

ISPA/ICSPA ISA/ICSA

SINGLE-AXIS ROBOT/CARTESIAN ROBOT

Integrated System & Integrated System Precision

New XY Configurations Added

8

www.intelligentactuator.com

VISUAL INDEX

Single-Axis Robots High-precision positioning systems with a linear positioning repeatability of 0.01 to 0.02 mm

ISPA/ICSPA Catalog

Point -

The ISA/ICSA2 is a standard actuator with a positioning repeatability of ±0.02 mm. The ISPA/ICSPA2 is a high-precision actuator with a positioning repeatability of ±0.01 mm.

Cartesian Robots Transfer/positioning systems combining single-axis robots into a two to three orthogonal axes configuration.

Y-Axis Base Mount

The Y-axis slider moves horizontally.

ICSPA2-B

Y-Axis Slider Mount

The entire Y-axis moves horizontally

ICSA2-S 🗆

ICSPA2-S

P103-114

Contents	4
Features ·····	5
Specification Table	7
System Configurations	8
Points to Note	9
Explanation of Model Specification Items	11
Explanation of Options	13
Product Specifications	15
Technical Data	39

Z-Axis Base Mount Z-Axis Slider Mount Gantry The Z-axis is positioned vertically and mounted to the The Z-axis slider is mounted to the Y-axis positioned on its A support axis is added in parallel with the X-axis and the X-axis. The Z-axis slider moves vertically. side. The entire Z-axis moves vertically. Y-axis base is mounted to the sliders on the two axes. The Y-axis slider moves horizontally. ICSA2-G ICSPA2-Z ICSPA2-Y **ICSPA2-G** P115-130 P131-140 P141-144

P67-102

Controllers

Single-axis or Cartesian robot controllers that can execute various positioner operations and pulse-input program operations depending on your specific control needs.

Cartesian Robot Series

Contents 42
Features 43
Product Types 45
Two-Axes ConfigurationUnit Selection Table47
Three-Axes ConfigurationUnit Selection Table49
Points to Note 59
Explanation of Model Specification Items ····· 61
Product Specifications 63
System Configuration 65
Technical Data ·····241

Single-Axis Robots ISA ISPA

Contents

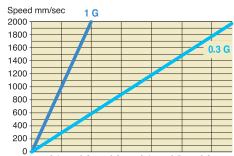
Contents	4
Features	5
Specification Table	7
System Configurations	8
Points to Note	9
Explanation of Model Specification Items	11
Explanation of Options	13

Single-Axis Robot Series Contents

	X-Axis	ISA (ISPA)-SXM	15
Compact	Y-Axis	ISA(ISPA)-SYM	16
Actuator width 90mm		13A(13FA)-31M	10
	Z (Vertical) Axis	ISA(ISPA)-SZM	17
	X-Axis	ISA(ISPA)-MXM-100	18
		ISA(ISPA)-MXM-200	19
	Long-Stroke Type (Mid-Support Type)	ISA(ISPA)-MXMX	20
Medium	Y-Axis	ISA(ISPA)-MYM-100	21
Actuator width 120mm		ISA(ISPA)-MYM-200	22
	Z (Vertical) Axis	ISA(ISPA)-MZM-100	23
		ISA(ISPA)-MZM-200	24
	X-Axis	ISA(ISPA)-LXM-200	25
		ISA(ISPA)-LXM-400	26
	Long-Stroke Type (Mid-Support Type)	ISA(ISPA)-LXMX-200	27
		ISA(ISPA)-LXMX-400	28
Large		ISA(ISPA)-LXUWX-200	29
Actuator width 150mm		ISA(ISPA)-LXUWX-400	30
1301111	Y-Axis	ISA(ISPA)-LYM-200	31
		ISA(ISPA)-LYM-400	32
	Z (Vertical) Axis	ISA(ISPA)-LZM-200	33
		ISA(ISPA)-LZM-400	34
Current	X-Axis	ISA(ISPA)-WXM-600	35
Super Large		ISA(ISPA)-WXM-750	36
Actuator width	Long-Stroke Type (Mid-Support Type)	ISA(ISPA)-WXMX-600	37
198mm	(ind capport i)po)	ISA(ISPA)-WXMX-750	38

Single-Axis Robot ISA/ISPA Series Features

The ISA/ISPA is a high-precision positioning system comprised of a base, linear guides, ball screw and AC servo motor. It achieves cost savings, because its design is more comprehensive and adjustment is much easier than when individual components are purchased and assembled.



Higher Maximum Acceleration/Deceleration of 1 G (9800 mm/sec²)

Both the ISA and ISPA achieve a maximum acceleration/ deceleration of 1 G, which was heretofore possible only with the ISP Series.

* When accelerating to 2000 mm/sec, a robot operating at an acceleration of 1 G achieves the target speed approx. 0.5 second faster than a robot operating at an acceleration of 0.3 G (as shown in the graph at right).

Acceleration/deceleration indicates the rate of change of speed. 1 G is equivalent to 9800 mm/sec², or the ability to accelerate (or decelerate) 9800 mm/sec per second.

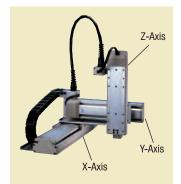
Comparison of Acceleration Time at 1 G and 0.3 G

0.1sec 0.2sec 0.3sec 0.4sec 0.5sec 0.6sec

Dedicated X/Y/Z-Axes

Dedicated axes are available to choose from according to your specific need.

X-Axis Type (SXM, MXM, LXM, etc.)

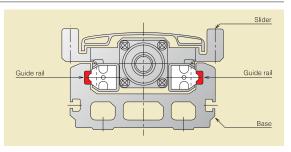

- A dedicated cover prevents intrusion of small parts and other foreign objects from above.
- To install the actuator, open the cover and affix with bolts from above.

Y-Axis Type (SYM, MYM, LYM, etc.)

• A cover shape is adopted to prevent intrusion of small parts and other foreign objects from above when the actuator is installed on its side.

Z-Axis Type (SZM, MZM, LZM, etc.)

- The actuator comes standard with a slider anti-drop brake by assuming use in a vertical application.
- The mounting holes provided in the back of the base (actuator-mounting surface) are different from the mounting holes of the X-axis type.

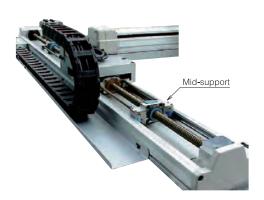


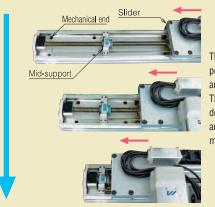
(A load can be attached easily to the base surface when the slider is mounted and the actuator is moved vertically.)

3

Achieving Higher Rigidity with Smaller Size via Base-Integrated Guide Structure

The thickness of the actuator has been reduced by embedding the guide rails in the base, eliminating the need for attachment of commercial guides. The base also employs a hollow box structure for improved rigidity.

