heat on the material, and the bonded parts with plastic rubber etc. can be processed as it is.
Alumite	White	3~5	- Aluminum alloy	-	Corrosion resistance, abrasion resistance No electrical conductivity	There are colored alumite which forms a tough oxide film on the surface and colors by utilizing the pores of the
	Black	5~10			· Heat-resistant	oxide film.

Mechanical Materials

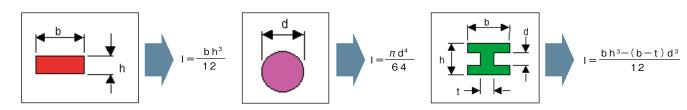
■ Mechanical materials

	Material	Classification	Elastic coefficient	Poisson's ratio	Shear modulus of elasticity	Density	Tensile strength	Coefficient of thermal expansion	Thermal conductivity	Specific heat
			N/m^2		N/m^2	kg/m^3	N/m^2	/K	W(m•K)	J/(kg•K)
1	A1050-0		69x10^9	0.3	25x10^9	2705	75x10^6	2.4x10^-5	231	900
2	A1100-0		69x10^9	0.3	26x10^9	2710	90x10^6	2.36x10^-5	222	904
3	A2011-T3		70x10^9	0.3	26x10^9	2820	380x10^6	2.31x10^-5	152	864
4	A2017-T4		71.6x10^9	0.3	27.2x10^9	2790	425x10^6	2.36x10^-5	134	864
5	A5052-H34		69.3x10^9	0.3	25.9x10^9	2680	260x10^6	2.38x10^-5	137	900
6	A5056-H38		71.7x10^9	0.3	25.9x10^9	2640	415x10^6	2.41x10^-5	112	904
7	A6061-T6	Aluminum	68.3x10^9	0.3	26x10^9	2700	310x10^6	2.36x10^-5	167	896
8	A6063SS-T5	-	68.3x10^9	0.3	25.8x10^9	2690	185x10^6	2.34x10^-5	209	900
9	A6063SS-T6	_	68.3x10^9	0.3	25.8x10^9	2690	240x10^6	2.34x10^-5	201	900
10	A6N01SS-T5		68.9x10^9	0.3	25.8x10^9	2700	270x10^6	2.35x10^-5	188	900
11	AC4C-T6		73.5x10^9	0.3	24x10^9	2680	230x10^6	2.15x10^-5	159	963
12	ADC12-F		70x10^9	0.3	26.5x10^9	2680	295x10^6	2.1x10^-5	92	963
13	ADC14-F	-	81x10^9	0.3	26x10^9	2730	320x10^6	1.8x10^-5	134	963
14	FCD450		161x10^9	0.27	63.4x10^9	7100	450x10^6	1.2x10^-5	33.5	544
15	S45C		210x10^9	0.3	80.8x10^9	7800	690x10^6	1.12x10^-5	45	490
16	SCM415	<u> </u>	206x10^9	0.3	79.2x10^9	7840	830x10^6	1.23x10^-5	42.7	490
17	SK3	- Steel material	208x10^9	0.3	80x10^9	7840	850x10^6	1.06x10^-5	45	490
19	SS400	-	210x10^9	0.3	80.8x10^9	7900	400x10^6	1.17x10^-5	51.6	473
22	SUJ2		204x10^9	0.29	79.1x10^9	7810	1570x10^6	1.16x10^-5	46	480
24	SECC-ZC	Steel plate	205x10^9	0.3	78.8x10^9	7860	270x10^6	1.18x10^-5	50	480
26	GIN6		204x10^9	0.3	78.5x10^9	7780	735x10^6	1.03x10^-5	25	461
27	QD51		204x10^9	0.3	78.5x10^9	7750	540x10^6	1.02x10^-5	24.3	460
29	SUS13	1	197x10^9	0.3	75.8x10^9	8030	481x10^6	1.59x10^-5	16.3	499
30	SUS303	Stainless	197x10^9	0.3	75.8x10^9	7930	520x10^6	1.72x10^-5	16	500
31	SUS304		197x10^9	0.3	75.8x10^9	7930	520x10^6	1.73x10^-5	16.3	500
32	SUS430	1	204x10^9	0.3	78.5x10^9	7700	450x10^6	1.04x10^-5	25.6	460
33	SUS440		204x10^9	0.3	78.5x10^9	7750	540x10^6	1.02x10^-5	24.3	460
35	C3604BD	Brass	96x10^9	0.32	36.4x10^9	8430	335x10^6	2.05x10^-5	117	377


1-373 Technical Reference

Deflection Calculation Formula

■ Deflection / Cross section second moment calculation formula


The deflection of a typical beam [V] is recorded. I is the second moment of the cross section *, E is the Young's modulus of each material.

The capital letter P indicates the concentrated load (force), and the lower case p indicates the distributed load (pressure).

^{*} Second moment of cross section

The second-order moment [I] of a typical cross section is recorded.

Classification and Features of Plastics

■ Plastic classification and feature list

	Classification		Symbol	Japanese name	Common name	
			PE	Polyethylene	-	
			PVC	PVC	PVC resin, PVC	
			PP	Polypropylene	-	
			PS	Polystyrene	Styrene resin	
			ABS	Acrylonitrile · butadiene · styrene resin	ABS resin	
	General pu	rpose plastic	AS	Acrylonitrile · styrene resin	-	
		, ,	PMMA	Polymethylmethacrylate	Methacrylic resin, acrylic	
			PVA	Polyvinyl alcohol	Poval resin	
			PVDC	Polyvinylidene chloride	-	
			PBD	Polybutadiene	Butadiene resin	
			PET	Polyethylene terephthalate	-	
			PA	Polyamide	Nylon	
			POM	Polyacetal	Acetal resin	
Thermoplastic		General purpose	PC	Polycarbonate	-	
resin		engineering	PPE	Modified polyphenylene ether	Polyphenylene oxide	
		plastics -	PBT	Polybutylene terephthalate	-	
			GF-PET	Reinforced polyethylene terephthalate	-	
			UHPE	Ultra high molecular weight polyethylene	-	
			PSU	Polysulfone	-	
	Engineering plastics		PES	Polyethersulfone	-	
	F		PPS	Polyphenylene sulfide	-	
			PAR	Polyarylate	-	
		Super engineering	PAI	Polyamide imide	-	
		plastic	PEI	Polyetherimide	-	
		·	PEEK	Polyether ether ketone	-	
			PI	Polyimide	-	
			LCP	Liquid crystal polymer	-	
			FR	Fluororesin	-	
			PF	Phenol	-	
			UF	Urea	Urea resin	
			MF	Melamine	-	
			PAK	Polyester alkyd	Alkyd resin	
Thermosetting resin			UP	Unsaturated polyester	-	
Tesili			EP	Ероху	-	
			DAP	Diallyl phthalate	-	
			PUR	Polyurethane	Urethane resin	
			SI	Silicone	Silicon resin	

Reference

Thermoplastic resin Thermosetting resin General purpose plastic It softens when heated and becomes processable, and solidifies on cooling. It softens when heated and can be used repeatedly. It softens when heated and solidifies by chemical reaction. Those once solidified by heating are not dissolved even if they are heated again. The resin price is relatively low, and it is easy to process thermoplastic resin. Heat distortion temperature less than 100 °C, tensile strength less than 500 kgf/cm², impact resistance less than 5 kgf·cm/cm. Among them, PE, PP, PVC, and PS are called four general purpose resins.

General purpose engineering plastics

Super engineering plastic

A thermoplastic resin with a thermal deformation temperature of 100 $^{\circ}$ C or higher, a tensile strength of 500 kgf / cm² or higher, and an impact resistance of 5 kgf · cm / cm or higher.

impact resistance of 5 kgf·cm/cm or higher.