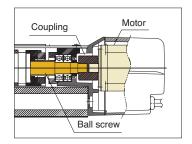



Cartesian Robots

2500-mm Stroke with Ball Screw, Achieved with Mid-Support Mechanism

A ball screw drive actuator is prone to screw deflection when the stroke is increased, which makes it difficult to increase the rotating speed and therefore the actuator speed. As a result, belt drive has been the mainstream drive mechanism for long-stroke actuators.

The ISA/ISPA Series achieves a long stroke of 2500 mm using a ball screw drive, employing an original (patented) mid-support mechanism.



The mid-support is always positioned between the slider and the mechanical end. This design suppresses deflection of the ball screw and enables high-speed movement over a long stroke.

Direct Coupling Structure at Same Overall Length as Integrated Ball Screw/Rotor Type

The ISA/ISPA Series features a coupling structure of the same overall length as the conventional IS Series (integrated ball screw/rotor type). This structure allows for motor replacement in the event of a motor problem.

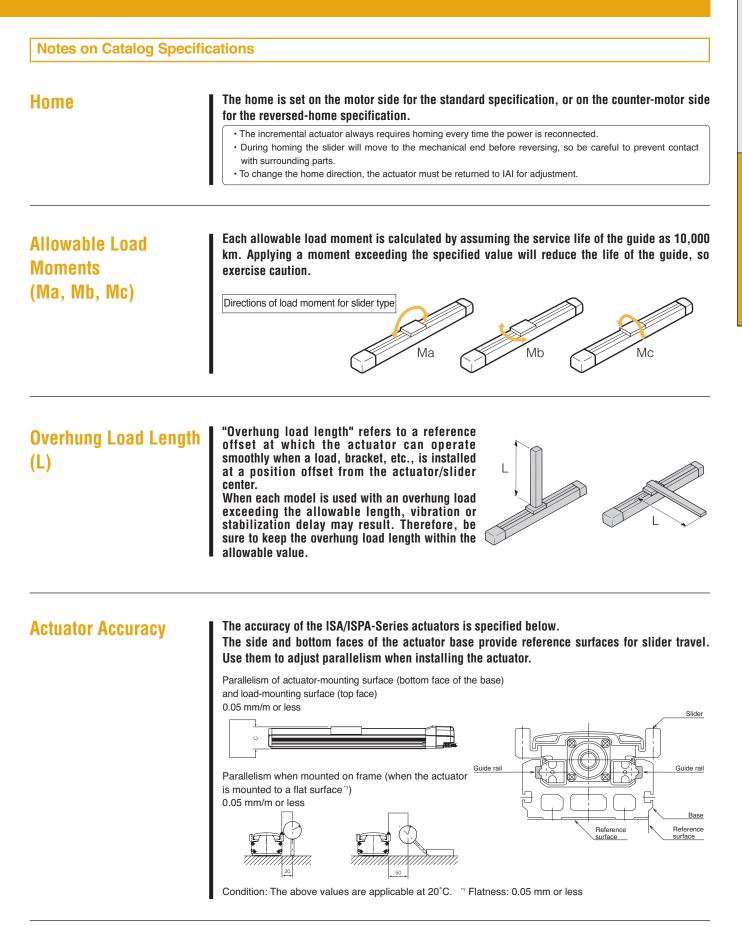
Selectable Controller Depending on Desired Control Method

The following three controller types are available:

Single-Axis Robot Series Specification Table

	Stroke (mm), maximum speed (mm/sec) (Note 1)							ad capacity (Note 2)		Lead		
		700 000 000 1000			500 4000 4700 4000 4000 0000		Horizontal	Vertical	capacity	(mm)	Model	Page
	100 200 300 400 500 600 800	700 800 900 1000	1100 1200	1300 1400 1	500 1600 1700 1800 1900 2000	2100 2200 2300 2400 2500	(kg) 12	(kg)	(W)	(mm) 16		
	400						25	3 6	60	8	ISA(ISPA)-SXM-□-60-16- * * * ISA(ISPA)-SXM-□-60-8- * * *	P15
	200						50	14	00	4	ISA(ISPA)-SXM-□-60-4- * * *	10
	800						12	3		16	ISA(ISPA)-SYM-□-60-16- * * *	
	400								60	8	ISA(ISPA)-SYM-□-60-8- * * *	P16
	200						25	6 14	00	4	ISA(ISPA)-SYM-□-60-4- * * *	F 10
	400						50				ISA(ISPA)-SZM-□-60-8- * * * -B	
	200						-	6	60	8	. ,	P17
	1000	1000 705 GAD 540					-	14		20	ISA(ISPA)-SZM-□-60-4- * * * -B	
	500	1000 795 645 540					20	5 9	100	10	ISA(ISPA)-MXM-□-100-20- * * *	D10
							40		100		ISA(ISPA)-MXM-□-100-10-***	P18
	250						80	19		5	ISA(ISPA)-MXM-□-100-5- * * *	
	1500	1500 1190 965 810					25	6		30	ISA(ISPA)-MXM-□-200-30- * * *	
	1000	1000 795 645 540					40	9	200	20	ISA(ISPA)-MXM-□-200-20- * * *	P19
	500	480 380 310 255					80	19		10	ISA(ISPA)-MXM-□-200-10- * * *	
			500		200 1050 900 825 750 675		25	-	200	30	ISA(ISPA)-MXMX-□-200-30- * * *	P20
			000	950 (800 700 600 550 500 450		40	-		20	ISA(ISPA)-MXMX-□-200-20- * * *	
	1000	1000 795 645 540					20	5		20	ISA(ISPA)-MYM-□-100-20- * * *	-
	500	480 380 310 255					40	9	100	10	ISA(ISPA)-MYM-□-100-10- * * *	P21
	250	220 175 145 120					80	19		5	ISA(ISPA)-MYM-□-100-5- * * *	
	1500	1500 (1190 (965 (810					25	6		30	ISA(ISPA)-MYM-□-200-30- * * *	-
	1000	1000 795 645 540					40	9	200	20	ISA(ISPA)-MYM-□-200-20- * * *	P22
	500	480 380 310 255					80	19		10	ISA(ISPA)-MYM-□-200-10- * * *	
	500	480 380 310 255					-	9	100	10	ISA(ISPA)-MZM-□-100-10- * * * -B	P23
	250	220 175 145 120					-	19		5	ISA(ISPA)-MZM-□-100-5- * * * -B	
ISA	500	480 380 310 255					-	19	200	10	ISA(ISPA)-MZM-□-200-10- * * * -B	P24
ISPA	1000	100 830 690	585 500				40	9	200	20	ISA(ISPA)-LXM-□-200-20- * * *	P25
	500	470 385 320	270 235				80	19	200	10	ISA(ISPA)-LXM-□-200-10- * * *	120
	2000	1660 1380	1170 100				40	9	400	40	ISA(ISPA)-LXM-□-400-40- * * *	P26
	1000	830 690	585 500				80	19	400	20	ISA(ISPA)-LXM-□-400-20- * * *	F20
			1000		950 830 740 650 590 540	490 440 410 370 340	40	-	200	20	ISA(ISPA)-LXMX-□-200-20- * * *	P27
			2000		900 (660 (480 (300 (180 (080	980 880 820 740 680	40	-	400	40	ISA(ISPA)-LXMX-□-400-40- * * *	P28
			1000		950 830 740 650 590 540	490 440 410 370 340	80	-	400	20	ISA(ISPA)-LXMX-□-400-20- * * *	F20
			1000		950 830 740 650 590 540	490 440 410 370 340	40	-	200	20	ISA(ISPA)-LXUWX-□-200-20- * * *	P29
			2000		900 (660 (480 (300 (180 (080	980 880 820 740 680	40	-	100	40	ISA(ISPA)-LXUWX-□-400-40-***	D 00
			1000		950 830 740 650 590 540	490 440 410 370 340	80	-	400	20	ISA(ISPA)-LXUWX-□-400-20-***	P30
	1000	100 830 690	585 500				40	9	000	20	ISA(ISPA)-LYM- □-200-20- * * *	D04
	500	470 385 320	270 235				80	19	200	10	ISA(ISPA)-LYM- □-200-10- * * *	P31
	2000	2000 (1660 (1380	1170 100				40	9		40	ISA(ISPA)-LYM- □-400-40- * * *	
	1000	100 830 690	585 500				80	19	400	20	ISA(ISPA)-LYM- □-400-20- * * *	P32
	500	470 385 320	270 235				_	19	100	10	ISA(ISPA)-LZM-□-200-10- * * * -B	P33
	500	470 385 320					-	39	400	10	ISA(ISPA)-LZM-□-400-10- * * *	P34
	2000		1170 1000	865			60	14		40	ISA(ISPA)-WXM-□-600-40- * * *	
	1000	835 695		430			120	29	600	20	ISA(ISPA)-WXM-□-600-20- * * *	P35
	500		290 250	215			150	60		10	ISA(ISPA)-WXM-□-600-10- * * *	1
	2000		1170 1000				75	18		40	ISA(ISPA)-WXM-□-750-40- * * *	
	1000	835 695		430			150	37	750	20	ISA(ISPA)-WXM-□-750-20- * * *	P36
			2000	1965 (1725 1530 1365 1225 1110 1005	915 840 770 710 655	60	-		40	ISA(ISPA)-WXMX-□-600-40- * * *	
			1000		860 765 680 610 555 500		120	_	600	20	ISA(ISPA)-WXMX-□-600-20- * * *	P37
			2000		172 5 1530 1365 1225 (110 1005		75	_		40	ISA(ISPA)-WXMX-□-750-40- * * *	
			1000		860 765 680 610 555 500		150	_	750	20	ISA(ISPA)-WXMX-□-750-20- * * *	P38
	ure in the elongated circle											1