A thermoplastic resin that can be used for a long time even at a heat distortion temperature of 150 °C. or higher even higher than

Major applications	Major features
Packaging film · laminate · toy · daily necessities etc.	It is inexpensive, resistant to low temperature, no water absorption and excellent chemical resistance
Agricultural film · pipe · hose · wire breakage	Although it is in expensive and excellent in weather resistance, injection molding is difficult.
Household kitchenware, film, container	It is inexpensive, has good surface gloss, is strong in thin film state but is weak in low temperature.
Transparent daily necessities · containers · stationery · high firing products	It is inexpensive, has good moldability and is excellent in electrical insulation, but is weak to heat and brittle.
Injection molded products such as automobiles, domestic electric appliances, daily necessities	The molding shrinkage ratio is small and well-balanced. It also has good plating properties.
Automotive parts / electric parts / fan blades / lighter containers	It is strong against mineral oil such as gasoline, and it is not easily scratched.
Optical fiber · lens · optical disc · tail light	It is perfectly colorless and transparent, the transmittance of light rays is close to 100%, and it does not discolor even when it hits sunlight.
Films, cosmetic raw materials and pharmaceutical additives, paper processing agents (clear coat)	Easy to handle. Low acetic acid odor and thermal discoloration.
Household wrapping, food packaging film, food preservation packaging material	It has barrier property (property of blocking gas permeation) against both oxygen and water vapor (moisture).
Household wrap, laminate film, tube, hose	Excellent flexibility, transparent and light.
PET Bottle, Recording Tape, Home Appliances Parts	It is tough and has excellent heat resistance, it is non-toxic and has less water absorption, but it is vulnerable to hot water and alkali.
Gear, pulley, shaft, bobbin with electric parts / machine parts / automobile parts etc.	It is excellent in oil resistance and heat resistance, has a small friction coefficient and is resistant to abrasion, but has water absorption.
Gears · cam · motor parts · fasteners · valves	$\label{thm:excellent} \textbf{Excellent in chemical resistance, good friction and wear characteristics, good rebound resilience.}$
Protective wall · Lighting equipment · Signal machine lens · Bin	It is transparent, heat resistant and very strong against impact, but it is inferior in chemical resistance. $ \frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} \right) = \frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} \right$
OA equipment, auto parts	It is excellent in mechanical properties, heat resistance and electrical properties, but it has very high heat resistance and difficulty in formability.
Coil bobbin · connector · carburetor · gas cap	It is tough and has high heat resistance and good formability but it is vulnerable to hot water and alkaline and the substitution of the property of the pro
Coil bobbin · electrical components, exterior parts, switches	$\label{thm:excellent} \textbf{Excellent in electrical properties, flame retardancy, appearance and light discoloration resistance.}$
Lining, battery separator, fiber (fishing line, elastic sheet)	$\label{thm:excellent} \textbf{Excellent in impact resistance, abrasion resistance, self-lubricity and non-water absorption.}$
Electronic parts, camera parts, medical equipment	It is excellent in coloring, plating, heat resistance, toughness, dimensional stability, chemical resistance.
Motor case, battery case, sterilizer · tray	$\label{thm:excellent} \textbf{Excellent in high-temperature creep characteristics, dimensional stability, steam resistance.}$
Chemical plant · carburetor · piston ring	$\label{thm:excellent} \textbf{Excellent heat resistance, abrasion resistance, chemical resistance and high rigidity.}$
Switches, floppy disk hub and drive unit	Excellent toughness at high temperature and low temperature, excellent in spring recoverability, heat resistance, dimensional stability, abrasion resistance, chemical resistance.
Bearing · Gear · Valve	Excellent heat resistance, low wear and good impact resistance.
$Connector \cdot Bobbin \cdot Interior \ decoration \ material \ for \ aircraft \cdot Medical \ equipment$	It is excellent in heat resistance, chemical resistance, moldability, and is refractory.
Chemical plant · Copy parts · Hot water resistant products	Excellent in fatigue resistance and abrasion resistance, and with stands steam at 300 $^\circ\mathrm{C}$ in a short time.
Coil bobbin · IC socket · piston ring · bush	Excellent impact resistance and heat resistance, little change in characteristics from low temperature to high temperature.
Connector, Resistor, DVD / CD Chassis, Micro Motor, Optical Fiber	It is excellent in low water absorption, heat resistance and dimensional stability.
Wafer carrier, wire coating, gasket, packing	$\label{thm:excellent} \textbf{Excellent in heat resistance, chemical resistance, non-sticking and self-lubricating properties.}$
Electronic component base \cdot socket \cdot handle of the kettle	It has good electrical properties and withstands high temperatures.
Adhesive · tableware	It is colorless transparent and has good coloring but poor impact resistance. 80% or more for adhesive applications
Adhesive · paint · tableware · decorative board	It is colorless, corrosion-resistant, durable and beautiful.
Primers for automobile parts, industrial machinery etc.	It is excellent in corrosion resistance and solvent solubility.
Fishing boat, boat, yacht, bath tub, tank	Suitable for making large products, FRP mainstream with glass fiber.
Adhesive · paint · fishing rod · connector cover	It has a small molding shrinkage rate, is excellent in mechanical properties and can be solidified at room temperature.
Switch, connector, coil bobbin	Excellent tracking resistance, dimensional stability and water absorption.
Paints, adhesives, shoe products, auto parts	Excellent in elasticity, abrasion resistance, solvent resistance, chemical resistance, and electrical properties

Material - Steel

Steel

1. Carbon bar steel / wire rod / wire of JIS standard

		Bar steel · wire rod	
Standard number	Standard name	Symbol	Symbol Main application
G 3101	Rolled steel for general structure	SS	Bolt, nut, pin
G 4051	Carbon steel steel for machine structural use	S-C	Nut, bolt, shaft, auto parts
G 3108	General steel for polishing steel bar	SGD	Nut, shaft, auto parts
G 4804	Sulfur and sulfur composite free-cutting steel materials	SUM	Precision mechanical parts such as watches and cameras, auto parts
G 4401	Carbon tool steel steel material	SK	Cutting tool, pair file, trowel, stamp
G 3112	Steel bar for reinforced concrete	SR, SD	Reinforcing bar for concrete
G 3123	Polished steel bar	SGD-D	Nut, shaft, auto parts
G 3104	Round steel for rivet	SV	Rivet
G 3105	Round steel for chain	SBC	Chain
G 3109	Steel bar	SBPR	For prestressed concrete

	Wire			Wire						
Standard number	Standard name	Symbol	Standard number	Standard name	Symbol	Application example				
G 3505	Soft steel wire rod	SWRM	G 3532 G 3544	Iron wire Cast iron wire Nail wire for nails Molten aluminum plated iron wire and steel wire	SWM-B SWM-A SWM-N SWMA	For general use, wire mesh For general use, wire mesh For nails Various wire mesh				
G 3506	Hard steel wire rod	SWRH	G 3521 G 3538 G 3525 G 3560 G 3537 G 3544	Hard steel wire PC hard steel wire Wire rope Spring oil Tempered wire Galvanized steel wire Molten aluminum plated iron wire and steel wire	SW SWCR SWCD SWO-A, B	Various wire springs, wire rope, steel cord, Bead wire, spoke wire Prestressed concrete tank · pipe Wire rope Various wire spring Overground ground wire, buried ground wire, butterfly wire Overhead ground wire, butterfly wire, ACSR core wire				
G 3502	Piano Wire	SWRS	G 3522 G 3536 G 3561 G 3544	Piano wire PC steel wire and PC steel wire Valve spring oil tempered wire Molten aluminum plated iron wire and steel wire	SWP SWPR SWPD SWO-V SWHA	Valve spring, music wire, high grade rope, Steel cord Prestressed concrete Valve spring Overhead ground wire, butterfly wire, ACSR core wire				
G 3507	Carbon steel wire for cold forging	SWRCH	G 3539	Carbon steel wire for cold forging	SWCH	Bolt, nut, small screw, rivet				
G 3503	Coated arc Wire for welding rod core wire	SWRY	G 3523	Covered arc welding rod core wire	SWY	Core wire of welding rod				