(Note 1) The figure in the elongated circle indicates the maximum speed for each stroke. (Note 2) The load capacity is based on actuator operation at the rated acceleration (refer to page 9).


Single-Axis Robot Series System Configurations

Actuator	ISA/ISP (P15~34)	ISA/ISPA (P15~34)							
Actuator									
		Motor Cable Encoder Ca LS Cable							
Controller	Super SEL Controller	SSEL	SCON						
Controller									
Option	Teaching Pendant	Teaching Pendant	Teaching Pendant						
Option	IA-T-X/XD SEL-T/TD/TG PC Software IA-101-X-MW IA-101-XA-MW IA-101-X-USBMW	IA-T-X/XD SEL-T/TD PC Software IA-101-X-MW-J IA-101-X-USB	PC Software RCM-101-MW RCM-101-USB						

Single-Axis Robot Series Points to Note

Notes on Catalog Specifications

Speed	"Speed" refers to the specified speed at which the actuator slider will move. The slider accelerates from a stationary state, and once the specified speed is reached it will maintain that speed until the specified position (immediately before the target position), where it will begin decelerating to stop at the target position.										
	 < Caution > 1 The maximum speed of the ISA/ISPA Series will remain the same even when the load placed on the slider is changed. 2 The time needed to reach the specified speed will vary according to the acceleration (deceleration). 3 If the travel distance is short, the specified speed may not be reached. With a long-stroke axis, the maximum speed will drop to avoid reaching a dangerous speed. (If you are using a 600 or longer stroke, check the maximum speed for the applicable stroke in the corresponding dimensional drawing.) When calculating the travel time, consider acceleration, deceleration and stabilization periods in addition to the travel time at the specified speed. (Refer to pages 39 and 40 for the method to calculate travel time.) Speed can be set in increments of 1 mm/sec in a program. 										
Acceleration/Deceleration	"Acceleration" refers to the rate of change of speed when the speed rises from zero (stationary state) to the specified speed. "Deceleration" refers to the rate of change of speed when the specified speed drops to zero (stationary state).										
	 < Caution > Increasing the acceleration (deceleration) will shorten the duration the actuator accelerates (decelerates) and decrease the travel time. However, doing so will also cause rapid acceleration (deceleration), resulting in increased shock. The rated acceleration is 0.3 G (or 0.15 G if the lead is 4 or 5 mm.) (The load capacity is set based on the rated acceleration.) If the ISA/ISPA Series is operated at an acceleration (deceleration) exceeding the rated acceleration, the load capacity will drop. (Refer to page 40 for details.) Acceleration can be set in increments of 0.01 G in a program. 										
Duty	IAI recommends that our actuators be used at a duty of 50% or less as a guideline in view of the relationship of service life and accuracy. Duty (%) = <u>Acceleration / Deceleration Time</u> Motion time + Inactivity x 100										
Positioning Repeatability	"Positioning repeatability" refers to the positioning accuracy of repeated movements to a pre- stored position. This is not the same as "absolute positioning accuracy," so exercise caution.										
	Positioning repeatability Accuracy variation of the stop position when positioning is performed repeatedly to the same point.										
	Absolute positioning accuracy Difference between the coordinate value and the measured value when positioning is performed to a given positioning point specified by coordinates.										

Explanation of Model Specification Items

Refer to the right page for the explanation of each model specification item.

The selection range for each item will vary depending on the actuator type. For details, refer to the page corresponding to each actuator type.