1-377 Technical Reference

2. Main types and mechanical properties of steel materials

Material name	Symbol	Symbol tensile strength (N/mm²)	Yield point (N/mm²)	Hardness	Elongation (%)
	SS330	330 - 430	195 or more	-	26 or more
Rolled steel for general structure	SS400	400 - 510	235 or more	-	21 or more
	SS490	490 - 610	275 or more	-	19 or more
	SPHC	270 or more	-	-	27 - 31 or more
Hot-rolled mild steel plate and steel strip	SPHD	270 or more	-	-	30 - 39 or more
Strip	SPHE	270 or more	-	-	31 - 41 or mor
	SPCC	(270 or more)	-	¹ /8Hard: 50 - 71HRB, 95 - 130HV	(32 - 39 or mor
Cold rolled steel sheet and steel strip	SPCD	270 or more	-	¹ /4Hard: 65 - 80HRB, 115 - 150HV ¹ /2Hard: 74 - 89HRB, 135 - 185HV	34 - 41 or mor
	SPCE	270 or more	-	Hard: 85 HRB or more, 170 HV or more	36 - 43 or mor
	S25C-N	440 or more	265 or more	123 - 183HB	27 or more
	S35C-N	305 or more	305 or more	149 - 207HB	23 or more
Carbon steel steel for machine structural use	S35C-H	390 or more	390 or more	167 - 235HB	22 or more
Structurar use	S45C-N	570 or more	345 or more	167 - 229HB	20 or more
	S45C-H	690 or more	490 or more	201 - 269HB	17 or more
	SCr430	780 or more	635 or more	229 - 293HB	18 or more
Chrome steel product	SCr435	880 or more	735 or more	255 - 321HB	15 or more
	SCr440	930 or more	785 or more	269 - 331HB	13 or more
	SCM430	830 or more	685 or more	241 - 302HB	18 or more
Chrome molybdenum steel steel material	SCM435	930 or more	785 or more	269 - 331HB	15 or more
matchai	SCM440	980 or more	835 or more	285 - 352HB	12 or more
Carbon tool steel steel material	SK3	-	-	Annealing 212 HB or more Quenching and tempering 63 HRC or more	-
High carbon chrome bearing steel	SUJ2	-	-	Spheroidizing annealed less than 201 HB Spheroidizing annealed 94 HRB or less	-
steel material	SUJ3	-	-	Spheroidizing annealed less than 207 HB Spheroidizing annealed 95 HRB or less	-
	SF340A	340 - 440	175 or more	90HB or more	27 or more
Carbon steel forged steel goods	SF440A	440 - 540	225 or more	121HB or more	24 or more
	SF540A	540 - 640	275 or more	152HB or more	20 or more
	SC360	360 or more	175 or more	-	23 or more
Carbon steel cast steel products	SC410	410 or more	205 or more	-	21 or more
Carbon steer cast steer products	SC450	450 or more	225 or more	-	19 or more
	SC480	480 or more	245 or more	-	17 or more
	FC150	150 or more	-	212 HB or less (casting diameter of test material and diameter 30 mm)	-
Mouse cast iron item	FC200	200 or more	-	223 HB or less (casting diameter of test material and diameter 30 mm) 241 HB or less (casting diameter of test material and	-
	FC250	250 or more	-	diameter 30 mm) 262 HB or less (casting diameter of test material and	-
	FC300	300 or more	-	diameter 30 mm)	-
	FCD400	400 or more	250 or more	201HB or less	15 or more
Spherical graphite cast iron product	FCD450	450 or more	280 or more	143 - 217HB	10 or more
	FCD500	500 or more	320 or more	170 - 241HB	7 or more
	FCD600	600 or more	370 or more	192 - 269HB	3 or more
	SUS303	520 or more	-	187HB or less	40 or more
	SUS304	520 or more	-	187HB or less	40 or more
Stainless steel bar	SUS410	540 or more	-	159HB or more	25 or more
	SUS416	540 or more	-	159HB or more	25 or more
	SUS440C	780 or more	-	56HRC or more	15 or less

[•] The values in the table above are representative values and will vary depending on the thickness of the steel material and heat treatment.

Material - Stainless Steel

■ Stainless steel

1. Stainless steel

Stainless steel refers to alloy steels containing chromium (Cr) · nickel (Ni) in 6 large elements of iron and having a Cr content of about 11% or more. Stainless steel is based on an Fe - Cr alloy containing about 11% or more of Cr, and Ni, Mo, Cu, Al, Si, etc. are added to improve corrosion resistance, mechanical properties, processability and other properties.

From the aspect of Cr and Ni, the main raw material is roughly divided into Cr type and Cr - Ni type, and it is divided into metallic structure, martensite type, ferrite type and austenite type. In addition, there are austenitic ferritic stainless steel and precipitation hardened stainless steel.

Classification of stainless steel

Classification	Cr se	eries	Cr-Ni series			
Metal structure	Martensitic system	Ferrite type	Austenite type			
Curability	Quench hardenability	Non hardening curability	Work hardening property			

• Effect of each element on performance

	Elements	Improved performance				
_	Low carbon	Corrosion resistance (intergranular corrosion resistance)				
C	High carbon	Strength · Hardness				
	Мо	Corrosion resistance (pitting corrosion resistance)				
	Cu	Acid resistance				
	Ti • Nb	Corrosion resistance (intergranular corrosion resistance)				
	Si • Al	Oxidation resistance				
	S • Se	Machinability				

2. Types and characteristics of stainless steel

Types of symbols	Characteristic
SUS302	Standard type of 18Cr-8Ni steel. Both SUS303 and SUS304 are SUS302 with improvements added. Good corrosion resistance and mechanical properties by Ni addition.
SUS303	S / P added to SUS 302 to improve machinability. However, corrosion resistance is somewhat inferior. Mo is added to improve corrosion resistance.
SUS304 SUS304L	It is an improved type of SUS 302, which has low carbon content and is excellent in corrosion resistance and weldability. The most standard of austenitic stainless steel. SUS304L has a carbon content lower than that of SUS 304 to improve intergranular corrosion resistance and weldability.
SUS310S	By addition of Ni · Cr, corrosion resistance and oxidation resistance are good, as well as high temperature characteristics, it is used as heat resisting steel. The work hardening property by cold working is suppressed and at the same time the magnetism is weakened, and it is also used as a low work hardening steel / non-magnetic steel.
SUS316 SUS316L	By addition of Mo, corrosion resistance (pitting corrosion) · acid resistance is good, high temperature strength is high, and it is used as heat resistant steel. SUS 316 L has a lower carbon content than SUS 316 to improve intergranular corrosion resistance and weldability.
SUSXM7	The work hardening property by cold working is suppressed by adding Cu to SUS 304.
SUS430	Good for cold workability and corrosion resistance with standard type of 18Cr steel. Because it is inexpensive, it is used in many applications.
SUS434	Those which improved Mo corrosion resistance by adding Mo to SUS 430.
SUS410	Representative martensitic stainless steel. It has excellent mechanical properties and corrosion resistance after heat treatment.
SUS403	It has improved the corrosion resistance and the toughness after heat treatment by reducing the component range of Si · Cr. Valves, pump shafts, blades, bolts, nuts, steam turbine blades, jet engine parts, etc. are used.
SUS416	Improved machinability of 13Cr steel by adding S · P. Corrosion resistance is slightly inferior to the standard type.
SUS431	Improved toughness by adding Ni, improved corrosion resistance by adding Cr, corrosion resistance is the best in heat-treatable martensitic systems. It is used for papermaking machines, shafts for ships and aircraft parts.
SUS440C	It has the highest hardness among stainless steels, has excellent wear resistance, and is used for dice and ball bearings and the like.
SUS631J1	It is a precipitation hardening type stainless steel, which is the most heat resistant among JIS steel types, and is used in thin plates and wire springs.

1-379 Technical Reference

3. Chemical composition and mechanical properties of various stainless steel materials

Austenite type

Types of				Chemica	l compositio	on (%)				Mechanical properties		
symbols	С	Si	Mn	Р	S	Ni	Cr	Мо	Other	Tensile strength (N/mm²)	Elongation (%)	Brinel Hardness (HB)
SUS302	0.15 or less	1.00 or less	2.00 or less	0.045 or less	0.03 or less	8.00 - 10.00	17.00 - 19.00	-	-	520 or more	40 or more	187 or less
SUS303	0.15 or less	1.00 or less	2.00 or less	0.20 or less	0.15 or more	8.00 - 10.00	17.00 - 19.00	0.60 or less	-	520 or more	40 or more	187 or less
SUS304	0.08 or less	1.00 or less	2.00 or less	0.045 or less	0.03 or less	8.00 - 10.50	18.00 - 20.00	-	-	520 or more	40 or more	187 or less
SUS304L	0.03 or less	1.00 or less	2.00 or less	0.045 or less	0.03 or less	9.00 - 13.00	18.00 - 20.00	-	-	480 or more	40 or more	187 or less
SUS310S	0.08 or less	1.50 or less	2.00 or less	0.045 or less	0.03 or less	19.00 - 22.00	24.00 - 26.00	-	-	520 or more	40 or more	187 or less
SUS316	0.08 or less	1.00 or less	2.00 or less	0.045 or less	0.03 or less	10.00 - 14.00	16.00 - 18.00	2.00 - 3.00	-	520 or more	40 or more	187 or less
SUS316L	0.03 or less	1.00 or less	2.00 or less	0.045 or less	0.03 or less	12.00 - 15.00	16.00 - 18.00	2.00 - 3.00	-	480 or more	40 or more	187 or less
SUSXM7	0.08 or less	1.00 or less	2.00 or less	0.045 or less	0.03 or less	8.50 - 10.50	17.00 - 19.00	-	Cu: 3.00 - 4.00	480 or more	40 or more	187 or less

● Ferrite type

Types of					Mechanical properties							
symbols	С	Si	Mn	Р	S	Ni	Cr	Мо	Other	Tensile strength (N/mm²)	Elongation (%)	Brinel Hardness (HB)
SUS430	0.12 or less	0.75 or less	1.00 or less	0.04 or less	0.03 or less	0.60 or less	16.00 - 18.00	-	-	450 or more	22 or more	183 or less
SUS434	0.12 or less	1.00 or less	1.00 or less	0.04 or less	0.03 or less	0.60 or less	16.00 - 18.00	0.75 - 1.25	-	450 or more	22 or more	183 or less

Martensitic system

Types of				Chemical	compositio	on (%)				Mechanical properties		
symbols	С	Si	Mn	Р	S	Ni	Cr	Мо	Other	Tensile strength (N/mm²)	Elongation (%)	Brinel Hardness (HB)
SUS410	0.15 or less	1.00 or less	1.00 or less	0.04 or less	0.03 or less	0.60 or less	11.50 - 13.50	-	-	540 or more	25 or more	159 or more
SUS410	0.15 or less	1.00 or less	1.25 or less	0.06 or less	0.15 or more	0.60 or less	12.00 - 14.00	0.60 or less	-	540 or more	17 or more	159 or more
SUS440C	0.95 - 1.20	1.00 or less	1.00 or less	0.04 or less	0.03 or less	0.60 or less	16.00 - 18.00	0.75 or less	-	780 or more	15 or less	56HRC or more

[•] The numbers in the table are reference values, not guaranteed values.

Material - Aluminum Alloy

■ Aluminum alloy

1. Types and Overview of Aluminum Alloys

Alloy system	Types of symbols	Overview
Al-Cu type	A2011 A2014 A2017 A2024	2017 · 2024 which is known by the name of duralumin or super duralumin is representative and has strength comparable to steel material. The machinability is good, especially 2011 in which Pb and Bi are added, are often used as mechanical parts as free cutting alloys. In addition, 2014 has wide application as a high strength forged material. Since it contains a relatively large amount of copper, it is inferior in corrosion resistance, and when it is exposed to a corrosive environment, sufficient corrosion protection treatment is required.
Al-Mn type	A3003 A3004	3003 is a representative alloy, the addition of Mn slightly increases the strength without decreasing the workability and corrosion resistance of pure aluminum. It has wide application in containers, building materials, containers, etc.3004 added with about 1% Mg to the alloy corresponding to 3003 is further high in strength, and is often used as a material for aluminum cans, roof boards and door panel materials.
Al-Si type	A4032	4032 is a product obtained by adding about 1% of each of Cu, Ni and Mn to each of which the coefficient of thermal expansion is suppressed and the abrasion resistance is improved by the addition of Si, and the heat resistance is improved. It has good heat resistance and low thermal expansion, so it is suitable for forged piston material.
Al-Mg type	A5005 A5052 A5083	As an alloy with a small addition amount of Mg, 5005 is representative, and it is used for interior ceiling boards for vehicles, building materials, container materials. For medium containing Mg, 5052 is representative and is the most common material with moderate strength. 5083 with a high Mg content is a specific heat treatment alloy and has the best strength as a non-heat treated alloy and has good weldability. Therefore, it is used as a welded structural material for ships, vehicles, chemical plants.
Al-Mg-Si type	A6061 A6063	Alloys of this system are also good in strength and corrosion resistance, and are used as structural materials. 6061 is a material with increased strength by adding a small amount of Cu. Although corrosion resistance decreases a little, it is excellent in forgeability and it is used for rivet materials and small parts of automobiles. With a yield strength of 254 N / mm 2 or more, there is an advantage that an allowable stress equivalent to that of SS 400 steel can be obtained. (When design deflection does not become a problem) 6063 is used as a structural material which is low in strength but excellent in extrudability and does not require strength as much as 6061.
Al-Zn type	A7075 A7N01	Among aluminum alloys, it can be classified into AI - Zn - Mg - Cu alloy having the highest strength and AI - Zn - Mg alloy for welding structure not containing Cu. Since the AI - Zn - Mg alloy has a relatively high strength, the heat affected zone after welding also recovers to a strength close to the base metal due to natural aging, so excellent joint efficiency can be obtained. 7N01 is a representative alloy and used as a material for welding construction in railway vehicles.

2. Chemical composition of aluminum alloy

Types of					Chemi	cal compositi	ion (%)			
symbols	Si	Fe	Cu	Mn	Mg	Cr	Zn	Ti	Al	Other
A2011	0.4 or less	0.7 or less	5.0 - 6.0	-	-	-	0.30 or less	-	The rest	Pb: 0.20 - 0.6
A2014	0.50 - 1.2	0.7 or less	3.9 - 5.0	0.40 - 1.2	0.20 - 0.8	0.10 or less	0.25 or less	-	The rest	Zr+Ti: 0.20 or less
A2017	0.20 - 0.8	0.7 or less	3.5 - 4.5	0.40 - 1.0	0.40 - 0.8	0.10 or less	0.25 or less	-	The rest	Zr+Ti: 0.20 or less
A2024	0.5 or less	0.5 or less	3.8 - 4.9	0.30 - 0.9	1.2 - 1.8	0.10 or less	0.25 or less	-	The rest	Zr+Ti: 0.20 or less
A3003	0.6 or less	0.7 or less	0.05 - 0.20	1.0 - 1.5	-	-	0.10 or less	-	The rest	-
A3004	0.3 or less	0.7 or less	0.25 or less	1.0 - 1.5	0.8 - 1.3	-	0.25 or less	-	The rest	-
A4032	11.0 - 13.5	1.0 or less	0.50 - 1.3	-	0.8 - 1.3	0.10 or less	0.25 or less	-	The rest	Ni: 0.50 - 1.3
A5005	0.3 or less	0.7 or less	0.20 or less	0.20 or less	0.50 - 1.1	0.10 or less	0.25 or less	-	The rest	-
A5052	0.25 or less	0.4 or less	0.10 or less	0.10 or less	2.2 - 2.8	0.15 - 0.35	0.10 or less	-	The rest	-
A5083	0.4 or less	0.4 or less	0.10 or less	0.40 - 1.0	4.0 - 4.9	0.05 - 0.25	0.25 or less	0.15 or less	The rest	-
A6061	0.40 - 0.8	0.7 or less	0.15 - 0.40	0.15 or less	0.8 - 1.2	0.04 - 0.35	0.25 or less	0.15 or less	The rest	-
A6063	0.20 - 0.6	0.35 or less	0.10 or less	0.10 or less	0.45 - 0.9	0.10 or less	0.10 or less	0.10 or less	The rest	-
A7075	0.4 or less	0.5 or less	1.2 - 2.0	0.30 or less	2.1 - 2.9	0.18 - 0.28	5.1 - 6.1	0.20 or less	The rest	Zr+Ti: 0.25

1-381 Technical Reference

2. Aluminum alloy quality indicator Excerpt from JIS H 0001-1998

Symbol	Definition	Meaning
F	Production as it is	obtained from a manufacturing process that does not make special adjustment for work hardening or heat treatment.
0	For annealed products	for an expanded material, annealed to obtain the softest condition. For castings, they are annealed for increased elongation or dimensional stability.
Н	Work hardened	Strength increased by work hardening with or without additional heat treatment to moderate softness.
Т	Heat treated by stable quality other than F · O · H	In order to make it stable by quality, heat treated regardless of additional work hardening.

Subdivision mark	Meaning
H1	Work hardening only: work hardened only without additional heat treatment to obtain predetermined mechanical properties.
H2	Those subjected to moderate softening heat treatment after work hardening: those which have been work hardened to a predetermined value or more and then reduced to a predetermined strength by appropriate heat treatment. For alloys that soften at room temperature, this quality has almost the same strength as H3 quality. For other alloys, this quality has almost the same strength as H1 quality but elongation shows somewhat higher values.
НЗ	Stabilized after work hardening: A work hardened product stabilized by low temperature heating. As a result, the strength decreases and the elongation increases. This stabilization treatment is applied only to alloys containing magnesium which gradually undergoes age softening at room temperature.
T1	Natural aging after cooling from high-temperature machining: those that have been naturally aged to a sufficiently stable state without actively cold working after cooling from the high-temperature manufacturing process as extruded materials. Therefore, the effect of the cold working is small even if corrected.
T2	After cooling cooling from high-temperature processing, and further natural aging: it performs cold working to increase the cooling strength from the high-temperature manufacturing process as an extrusion material, and further to a sufficiently stable state it is a natural prescription.
T3	The cold working after the solution treatment, and further natural aging: it performs cold working to increase the strength after solution treatment, which was naturally aging to a more stable state.
T4	The natural aging after solution treatment: without cold working after solution treatment, it is a natural prescription to a sufficiently stable state. Therefore, the effect of the cold working is small even if corrected.
T5	After cooling from high-temperature processing, the artificial aging hardening treatment: the one that the artificial aging hardening was treated without actively cold processing after cooling from the manufacturing process of the high temperature like the casting or the extrusion material. Therefore, the effect of the cold working is small even if corrected.
T6	After solution treatment, the artificial aging hardening treatment: without actively cold working after the solution treatment, it is an artificial aging curing treatment. Therefore, the effect of the cold working is small even if corrected.
T7	Stabilization treatment after solution treatment: A solution subjected to excessive aging treatment exceeding artificial age hardening treatment conditions to obtain maximum strength in order to adjust to special properties after solution treatment.
Т8	Cold worked after solution treatment and further subjected to artificial age hardening: cold worked to increase the strength after solution treatment, and further subjected to artificial age hardening treatment.
Т9	After solution heat treatment, artificial age hardening treatment was carried out and further cold worked: strongly artificial age hardening treatment was carried out after solution treatment and further cold worked to increase the strength.