(1)	(2)	(3)		(4)		(5)		(6)		(7)		(8)		(9)						
Series	Туре	Encoder type		Motor output		Lead		Stroke		Applicable controller		Cable length		Options						
	SXM SYM		_	60	_	4 8 16	_	100 ~ 600	_		_		_							
	SZM		-		_	4 8	-	000	-		-		-							
	МХМ						_	100	_	5 10 20	-		_		_		_			
	MXM MYM		_	200	_	10 20 30	_	100 ~ 1000	_				-	_		_				
	MZM		-	100	_	5 10	-		-		-		-							
	IVIZIVI		_	200	_	10	-		_	- - - - - -	_		-							
	МХМХ		_	200	_	20 30	-	800 ~ 2000	_		-				_		_			
	LXM	LXM LYM A I LZM	_	200	_	10 20	-	100 ~ 1200	_		-		_	AQ B C						
ISA ISPA	LYM		_	400	_	20 40	-		_			N	_	CL L						
	1.7M		_	200	_	10	-		_		_	S M XDD	-	LL LLM						
			_	400	_	10	-		_		_		_	LM NM RT						
									_	200	-	20	-		_		_		-	S
	LXMX		_	400	_	20 40	-	1000 ~	_	_	_		-							
			_	200	-	20	-	2500	_		_		_							
	LXUWX		_	400	-	20 40	-		-				-							
	WXM						_	600	_	10 20 40	-	100 ~	_		_		-			
			_	750	_	20 40	-	1300	_		_		-							
	WXMX		_	600	_	20 40	-	900 ~ 2500	-		_		_							
			-	750	-	20 40	-	900 2000	-		-		-							

ISPA/ICSPA Catalog

(1) Series

Indicate the name of each series.

(2) Type

(3) Encoder type

Indicate whether the encoder installed in the actuator is an "absolute type" or "incremental type."

A: Absolute type	Since the current slider position will be retained after the power is turned off, homing is not
	required when the actuator is powered up.
I: Incremental type	Since the slider position data are cleared when the power is turned off, homing must be performed every time the actuator is powered up.

(4) Motor output

Indicate the output of the motor installed in the actuator in watts.

(6) Stroke

Indicate the actuator stroke (range of operation) in millimeters.

(8) Cable length

Indicate the length of the motor/encoder cable connecting the actuator and the controller.

N : No cable

S : 3m

M : 5m

 $X\square\square$: Use this field when a length other than 3 m and 5 m is specified. (Example X08 : 8m)

* The standard cable is a robot cable.

(9) Actuator Accuracy

Indicate a desired option(s) to be equipped on the actuator. Refer to pages 13 and 14 for the explanation of each option. * When selecting multiple options, specify them in alphabetical order (e.g., AQ-B-L-NM).

- AQ : [AQ seal] A unit that supplies lubricant to the sliding sections of the ball screw and guide.
- B : [Brake] A brake for preventing the slider from falling in a vertical application when the power or servo is turned off.
- C : [Creep sensor] A sensor for increasing the homing speed and thereby decreasing the homing time.
- CL : [Creep sensor on opposite side] The creep sensor is normally installed on the right side as viewed from the motor. Select this option if you want to install the sensor on the left side.
- L : [Home limit switch] A limit switch for completing homing by reversing the slider using a sensor, not by the normal contact method, during homing.
- LL : [Home limit switch on opposite side] Similarly to the creep sensor on opposite side option, select this option if you want to install the limit switch on the opposite side.
- LM : [Master-axis designation] Specify this option for the axis to be used as the master in synchronized operation.
- LLM : [Master-axis limit switch on opposite side] Select this option if you want to install the limit switch on the opposite side of the master axis used in synchronized operation.
- NM : [Reverse-homing specification] Normally the home is set on the motor side. Select this option to specify the home on the counter-motor side.
- RT : [Guide with ball-retaining mechanism] A mechanism for reducing noise while extending the service life of the guide by inserting a spacer (retention device) between guide balls.
- S : [Slave-axis designation] Specify this option for the axis to be used as the slave in synchronized operation (limit switch is not required).

guide. he power or servo is turned off.

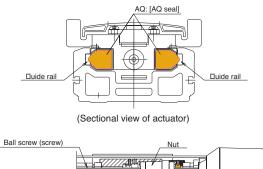
Indicate the ball screw lead.

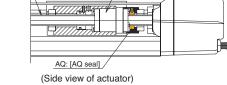
"Lead" refers to the distance the slider will move when the ball screw rotates by one revolution.

The larger the lead, the faster the maximum speed becomes.

(7) Applicable controller

Indicate the type of controller that can be used with the actuator. T1: X-SEL, E-Con, P-Driver

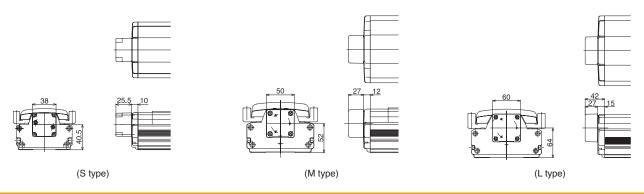

Options


AQ: [AQ seal]

The AQ seal is a lubrication unit that utilizes lubrication material made of resin-solidified lubricant.

The porous material impregnated with a large amount of lubricant allows lubricant to ooze out onto its surface via the capillary effect.

Lubricant is supplied when the AQ seal is pushed against the guide or ball-screw surface (steel-ball rolling surface). Combined use of the AQ seal and grease helps achieve maintenance-free operation for a long period.


B: [Brake]

A retention mechanism that prevents the slider from falling and damaging the load when the power or servo is turned off in a vertical actuator application.

The S, M and L-type Z-axis actuators of the ISA/ISPA Series (SZM, MZM and LZM) are designed for use in a vertical application and therefore come standard with a brake.

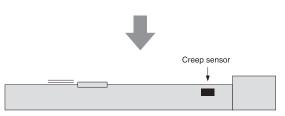
If any axis other than the Z-axis is to be used vertically, install an optional brake.

For the S, M and L types, the brake is installed on the outside of the end cover on the counter-motor side (refer to the drawing of each model). The brake is installed inside the actuator only for the W type.

C: [Creep sensor]

A sensor used for achieving high-speed homing.

Normally during homing, the slider is caused to contact the stopper at the motor-side stroke end and then reverse, so the homing speed is kept to between 10 and 20 mm/s.


For this reason, it takes time to complete homing when the stroke is long. This proximity sensor reduces the homing time by allowing the slider to return at high speed and then reducing the speed to the normal homing speed just before homing is completed.

The standard installation position of this sensor is on the right side of the actuator as viewed from the motor (option code: C) (refer to the limit switch drawing on the right page).

A cover similar to that for the limit switch is provided on the outside of the sensor. To install the sensor on the opposite side, select CL (opposite side specification).

Performing homing on a long-stroke axis will take longer time to reach the mechanical end.

A sensor is provided before the mechanical end, and upon detection of the sensor the speed will be reduced to the normal homing speed.

Limit switch cover

*The ISP-W and ISPDCR-W come standard

with a limit switch. Since the limit switch is

installed inside the actuator, no cover will be provided on the side face of the actuator (creep

mm

sensor is also housed in the actuator)

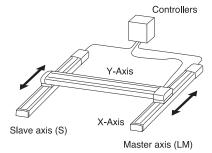
Stroke-end side

Options

LL: [Home limit switch on opposite side]

The normal homing operation of the ISA/ISPA Series conforms to the "contact method," whereby the slider is caused to contact the stopper and then reverse, after which the Z phase will be detected and set as the home.

Option L (home limit switch) achieves this homing operation by letting the slider reverse upon proximity sensor detection, without contacting the stopper. When this option is specified, three proximity sensors of HOME (for home detection), +OT (counter-motor side overtravel) and -OT (motor-side overtravel) will be installed. Use this option if you want to fine-tune the reversing position.


The standard installation position of the home limit switch and cover is on the right side of the actuator as viewed from the motor (option code: L).

To install the switch on the opposite side, select LL (opposite side specification).

LM: [Master-axis designation in synchronized operation]

"Synchronized operation function" is one of the functions provided by the X-SEL controller.

It allows two actuator axes to operate simultaneously, with one axis acting as the master (option code: M) and the other as the slave (option code: S). The slave follows the master by super-high speed processing control to achieve simultaneous operation of the two axes. The two actuator axes used in synchronized operation must have the same specifications (type, lead motor output and stroke). When performing synchronized operation, the master axis must be of the limit switch specification. Therefore, specify LM (limit-switch master-axis designation) for the master axis and S (slave-axis designation) for the slave axis.

Limit switch cover

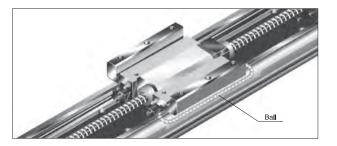
Limit switch cover

Motor side

Ì

NM: [Reverse homing specification]

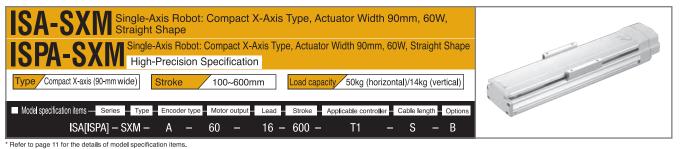
With the ISA/ISPA Series, the standard home direction is the motor side. To change the home direction, the encoder must be adjusted. If you prefer a reverse homing specification, specify it when placing an order.


RT: [Guide with ball-retaining mechanism]

A spacer (retainer) is inserted between guide balls (steel balls) to reduce noise while extending the service life of the guide.

The spacer eliminates annoying metal noise caused by colliding balls. Since wear due to ball friction decreases, the service life of the guide will increase. Elimination of ball contact will make the guide movement smoother, resulting in improved slider operability.

□This option cannot be used with the ISP-WXM/WXMX.


Ball

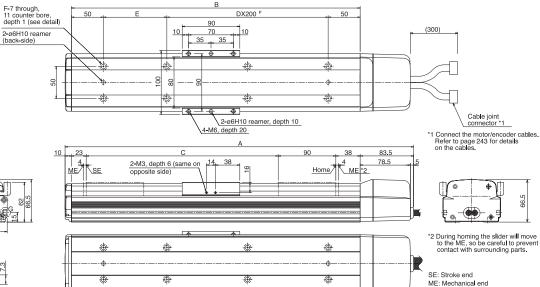
S: [Slave-axis designation in synchronized operation

Specify this option for the axis to be used as the slave in synchronized operation. Refer to the explanation of LM (master-axis designation in synchronized operation) for details.

Spacer (retainer)

Model		Motor				Acceleration (Note 2)				Load capacity (Note 2)						
	Encoder type	output	Lead (mm)		Speed (mm/s)	Horizo	ntal (G)	Vertio	cal (G)	Horizor	nta l (kg)	Vertic	al (kg)	Rated thrust (N)		
		(W)	()			Rated	Maximum	Rated	Maximum		Maximum acceleration		Maximum acceleration	()		
ISA [ISPA] -SXM-A-60-16- * * * - T1-∆-□	Absolute		16		1~800	0.3	1.0	0.3	0.7	12	3.5	3	2	63.7		
ISA [ISPA] -SXM-A-60-8- * * * - T1-△-□			8	4	8		1~400	0.3	0.6	0.3	0.5	25	12	6	5	127.4
ISA [ISPA] -SXM-A-60-4- * * * - T1-△-□		60			100~600	1~200	0.15	0.5	0.15	0.3	50	30	14	12	254.8	
ISA [ISPA] -SXM-I-60-16- * * * - T1-△-□	Incremental	00	16	100~000	1~800	0.3	1.0	0.3	0.7	12	3.5	3	2	63.7		
ISA [ISPA] -SXM-I-60-8- * * * - T1-△-□			8		1~400	0.3	0.6	0.3	0.5	25	12	6	5	127.4		
ISA [ISPA] -SXM-I-60-4- * * * - T1-△-□			4		1~200	0.15	0.5	0.15	0.3	50	30	14	12	254.8		

* In the above model names, *** indicates the stroke, riangle the cable length and \Box the applicable options.


Options					
Name	Code	Page	Name	Code	Page
AQ seal	AQ	P13	Master-axis designation	LM	P14
Brake	В	P13	Master-axis designation (sensor on opposite side)	LLM	P14
Creep sensor	С	P13	Reverse homing specification	NM	P14
Creep sensor on opposite side	CL	P13	Guide with ball-retaining mechanism	RT	P14
Home limit switch	L	P14	Slave-axis designation	S	P14
Home limit switch on opposite side	LL	P14			

*1.0G =9800mm/sec²

Common Specifications	Refer to page 10 for the details of common specification items.
Positioning repeatability (Note 3)	±0.02mm [±0.01mm]
Drive system (Note 4)	Ball screw ø12mm, rolled C10 [equivalent to rolled C5]
Lost motion (Note 5)	0.05mm or less [0.02mm or less]
Guide	integrated with base
Allowable static moment	Refer to page 242
Allowable dynamic moment	Ma: 28.4N•m Mb: 40.2N•m Mc: 65.7N•m
Overhang load length	Ma direction: 450mm or less, Mb/Mc directions: 450mm or less
Base	Material: Aluminum, with white alumite treatment
Cable length (Note 6)	N: None, S: 3m, M: 5m, X□□: Specified length
Ambient operating temperature/humidity	0 to 40°C, 85%RH max. (non-condensing)

* Note that changing the home direction will require the actuator to be returned to IAI for adjustment.

Dimensions, Weight and Maximum Speed by Stroke

Stroke	100	(150)	200	(250)	300	(350)	400	(450)	500	(550)	600
А	344.	5 394.5	444.5	494.5	544.5	594.5	644.5	694.5	744.5	794.5	844.5
В	251	301	351	401	451	501	551	601	651	701	751
С	100	150	200	250	300	350	400	450	500	550	600
D	0	0	0	1	1	1	1	2	2	2	2
E	151	201	251	101	151	201	251	101	151	201	251
F	4	4	4	6	6	6	6	8	8	8	8
Weight (<mark>(g)</mark> 2.8	3.1	3.4	3.7	4.0	4.3	4.6	4.9	5.2	5.5	5.8
Maximum Lead	16	800									
speed Lead	8					400					
(mm/s) Lead	4					200					

ش

4.5 1.5

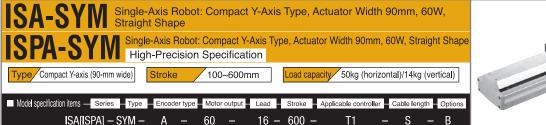
Detail view of G (T-slot in base)