3. Mechanical Properties of Aluminum Allovs

5. Micerianice	Mechanical Properties of Administrations						
Type (JIS name)	By quality	Tensile strength (N/mm²)	Strength (N/mm²)	Elongation (%)	Brinell hardness (HBS 10/500)	Fatigue Strength * (N/mm²)	
A2014	T6	485	415	13	135	125	
A2017	0	180	70	22	45	90	
A2024	T4	470	325	20	120	140	
A3003	0	110	40	30	28	50	
A4032	T6	380	315	9	120	110	
A5052	H38	290	255	7	77	140	
A5083	H116	315	230	16	-	160	
A6061	T6	310	275	12	95	95	
A6063	T6	240	215	12	73	70	
A7075	T6	570	505	11	150	160	
A7N01	T5	345	295	15	100	125	

^{*} Represents 50 x 107 fatigue strengths due to rotational bending.

The values in the above table are reference values, not guaranteed values.

Material - Resin/Rubber

Resin/Rubber

	Thermoplastic resin								
Characteristic item	FRP	Polyacetal	Polypropylene	Nylon6	Nylon66	Polycarbonate	ABS		
Specific gravity	1.5 - 2.1	1.42	0.9 - 1.04	1.12 - 1.14	1.13 - 1.15	1.20	1.04 - 1.07		
Hardness (Rockwell)	M70 - 120	M94	R80 - 110	R119	R100 - 118	M78	R90 - 115		
Tensile strength (N/mm²)	98 - 200	69	29 - 38	69 - 81	75 - 82	64 - 79	35 - 59		
Compressive strength (N/mm²)	98 - 200	130	38 - 55	89	110	76	18 - 56		
Izod impact value (kJ/m²)	11 - 100	11	2.7 - 10.9	8	10	90	15 - 50		
Flexural strength (N/mm²)	69 - 270	98	41 - 55	120	120	94	49 - 88		
Heat resistant temperature (°C)	150 - 180	90 - 100	120 - 130	80 - 120	80 - 150	120	60 - 95		
Flame resistance	Burning	Fire retardant	Slow burning	Extremely slow burning	Extremely slow burning	Self- extinguishing	Slow burning		
Weather resistance	Slight discoloration	Slight discoloration	To give rise to cracks	Slight discoloration	Slight discoloration	Be excellent	Discoloring		
Weak acid resistance	Good	Endure roughly	Resistance is large	Withstand	Withstand	Good	Good		
Strong acid resistance	Endure roughly	Be subjected	Withstand other than oxidizing acids	Be subjected	Be subjected	Endure roughly	Endure roughly		
Weak alkaline resistance	Slight change	Endure roughly	Extremely resistant	Constant	Constant	Withstand	Constant		
Strong alkaline resistance	Resistance to organic solvent	Endure roughly	Extremely resistant	Constant	Constant	Be subjected	Constant		
Organic solvent resistance	Slight change	Having resistance	Under 80 °C endure	Having resistance	Having resistance	Be subjected	Be subjected		

		Thermosetting resin	
Characteristic item	Phenol resin	Urea resin	Melamine resin
Specific gravity	1.36 - 1.42	1.5	1.47 - 1.52
Hardness (Rockwell)	M110 - 116	M110 - 120	M110 - M125
Tensile strength (N/mm²)	41 - 52	38 - 69	49 - 90
Compressive strength (N/mm²)	180 - 210	180 - 260	170 - 294
Izod impact value (kJ/m²)	1.5 - 5	1.5 - 3.3	1.5 - 3.3
Flexural strength (N/mm²)	62 - 75	55 - 110	69 - 110
Heat resistant temperature (°C)	150 - 180	77	100
Flame resistance	Extremely slow burning	Extremely slow burning	Self-extinguishing
Weather resistance	Gradual discoloration	Discoloration to gray	Discoloration to gray
Weak acid resistance	Good	Slight change	Constant
Strong acid resistance	Other than being affected by oxidizing acid is good.	The surface is eroded.	Be subjected
Weak alkaline resistance	Good	Slight change	Constant
Strong alkaline resistance	It is affected by thermal strong alkaline.	To decompose.	Be subjected.
Organic solvent resistance	Having resistance	Slight change	Having resistance

1-383 Technical Reference

			Rubb	er		
Characteristic item	Natural rubber (NR)	Synthetic natural rubber (IR)	Styrene rubber (SBR)	Butadiene rubber (BR)	Chloroprene rubber (CR)	Butyl rubber (IIR)
Specific gravity	0.92	0.92 - 0.93	0.93 - 0.94	0.91 - 0.94	1.15 - 1.25	0.91 - 0.93
Tensile strength (N/mm²)	3 - 30	5 - 20	5 - 20	2 - 20	5 - 25	5 - 15
Elongation (%)	100 - 1000	100 - 1000	100 - 800	100 - 800	100 - 1000	100 - 800
Elasticity elasticity	Excellent	Excellent	Excellent	Excellent	Excellent	Possible
Tear	Excellent	Good	Possible	Good	Good	Good
Abrasion resistance	Excellent	Excellent	Excellent	Excellent	Good	Good
Flexural crack resistance	Excellent	Excellent	Good	Possible	Good	Excellent
Usable temperature (°C)	−70 - 120	−70 - 120	−60 - 120	−73 - 120	-55 - 120	−55 - 120
Aging resistance	Good	Good	Good	Good	Excellent	Excellent
Light fastness	Good	Good	Good	Good	Good	Excellent
Electrical insulating property (Ω · cm)	10 ¹⁰ - 10 ¹⁵	10 ¹⁰ - 10 ¹⁵	10 ¹⁰ - 10 ¹⁵	10 ¹⁴ - 10 ¹⁵	10 ¹⁰ - 10 ¹²	10 ¹⁶ - 10 ¹⁸
Gasoline · light oil	Not available	Not available	Not available	Not available	Good	Not available
Benzene · toluene	Not available	Possible				
Alcohol	Excellent	Excellent	Excellent	Excellent	Excellent	Excellent
Ether	Not available	Possible				
Ethyl acetate	Not available	Excellent				
Water	Excellent	Excellent	Excellent	Excellent	Excellent	Excellent
Organic acids	Not available	Possible				
High temperature inorganic acid	Not available	Not available	Not available	Not available	Good	Excellent
Low temperature inorganic acid	Good	Good	Good	Good	Excellent	Excellent
Weak alkaline resistance	Good	Good	Good	Good	Excellent	Excellent
Strong alkaline resistance	Good	Good	Good	Good	Excellent	Excellent

			Rubber		
Characteristic item	Nitrile rubber (NBR)	Propylene rubber (EPDM)	Urethane rubber (U)	Silicone rubber (Si)	Fluororubber (FPM)
Specific gravity	1.00 - 1.20	0.86 - 0.87	1.00 - 1.30	0.95 - 0.98	1.80 - 1.82
Tensile strength (N/mm²)	5 - 25	5 - 20	20 - 45	4 - 10	7 - 20
Elongation (%)	100 - 800	100 - 800	300 - 800	50 - 590	100 - 500
Elasticity elasticity	Good	Good	Excellent	Excellent	Possible
Tear	Good	Possible	Excellent	Not available	Good
Abrasion resistance	Excellent	Good	Excellent	Not available	Excellent
Flexural crack resistance	Good	Good	Excellent	Not available	Good
Usable temperature (°C)	-20 - 110	−50 - 150	-40 - 80	-70 - 200	-30 - 230
Aging resistance	Excellent	Excellent	Good	Excellent	Excellent
Light fastness	Good	Excellent	Excellent	Excellent	Excellent
Electrical insulating property ($\Omega \cdot cm$)	10 ⁸ - 10 ¹⁰	10 ¹² - 10 ¹⁵	10 ⁹ - 10 ¹²	10 ¹¹ - 10 ¹⁵	10 ¹⁵ - 10 ¹⁸
Gasoline · light oil	Excellent	Not available	Excellent	Not available	Excellent
Benzene · toluene	Not available	Possible	Not available	Not available • Possible	Excellent
Alcohol	Excellent	Excellent	Possible	Excellent	Excellent
Ether	Not available	Good	Not available	Not available	Not available
Ethyl acetate	Not available	Excellent	Possible	Good	Not available
Water	Excellent	Excellent	Possible	Good	Excellent
Organic acids	Not available	Not available	Not available	Not available	Not available
High temperature inorganic acid	Possible	Good	Not available	Possible	Excellent
Low temperature inorganic acid	Good	Excellent	Possible	Good	Excellent
Weak alkaline resistance	Good	Excellent	Not available	Excellent	Possible
Strong alkaline resistance	Good	Excellent	Not available	Excellent	Not available

(Note) This characteristic list is a reference value as a guide only, so it is not a guarantee. Please be sure to check the actual test with a test specimen.