Detail view of base mounting part

Applicable Controller Specifications

Appliou										
	Maximum number of controlled axes		Program operation	Positioner operation	Pulse-train control	Supply voltage	Page			
X-SEL	4 axes	Absolute/incremental	0	Δ	×	AC100/200V				
E-Con	1 axis	Absolute/incremental	Х	0	Х	AC100/200V				
P-Driver	1 axis	Incremental	Х	Х	0	AC100/200V				

٢


	(Note 1) The s
•	settii (Note 2) Refer
	capa
Caution	(Notes 3, 4, 5)
ouuuon	Othe
	(Note 6) The m

trokes that are set in increments of 50 mm are semi-standard ngs. to page 40 for the relationship of acceleration and load

acity.) The figures in brackets apply to the ISPA Series. er specification values apply to both the ISA and ISPA Series. maximum cable length is 30 m. Specify the desired length in

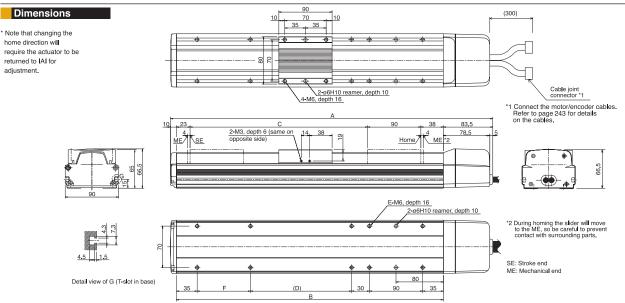
meters (e.g., X08 = 8 m).

ISPA/ICSPA Catalog

Refer to page 11 for the details of model specification items.

Models/Specifications

	Motor output (W)	Lead (mm)	Stroke (mm) In increments of 50mm (Note 1)		Acceleration (Note 2)				Load capacity (Note 2)				
Encoder type					Horizontal (G)		Vertical (G)		Horizontal (kg)		Vertical (kg)		Rated thrust (N)
					Rated	Maximum	Rated	Maximum					
		16		1~800	0.3	1.0	0.3	0.7	12	3.5	3	2	63.7
Absolute		8	100600	1~400	0.3	0.6	0.3	0.5	25	12	6	5	127.4
	60	4		1~200	0.15	0.5	0.15	0.3	50	30	14	12	254.8
	00	16	100~000	1~800	0.3	1.0	0.3	0.7	12	3.5	3	2	63.7
Incremental		8		1~400	0.3	0.6	0.3	0.5	25	12	6	5	127.4
		4		1~200	0.15	0.5	0.15	0.3	50	30	14	12	254.8
	Absolute	Encoder type output (W) Absolute 60	Encoder type output (W) Lead (mm) Absolute 16 Absolute 4 Incremental 8	Image Image Lead (mm) In increments of 50mm (Note 1) Absolute 16 Absolute 4 10 10 10 60 16 100~600 16 8	Imotor output (W) Lead (mm) In increments of 50mm (Note 1) Speed (mm/s) Absolute 1 8 1 ~ 800 Absolute 4 1 ~ 200 1 ~ 800 Incremental 8 1 ~ 800 1 ~ 800	Motor output (W) Lead (mm) In increments of 50mm (Note 1) Speed (mm/s) Horizo Rated Absolute 1 8 1~800 0.3 Absolute 4 1~400 0.3 Incremental 16 1~800 0.3 100~600 1~800 0.3 1~800 0.3 1~800 0.3	Motor output (W) Lead (mm) In increments of 50mm (Note 1) Speed (mm/s) Horizontal (G) Rated Absolute 1 8 1~800 0.3 1.0 Absolute 60 4 1~400 0.3 0.6 Incremental 16 1~200 0.15 0.5 Incremental 8 1~400 0.3 1.0	Motor output (W) Lead (mm) In increments of 50mm (Note 1) Speed (mm/s) Horizontal (G) Vertia Vertia Absolute 1 1 8 1 80 0.3 1.0 0.3 Absolute 60 4 1 0.0 0.15 0.5 0.15 Incremental 8 1 200 0.15 0.5 0.15 Incremental 8 1 0.03 1.0 0.3 Incremental 8 1 0.03 0.0 0.3	Motor output (W) Lead (mm) In increments of 50mm (Note 1) Speed (mm/s) Horizontal (G) Vertical (G) Rated Maximum Rated Maximum Rated Maximum Absolute 1 8 1~800 0.3 1.0 0.3 0.5 Absolute 4 1~400 0.3 0.6 0.3 0.5 Incremental 16 1~200 0.15 0.5 0.15 0.3 Incremental 8 1~400 0.3 1.0 0.3 0.7 1 ~400 0.3 1.0 0.3 0.5 0.3 0.5 1 ~400 0.3 1.0 0.3 0.7 0.3 0.7 1 ~400 0.3 0.6 0.3 0.7 0.3 0.7	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Motor output (W) Lead (mm) In increments of 50mm (Note 1) Speed (mm/s) Horizontal (G) Vertical (G) Horizontal (G) Vertical (G) Vertical (G) Vertical (G) Name Absolute 1 1 1 1 0.3 1.0 0.3 0.7 12 3.5 3 Absolute 4 1 1 0.3 0.6 0.3 0.5 25 12 6 1 10 0.3 0.6 0.3 0.0 0.3 0.6 0.3 0.7 12 3.5 3 1 1 0.3 0.6 0.3 0.5 0.5 0.5 0.5 0.5 0.5 0.3 0.4 0.4 1 1 0.3 0.6 0.3 0.7 12 3.5 3 1 1 0.3 0.6 0.3 0.7 12 3.5 3 1 2 1 2 2 1 2 3	Motor output (W) Lead (mm) In increments of 50mm (Note 1) Speed (mm/s) Horizontal (G) Vertical (G) Horizontal (Kg) Vertical (Kg) Vertical (Kg) Rated Maximum Maximum Rated Maximum Rated Maximum Rated Maximum Rated Maximum Max


In the above model names, *** indicates the stroke, riangle the cable length and \Box the applicable options.