Electric Wire

■ Permissible Current Formula

The permissible current of the wire is the maximum current value that can be flown at all times without impairing its characteristics. Calculate the permissible current I of an insulated wire by the following formula.

 $I=Ko\sqrt{\frac{T_1-T_2}{\gamma Rth}}$

l: allowable electricity (A), Ko: allowable current reduction ratio in the case of multi-staged laying, γ: conductor effective resistance (Ω / cm) at T1 °C., Rth: total thermal resistance of the wire (°C / W / cm), T1: maximum allowable temperature of the wire (°C), T2: ambient (base) temperature (°C)

yc: Direct current maximum conductor resistance (Ω / km) at 20 °C.

a: Conductor resistance temperature coefficient (0.00393 in copper at 20 °C, aluminum 0.0040)

The total thermal resistance Rth of the electric wire is calculated as follows.

Rth=R₁+R₂

R1: thermal resistance of insulator and coating (°C / W / cm)

R₁= $\frac{P_1}{2\pi}$ loge $\frac{d_2}{d_1}$ R₂: Thermal resistance of the wire surface (°C/W/cm)

d1: Outside conductor (mm) d₂ Outer diameter of wire (mm) P1: Insulator specific heat resistance (°C / W / cm) P2: Surface dissipation thermal resistance (°C / W / cm²)

Table 1. Maximum Allowable Current Reduction Ratio for Multi-story Cable Installation

Conditions	1	2	3	6	4	6	8	9	12
Array Center Interval	\\$`	\$	ŞŞ		*		<u> </u>	999 <u>1</u> %	
s=d	-	0.85	0.80	0.70	0.70	0.60	-	-	-
s=2d	1.00	0.95	0.95	0.90	0.90	0.90	0.85	0.80	0.85
s=3d	-	1.00	1.00	0.95	0.95	0.95	0.90	0.85	0.85

d = wire outer diameter s = wire center distance

Table 2. Maximum allowable temperature T₁

Material	Maximum allowable temperature (°C)
General vinyl	60
Heat resistant vinyl	80, 105
Crosslinked vinyl	105
Polyethylene	75
Crosslinked polyethylene	90, 105
TFE	250
FEP	200
Nylon	90
Silicon rubber	180

Conductor effective resistance γ (Ω /cm)

 $\gamma = \gamma_0 \{1 + a(T1-20)\} \times 10^{-5}$

Current reduction coefficient when ambient temperature is different from 30 °C

Ambient temperature (°C) Rated temperature (°C)	30	40	50	60
60	1.00	0.82	0.57	-
80	1.00	0.90	0.77	0.63
90	1.00	0.92	0.82	0.71
105	1.00	0.93	0.85	0.78
125	1.00	0.95	0.89	0.83
150	1.00	0.96	0.91	0.95
200	1.00	0.97	0.93	0.90

Table 3. Specific Thermal Resistance of Insulator

Material	Intrinsic thermal resistance P1(°C/W/cm)
Vinyl	600
Crosslinked vinyl	600
Polyethylene	450
Crosslinked polyethylene	450
TFE	450
FEP	400
Nylon	450
Silicon rubber	500

Table 4. Surface dissipation thermal resistance P2

Material	Surface dissipation thermal resistance P2(°C/W/cm)
Materials shown in Table 3	500+10•d₂(d₂≦40)
Impregnated braid	400+20•d₂(d₂≦20)

Allowable current reduction coefficient when wires are bundled

Number of wires	Coefficient	Number of wires	Coefficient
1	1.00	11	0.43
2	0.85	12	0.42
3	0.75	13	0.41
4	0.68	14	0.40
5	0.62	15	0.39
6	0.56	16	0.38
7	0.52	17	0.37
8	0.49	18	0.37
9	0.46	19	0.36
10	0.44	20	0.35

■ Voltage drop

Voltage drop is the voltage drop in the equipment due to the resistance of the wire itself when wiring the equipment with electric wires, causing a voltage drop in the wire.

Voltage drop depends on load power, power factor, AC resistance and inductance of the line. Supposing that the receiving end voltage is Er, the current is I, the power factor angle of the current is Θ , the resistance of the line is R, the reactance of the line is X, and the length of the line is ℓ , the transmitting end voltage Es

Es = $\sqrt{(\text{Ercos }\Theta + \text{RI }\ell)^2 + (\text{Ersin }\Theta + \text{XI }\ell)^2}$.

Since the above equation can be expressed simply as

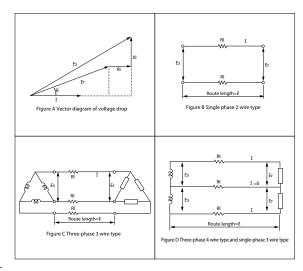
Es = Er + I (R cos θ + X sin θ) ℓ ,

the voltage drop of the line is

Es - Er = I (R $\cos \theta + X \sin \theta$) ℓ .

In the above equation, ignoring the reactance of the circuit and assuming that the power factor can be regarded as 1, the following simplified expression is often used to obtain an approximate value. In the case of a single-phase two-wire system (Figure B)

 $e = Es - Er = R \cdot I \cdot \ell \times 2$


In the case of three-phase three-wire system (Figure C)

 $e = Es - Er = R \cdot I \cdot \ell \times \sqrt{3}$

In the case of a single-phase 3-wire system, calculate it as if the load is balanced and the current can not flow to the neutral wire (Figure D)

 $e' = Fs - Fr = R \cdot I \cdot \ell$

Where e' is the voltage drop between the neutral line and the outer line or one phase of each phase.

C-	iaug	e	Dian	neter		Cross Area		Weig	ht kg/km
mmG	AWG	SWG	mm	mil	mm ²		in² CM		Aluminum
-	6/0	-	14.73	580.1	170.5		336.500	Steel 1.516	460.4
-	5/0		13.12	500.0	135.2	0.2643 0.2096	266.900	1.202	365.0
_	-	7/0	12.70	516.6	126.7	0.1964	250.000	1.126	
- 12									342.1
12	-	- (0	12.00	472.4	113.1	0.1753	223.200	1.005	305.4
_	- 4/0	6/0	11.79	464.0	109.1	0.1691	215.300	969.9	294.6
-	4/0	-	11.68	460.0	107.2	0.1662	211.600	953.0	289.4
-	-	5/0	10.97	432.0	94.59	0.1466	186.600	840.9	255.4
-	3/0	-	10.40	409.6	85.04	0.1318	167.800	756.0	229.6
-		4/0	10.16	400.0	81.10	0.1257	160.000	721.0	219.0
10	-		10.00	393.7	78.54	0.1217	155.000	698.2	212.1
•	•	3/0	9.449	372.0	70.13	0.1087	138.400	623.5	189.4
	2/0	-	9.266	364.8	67.43	0.1045	133.100	599.5	182.1
9	-	-	9.000	354.3	63.62	0.09961	125.600	565.6	171.8
-	-	2/0	8.839	348.0	61.37	0.09512	121.100	545.6	165.7
-	0	-	8.252	324.9	53.49	0.08291	105.600	475.5	144.4
-	-	0	8.230	324.0	53.20	0.08245	105.000	472.9	143.6
8	-		8.000	315.0	50.27	0.07791	99.210	446.9	135.7
-	-	1	7.620	300.0	45.61	0.07069	90.000	405.5	123.1
-	1	-	7.348	289.3	42.41	0.06573	83.690	377.0	114.5
-	-	2	7.010	276.0	38.60	0.05983	76.180	343.2	104.2
7			7.000	275.6	38.48	0.05964	75.940	342.1	103.9
-	2		6.543	257.6	33.63	0.05212	66.380	299.0	90.80
6.5			6.500	255.9	33.18	0.05143	65.480	295.0	89.59
-		3	6.401	252.0	32.18	0.04999	63.500	286.1	86.89
6	-	-	6.000	236.2	28.27	0.04382	55.790	251.3	76.33
_		4	5.893	232.0	27.27	0.04227	53.820	242.4	73.63
_	3	-	5.827	229.4	26.67	0.04227	52.820	237.1	72.01
5.5	•		5.500	216.5	23.76	0.03693	46.890	211.2	64.15
	-	5	5.385	212.0	22.78	0.03530	44.940	202.5	61.51
-	4	-	5.189	204.3	21.15	0.03278	41.740	188.0	57.11
5	-		5.000	196.9	19.64	0.03041	38.760	174.6	53.03
٠	-	6	4.877	192.0	18.68	0.02895	36.880	166.1	50.44
-	5	-	4.620	181.9	16.77	0.02599	33.090	149.0	45.25
4.5	-	-	4.500	177.2	15.90	0.02464	31.380	141.4	42.93
-	-	7	4.470	176.0	15.70	0.02433	30.980	139.6	42.39
-	6	-	4.115	162.0	13.30	0.02061	26.240	118.2	35.91
-	-	8	4.064	160.0	12.97	0.02011	25.600	115.3	35.02
4	-	-	4.000	157.5	12.57	0.01949	24.810	111.7	33.94
-	7	-	3.685	144.3	10.55	0.01635	20.820	93.79	28.49
-	-	9	3.658	144.0	10.51	0.01629	20.740	93.43	28.38
3.5	-	-	3.500	137.8	9.621	0.01491	18.900	85.53	25.98
	8	-	3.264	128.5	8.368	0.01297	16.510	74.39	22.59
	-	10	3.251	128.0	8.304	0.01287	16.380	73.82	22.42
3.2			3.200	126.0	8.042	0.01246	15.870	71.49	21.71
-	-	11	2.946	116.0	6.820	0.01240	13.460	60.63	18.41
_	9	-	2.946	114.4	6.633	0.01037	13.090	58.97	17.91
		H							
2.9	-	- 12	2.900	114.2	6.605	0.01024	13.040	58.72	17.83
-	•	12	2.642	104.0	5.481	0.008495	10.820	48.73	14.80
2.6	-	·	2.600	102.4	5.309	0.008228	10.480	47.20	14.33
-	10	•	2.588	101.9	5.262	0.008155	10.380	46.78	14.21
-		13	2.337	92.0	4.289	0.006649	8.464	38.13	11.58
-	11	-	2.304	90.7	4.169	0.006461	8.226	37.06	11.26
2.3	-	-	2.300	90.6	4.155	0.006440	8.200	36.94	11.22
-	12	-	2.052	80.8	3.309	0.005128	6.529	29.42	8.934
-	-	14	2.032	80.0	3.243	0.005027	6.400	28.83	8.756
2.0	-	-	2.000	78.7	3.142	0.004870	6.201	27.93	8.483
	13	15	1.829	72.0	2.627	0.004072	5.184	23.35	7.093
-			1.800	70.9	2.545	0.003945	5.023	22.63	6.872
_	-			64.1	2.082	0.003227	4.109	18.51	5.621
-	14		1.628	04.1				-	
1.8		- 16	1.628	64.0	2.076	0.003217	4.096	18.46	5.605
1.8	14				2.076 2.011	0.003217 0.003117	4.096 3.969	18.46 17.99	5.605 5.430
1.8	14		1.626 1.600	64.0 63.0	2.011	0.003117	3.969	17.99	5.430
- 1.8 - - 1.6	14	16 -	1.626 1.600 1.450	64.0 63.0 57.1	2.011 1.652	0.003117 0.002561	3.969 3.260	17.99 14.69	5.430 4.460
- 1.8 - - 1.6	14 - - 15	16	1.626 1.600	64.0 63.0	2.011	0.003117	3.969	17.99	5.430

(iaug	e	Dian	neter	Cross Area Weigh		ıht kg/km		
mmG	AWG	SWG	mm	mil	mm²	in ²	CM	Steel	Aluminum
		18	1.129	48.0	1.168	0.001910	2.304	10.38	3.154
1.2		-	1.200	47.2	1.131	0.001753	2.232	10.05	3.054
-	17		1.151	45.3	1.040	0.001612	2.052	9.246	2.809
-	18	-	1.024	40.3	0.8233	0.001276	1.624	7.319	2.223
-	•	19	1.016	40.0	0.8110	0.001257	1.600	7.210	2.190
1.0		20	1.000 0.9144	39.4 36.0	0.7854 0.6568	0.001217	1.550 1.296	6.982 5.839	2.121 1.773
-	19	-	0.9119	35.9	0.6529	0.001010	1.289	5.804	1.763
0.9			0.8000	35.4	0.6362	0.0009961	1.256	5.656	1.718
-	20	21	0.8128	32.0	0.5189	0.0009042	1.024	4.613	1.401
0.8		-	0.8000	34.5	0.5027	0.0007791	992.1	4.469	1.357
-	21		0.7239	28.5	0.4116	0.0006379	812.3	3.659	1.111
-		22	0.7112	28.0	0.3973	0.0006159	784.0	3.532	1.073
0.7	٠	-	0.7000	27.6	0.3848	0.0005964	759.4	3.421	1.039
0.65	•	-	0.6500	25.6	0.3318	0.0005143	854.8	2.950	0.8959
-	22	•	0.6426	25.3	0.3243	0.0005027	640.1	2.883	0.8756
-	•	23	0.6096	24.0	0.2919	0.0004524	576.0	2.595	0.7881
0.60	23	-	0.6000	23.6	0.2827 0.2589	0.0004282 0.0004012	557.9 510.8	2.513	0.7633
-		24	0.5588	22.0	0.2369	0.0004012	484.0	2.302	0.6620
0.55	-	-	0.5500	21.7	0.2376	0.0003683	468.9	2.112	0.6416
-	24	-	0.5105	20.1	0.2047	0.0003173	404.0	1.820	0.5527
-		25	0.5090	20.0	0.2027	0.0003142	400.0	1.802	0.5473
0.50		-	0.5000	19.7	0.1964	0.0003044	387.6	1.746	0.5393
-	٠	26	0.4572	18.0	0.1642	0.0002545	324.0	1.460	0.4483
-	25	-	0.4547	17.9	0.1624	0.0002517	320.4	1.444	0.4385
0.45	٠	-	0.4500	17.7	0.1590	0.0002464	313.8	1.414	0.4233
-	•	27	0.4166	16.4	0.1363	0.0002112	269.0	1.212	0.3690
-	26	-	0.4039	15.9	0.1281	0.0001996	252.8	1.139	0.3459
0.40		- 28	0.4000	15.7 14.8	0.1257 0.1110	0.0001948	248.1 219.0	1.117 0.9868	0.3384
-	27	- 20	0.3759	14.0	0.1110	0.0001720 0.0001584	201.6	0.9086	0.2967
0.35	-		0.3500	13.8	0.09621	0.0001304	189.9	0.8553	0.2598
-		29	0.3454	13.6	0.09375	0.0001453	185.0	0.8334	0.2581
-	28	-	0.3200	12.6	0.08046	0.0001247	158.8	0.7153	0.2172
0.32			0.3200	12.6	0.08042	0.0001246	58.7	0.7149	0.2171
-		30	0.3150	12.4	0.07794	0.0001208	153.8	0.6929	0.2104
-	٠	31	0.2946	11.6	0.08620	0.0001057	134.6	0.6063	0.1841
0.29	٠	-	0.2900	11.4	0.06605	0.0001024	130.4	0.5872	0.1783
-	29	-	0.2870	11.3	0.06471	0.0001003	127.7	0.5753	0.1747
-	•	32	0.2743	10.8	0.05911	0.00009161	116.6	0.5255	0.1596
0.26	30	- 33	0.2600	10.2	0.05309	0.00008228 0.00007854	104.8	0.4720 0.4505	0.1433 0.1368
-	- 30	34	0.2337	9.2	0.05067 0.04289	0.00007854	84.64	0.4505	0.1368
0.23	-	-	0.2300	9.1	0.04269	0.00006440	82.00	0.3694	0.1139
	31	-	0.2261	8.9	0.04014	0.00006221	79.21	0.3568	0.1084
	-	35	0.2134	8.4	0.03576	0.00005542	70.56	0.3179	0.09655
-	32	-	0.2032	8.0	0.03243	0.00005027	64.00	0.2883	0.08756
0.20			0.2000	7.9	0.03142	0.00004870	62.01	0.2793	0.08483
	-	36	0.1930	7.6	0.02927	0.00004536	57.76	0.2602	0.07933
-	33	-	0.1803	7.1	0.02554	0.00003959	50.41	0.2271	0.06696
0.18		-	0.1800	7.1	0.02545	0.00003915	50.23	0.2263	0.06972
- 016	-	37	0.1727	6.8	0.02343	0.00003632	46.24	0.2083	0.06326
0.16	34		0.1600	6.3	0.02011	0.00003117	39.69	0.1788	0.05430
-	35	38	0.1524	5.6	0.01824	0.00002827 0.00002463	36.00 31.36	0.1622	0.04925
0.14	- 35	-	0.1422	5.5	0.01589	0.00002463	30.37	0.1413	0.04290
-		39	0.1321	5.2	0.01370	0.00002303	27.04	0.1218	0.03688
	36		0.1270	5.0	0.01267	0.00001964	25.00	0.1126	0.03421
-		40	0.1219	4.8	0.01168	0.00001810	23.04	0.1038	0.03154
0.12		-	0.1200	4.7	0.01131	0.00001753	22.32	0.1005	0.03054
-	37	-	0.1143	4.5	0.01026	0.00001590	20.25	0.09121	0.02770
		41	0.1118	4.4	0.009813	0.00001521	19.36	0.08724	0.02650
	38	42	0.1016	4.0	0.008110	0.00001257	16.0	0.07210	0.02190
0.10		-	0.1000	3.9	0.007854	0.00001217	15.50	0.06982	0.02121