Ontions

options					
Name	Code	Page	Name	Code	Page
AQ seal	AQ	P13	Master-axis designation	LM	P14
Brake	В	P13	Master-axis designation (sensor on opposite side)	LLM	P14
Creep sensor	С	P13	Reverse homing specification	NM	P14
Creep sensor on opposite side	CL	P13	Guide with ball-retaining mechanism	RT	P14
Home limit switch	L	P14	Slave-axis designation	S	P14
Home limit switch on opposite side	LL	P14			

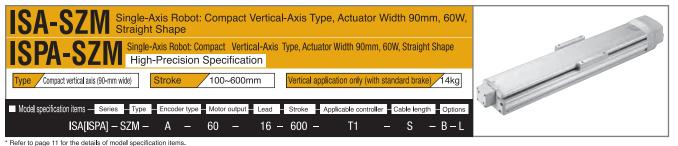
1.0G =9800mm/sec

Common Specifications	* Refer to page 10 for the details of common specification items.					
Positioning repeatability (Note 3)	±0.02mm [±0.01mm]					
Drive system (Note 4)	Ball screw ø12mm, rolled C10 [equivalent to rolled C5]					
Lost motion (Note 5)	0.05mm or less [0.02mm or less]					
Guide	integrated with base					
Allowable static moment	Refer to page 242					
Allowable dynamic moment	Ma: 28.4N•m Mb: 40.2N•m Mc: 32.8N•m					
Overhang load length	Ma direction: 450mm or less, Mb/Mc directions: 450mm or less					
Base	Material: Aluminum, with white alumite treatment					
Cable length (Note 6)	N: None, S: 3m, M: 5m, X□□: Specified length					
Ambient operating temperature/humidity	0 to 40°C, 85%RH max. (non-condensing)					

Dimensions, Weight and Maximum Speed by Stroke

		010110, 11	orgine and	maximu	n opood							
St	roke	100	(150)	200	(250)	300	(350)	400	(450)	500	(550)	600
	A	344.5	394.5	444.5	494.5	544.5	594.5	644.5	694.5	744.5	794.5	844.5
	В	251	301	351	401	451	501	551	601	651	701	751
	С	100	150	200	250	300	350	400	450	500	550	600
	D	61	21	71	121	171	221	271	321	371	421	471
	E	8	10	10	10	10	10	10	10	10	10	10
	F	-	90	90	90	90	90	90	90	90	90	90
Wei	ght (kg)	2.8	3.2	3.5	3.9	4.2	4.6	4.9	5.3	5.6	6.0	6.3
Maximum	Lead 16						800					
speed	Lead 8						400					
(mm/s)	Lead 4						200					

Applicable Controller Specifications


	Maximum number of controlled axes	Compatible encoder type	Program operation	Positioner operation	Pulse-train control	Supply voltage	Page
X-SEL	4 axes	Absolute/incremental	0	\triangle	×	AC100/200V	
E-Con	1 axis	Absolute/incremental	×	0	Х	AC100/200V	
P-Driver	1 axis	Incremental	Х	Х	0	AC100/200V	

	(Note
Λ	(Note
Caution	(Notes
	(Note

1) The strokes that are set in increments of 50 mm are semi-standard settinas.

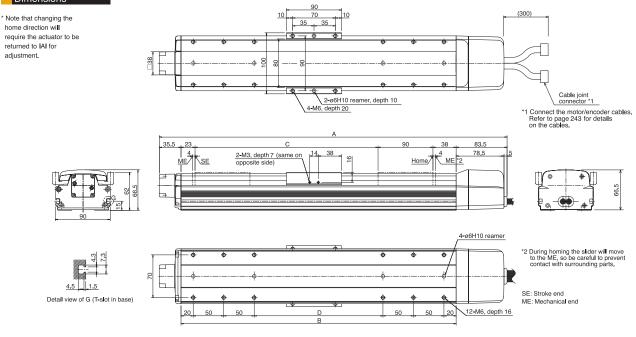
2 Prefer to page 40 for the relationship of acceleration and load capacity.
 a 3, 4, 5) The figures in brackets apply to the ISPA Series.

6) The maximum cable length is 30 m. Specify the desired length in meters (e.g., X08 = 8 m). Refer to page 9 for other points to note

Models/Specifications

		Motor		Stroke (mm)		Accelerati	on (Not	e 2)	Load capad	city (Not	e 2)	
Model	Encoder type	output	Lead (mm)	In increments of 50mm	Speed (mm/s)	Horizontal (G)	Verti	cal (G)	Horizontal (kg)	Vertic	al (kg)	Rated thrust (N)
		(W)	· · ·	(Note 1)		Rated Maximum	Rated	Maximum	Rated Maximum		Maximum acceleration	
ISA [ISPA] -SZM-A-60-8- * * * -T1-△-B-□	Absolute		8		1~400	Vertical	0.3	0.5	Vertical	6	5	127.4
ISA [ISPA] -SZM-A-60-4- * * * -T1-△-B-□		60	4	100~600	1~200	application	0.15	0.3	application	14	12	254.8
ISA [ISPA] -SZM-I-60-8- * * * -T1-∆-B-□	Incremental	00	8	100~000	1~400	only	0.3	0.5	only	6	5	127.4
ISA [ISPA] -SZM-I-60-4- * * * -T1-△-B-□	moremental		4		1~200		0.15	0.3		14	12	254.8

* In the above model names, *** indicates the stroke, \triangle the cable length and \Box the applicable options.


*1.0G=9800mm/sec

Options Name Code Page Name Code Page P13 AQ seal AQ Master-axis designation LM P14 Brake В P13 Master-axis designation (sensor on opposite side LLM P14 С P13 NM P14 Creep sensor Reverse homing specification P13 RT P14 CL Creep sensor on opposite side Guide with ball-retaining mechanism P14 P14 Home limit switch L Slave-axis designation S LL P14 Home limit switch on opposite side The SZM type comes standard with a brake (B).

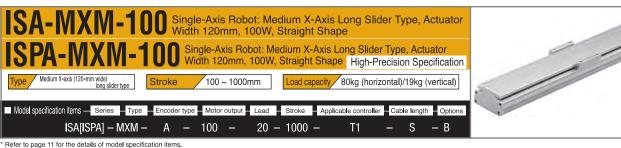
Common Specifications * Refer to page 10 for the details of common specification items.

Positioning repeatability (Note 3)	±0.02mm [±0.01mm]					
Drive system (Note 4)	Ball screw ø12mm, rolled C10 [equivalent to rolled C5]					
Lost motion (Note 5)	0.05mm or less [0.02mm or less]					
Guide	integrated with base					
Allowable static moment	Refer to page 242					
Allowable dynamic moment	Ma: 28.4N•m Mb: 40.2N•m Mc: 33.3N•m					
Brake	Comes standard with a dry, single-plate, non-excitation type electromagnetic brake					
Base	Material: Aluminum, with white alumite treatment					
Cable length (Note 6)	N: None, S: 3m, M: 5m, X□□: Specified length					
Ambient operating temperature/humidity	0 to 40°C, 85%RH max. (non-condensing)					