Discontinued and Replacement Models

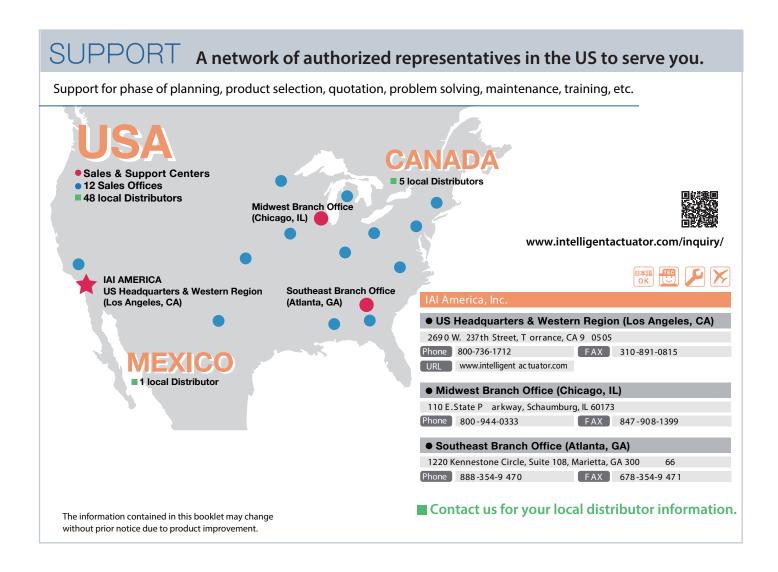
Classification		Series		Discontinued time	Successor models (REPLACEMENTS) *	
		DS	SA4 SA5 SA6 A4R A5R A6R	October 2008	RCA, RCS2	
		EX	12EX	August 2007	RCP5-BA	
		AS	12L 12G2 12R2 12H2 12V CS-DC 12AR	October 2003	ISB	
		E/F	12E 12ED 12F 12FD	October 2003	ISB, RCA	
	Single axis robot	Single axis robot	Old AS	12G 02G 02W 12GR 12R 02R GSJ RP MR CR	December 2001	ISB
Actuator			IS	T-X-S S-X-M S-Y-M S-Y-M M-X-S M-X-M M-X-S M-Y-M M-Z-S M-Z-M L-X-S L-X-M L-X-M L-X-H L-X-G L-Y-M L-Y-S L-Y-M L-Y-S L-Y-M L-Y-S L-Y-M L-Y-S L-Y-M L-Y-S L-Y-M	August 2014	ISB
			ISP	S-X-M S-Y-M S-Z-M M-X-S M-X-M M-X-MX M-Y-S M-Y-M M-Z-S M-Z-M L-X-S L-X-M L-X-MX L-X-UWX L-Y-S L-Y-M L-Z-S L-Z-M W-X-M	September 2015	ISPB

^{*} The successor model is not compatible with shape, mounting dimensions, wiring etc. Please contact us for more details.

Classification		Series		Discontinued time	Successor models (REPLACEMENTS) *
		ISD	S M MX L L		ISDB ISPDB ISDBCR ISPDBCR
		ISPD	S M MX L L		
	Single axis robot	ISDCR	S M MX L L	September 2015	
		ISPDCR	S M MX L LX W		
		ICS		September 2015	ICSB2
	Orthogonal robot		SP3 S2		ICSB3 ICSB2
			S3	August 2014	ICSB3
	Tabletop type robot	TT-300		August 2007	TTA
Actuator		RC RC-S	-	October 2004	RCP6
	ROBO Cylinder	RCS	SA4 SA5 SA6 S4 S5 S6 S5 S6 SS SM SSR SMR RA35-GN RA35-GS RA35-GD RA45-GN RA45-GS RA45-GD RA55-GN RA55-GS RA55-GD RB7535-GS RB7535-GD RB7535-GS RB7535-GS RB7535-GS RB7535-GS RB7535-GS	September 2019	RCS2/RCA

 $^{{}^*\}textit{The successor model is not compatible with shape, mounting dimensions, wiring etc. Please contact us for more details.}\\$

Discontinued and Replacement Models


Classification	Series				Discontinued time	Successor models (REPLACEMENTS) *
Actuator	ROBO Cylinder	RCP		G20 R10, R20, R30 SA5 SA6 SS SM SSR SMR RSA RMA RSW RMW RSI RMIW RSIW RMIW RSGS RMGS RMGD RMGD RSGB RMGB	October 2004	RCP6
	TA	TA		28 35	December 2003	RCP3, RCP6
	ТХ	Т	X	20 28 35	February 2016	RCP3, RCP6
	DD	DD DDCR		T18S T18P H18S H18P T18CS T18CP H18CS H18CP	December 2019	DDA
	DS controller Super SEL Controller			DS-S-C1	October 2008	ASEL
			SA-C1, C2, C3, C4 DS-C1, C2, C3, C4		December 2001	ASEL
			S-SEL-F		August 2007	SSEL
			S-SEL-ES-1 M-SEL-GS-2~4			SSEL SSEL XSEL-P/RA
			S-SEL-E-1- □ S-SEL-EDS-1- □ M-SEL-G-2~8		April 2005	SSEL
Controller			M N	-SEL-GDS-2~8 -SEL-GID-2~8 1-SEL-GX-2~9		SSEL XSEL-P/RA
				SEL-A-1 A-3 A-2 A-4	October 2003	SSEL XSEL-P/RA
			SEL-B-2 B-7 B-3 B-8 B-4		October 2003	XSEL-P/RA
			SEL-H-2, 4 SEL-HAB-2, 4		October 2003	XSEL-P/RA
			SEL-D-2		December 2001	SSEL
	Multi-control	er		SEL-2~4	December 2001	SSEL XSEL-P/RA
	6. 1	l	S-SE	L-35/60/100/200	October 2003	SSEL
	Single controller			S C-S	December 2001	SCON-CB

^{*}The successor model is not compatible with shape, mounting dimensions, wiring etc. Please contact us for more details.

1-389 Discontinued and Replacement Models

Classification	Series		Discontinued time	Successor models (REPLACEMENTS) *
		RCP2-C/CF		PCON-CB/CFB
		RCS-C	May 2014	SCON-CB(100V,200V) ACON-CB(24V)
	Controller for ROBO Cylinder	RCS-E	June 2014	ACON-CB
	Controller for ROBO Cylinder	ECON	May 2014	SCON-CB
		PDR	May 2014	SCON-CB
		RCP-C- □ RCP-C- □ -EU	October 2004	PCON-CB
Controller	Controller for TA	TA-C1	December 2003	PCON-CB
	Controller for TX	TX-C1	February 2016	PCON-CB
	XSEL Controller	J, JX	December 2017 (Plan)	XSEL-P, PX XSEL-Q, QX XSEL-RA, RAX, RAXD8 XSEL-SA, SAX, SAXD8
	XSEL Controller	K, KE, KET, KETX KEX, KT, KX	December 2016	XSEL-P, PX XSEL-Q, QX XSEL-RA, RAX, RAXD8 XSEL-SA, SAX, SAXD8
Table top type	TT-300		August 2007	TTA
Display	Touch panel display	RCM-PM-01	December 2013	-
	Simple teaching for RC	RCM-E	March 2014	TB-02
	Data setting device for RC	RCM-P	March 2014	-
	Standard teaching for RC	RCM-T	August 2008	TB-02
Teaching box	Teaching for XSEL	IA-T-X IA-T-X-J IA-T-X-JS IA-T-XD IA-T-XD-J IA-T-XD-JS	October 2015	TB-02

^{*} The successor model is not compatible with shape, mounting dimensions, wiring etc. Please contact us for more details.

IAI America, Inc.

US Headquarter & Western Region (Los Angeles): 2690 W. 237th Street, Torrance, CA 90505 (800) 736-1712 Midwest Branch Office (Chicago): 110 E. State Pkwy, Schaumburg, IL 60173 (800) 944-0333 Southeast Branch Office (Atlanta): 1220 Kennestone Circle, Suite 108, Marietta, GA 30066 (888) 354-9470

www.intelligentactuator.com

The information contained in this product brochure may change without prior notice due to product improvements.

IAI Industrieroboter GmbH

Ober der Röth 4, D-65824 Schwalbach am Taunus, Germany

IAI (Shanghai) Co., Ltd.

Shanghai Jiahua Business Center A8-303, 808, Hongqiao Rd., Shanghai 200030, China

IAI Robot (Thailand) Co., Ltd.

825 Phairojkijja Tower 7th Floor, Debaratana Rd., Bangna Nuea, Bangna, Bangkok 10260, Thailand