Dimensions

Dimensions, Weight and Maximum Speed by Stroke

St	roke	100	(150)	200	(250)	300	(350)	400	(450)	500	(550)	600	
	A	370	420	470	520	570	620	670	720	770	820	870	
	В	251	301	351	401	451	501	551	601	651	701	751	
	С	100	150	200	250	300	350	400	450	500	550	600	
	D	11	61	111	161	211	261	311	361	411	461	511	
Weig	ght (kg)	3.0	3.4	3.7	4.1	4.4	4.8	5.1	5.5	5.8	6.2	6.5	
Vaximum speed	Lead 8						400						
mm/s)	Lead 4						200						


v

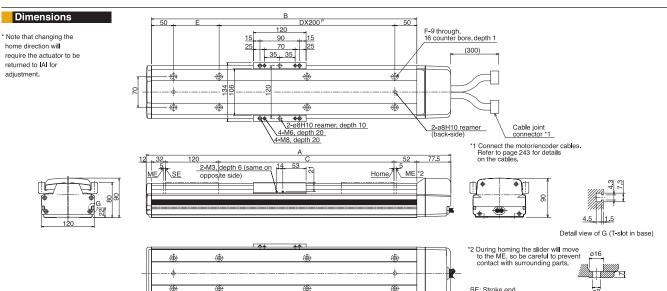
Applic	cable Cont	roller Specifica	ations						(Note 1) The strokes that are set in increments of 50 mm are semi-standard
	Maximum number of controlled axes		Program operation	Positioner operation	Pulse-train control	Supply voltage	Page		settings. (Note 2) Refer to page 40 for the relationship of acceleration and load capacity.
X-SEL	4 axes	Absolute/incremental	0		×	AC100/200V		Caution	(Notes 3, 4, 5) The figures in brackets apply to the ISPA Series.
E-Con	1 axis	Absolute/incremental	Х	0	X	AC100/200V			Other specification values apply to both the ISA and ISPA Series. (Note 6) The maximum cable length is 30 m. Specify the desired length in
P-Driver	1 axis	Incremental	×	X	0	AC100/200V			meters (e.g., X08 = 8 m).
	*The SZM type	comes standard with a	brake						* Refer to page 9 for other points to note

so use a controller of brake specification.

ote to page 9 for other po

ISPA/ICSPA Catalog

Models/Specifications


		Motor		Stroke (mm)	Speed	Acceleration (Note 3)				Load capacity (Note 3)				Data data must
Model	Encoder type	output	Lead (mm)	In increments of 50mm	(Note 2)	Horizontal (G)		Vertical (G)		Horizontal (kg)) Vertical (kg)		Rated thrust (N)
		(W)	((((((((((((((((((((((((((((((((((((((((Note 1)	(mm/s)	Rated	Maximum	Rated	Maximum		Maximum acceleration		Maximum acceleration	(14)
ISA [ISPA] -MXM-A-100-20- * * * -T1-△-□			20		1 ~ 1000	0.3	1.0	0.3	0.8	20	6	3.5	2	84.3
ISA [ISPA] -MXM-A-100-10- * * * -T1-∆-□	Absolute		10		1 ~ 500	0.3	0.6	0.3	0.5	40	20	9	7	169.5
ISA [ISPA] -MXM-A-100-5- * * * -T1-△-□		- 100	5	100 ~ 1000	1 ~ 250	0.15	0.5	0.15	0.3	80	45	19	15	340.1
ISA [ISPA] -MXM-I-100-20- * * * -T1-△-□			20	100~1000	1 ~ 1000	0.3	1.0	0.3	0.8	20	6	3.5	2	84.3
ISA [ISPA] -MXM-I-100-10- * * * -T1-△-□	Incremental		10		1 ~ 500	0.3	0.6	0.3	0.5	40	20	9	7	169.5
ISA [ISPA] -MXM-I-100-5- * * * -T1-△-□			5	-	1 ~ 250	0.15	0.5	0.15	0.3	80	45	19	15	340.1

In the above model names, *** indicates the stroke, riangle the cable length and \Box the applicable options.

Options					
Name	Code	Page	Name	Code	Page
AQ seal	AQ	P13	Master-axis designation	LM	P14
Brake	В	P13	Master-axis designation (sensor on opposite side)	LLM	P14
Creep sensor	С	P13	Reverse homing specification	NM	P14
Creep sensor on opposite side	CL	P13	Guide with ball-retaining mechanism	RT	P14
Home limit switch	L	P14	Slave-axis designation	S	P14
Home limit switch on opposite side	LL	P14			

*1.0G =9800mm/sec

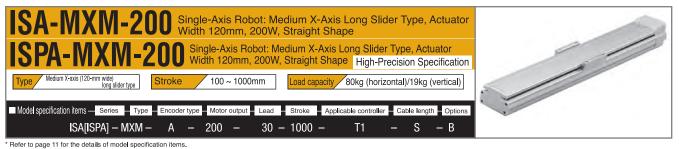
Common Specifications	Refer to page 10 for the details of common specification items.
Positioning repeatability (Note 4)	±0.02mm [±0.01mm]
Drive system (Note 5)	Ball screw ø16mm, rolled C10 [equivalent to rolled C5]
Lost motion (Note 6)	0.05mm or less [0.02mm or less]
Guide	integrated with base
Allowable static moment	Refer to page 242
Allowable dynamic moment	Ma: 69.6N•m Mb: 99.0N•m Mc: 161.7N•m
Overhang load length	Ma direction: 600mm or less, Mb/Mc directions: 600mm or less
Base	Material: Aluminum, with white alumite treatment
Cable length (Note 7)	N: None, S: 3m, M: 5m, X□□: Specified length
Ambient operating temperature/humidity	0 to 40°C, 85%RH max. (non-condensing)

Dimensions Weight and Maximum Speed by Stroke

Str	oke	100	(150)	200	(250)	300	(350)	400	(450)	500	(550)	600	(650)	700	(750)	800	(850)	900	(950)	1000
	A	393.5	443.5	493.5	543.5	593.5	643.5	693.5	743.5	793.5	843.5	893.5	943.5	993.5	1043.5	1093.5	1143.5	1193.5	1243.5	1293.5
	В	304	354	404	454	504	554	604	654	704	754	804	854	904	954	1004	1054	1104	1154	1204
(С	100	150	200	250	300	350	400	450	500	550	600	650	700	750	800	850	900	950	1000
1	D	0	0	1	1	1	1	2	2	2	2	3	3	3	3	4	4	4	4	5
	E	204	254	104	154	204	254	104	154	204	254	104	154	204	254	104	154	204	254	104
	F	4	4	6	6	6	6	8	8	8	8	10	10	10	10	12	12	12	12	14
Weig	ht (kg)	6.2	6.7	7.2	7.7	8.3	8.8	9.3	9.8	10.4	10.9	11.4	11.9	12.5	13.0	13.5	14.0	14.6	15.1	15.6
Maximum	Lead 20		1000											1000	79	95	64	45	54	40
	ead 10 500					00							380		310		2	55		
(mm/s)	Lead 5						25	50						220	13	75	14	45	12	20

Applicable Controller Specifications

Арриос		ner opcomoution	19	-			
	Maximum number of controlled axes	Compatible encoder type	Program operation	Positioner operation	Pulse-train control	Supply voltage	Page
X-SEL	4 axes	Absolute/incremental	0	Δ	×	AC100/200V	
E-Con	1 axis	Absolute/incremental	Х	0	×	AC100/200V	
P-Driver	1 axis	Incremental	×	×	0	AC100/200V	



 \triangle Caution ME: Mechanical end

(Note 2) A boliget scoke with result in a hower maximum speed to prevent the ball scorew from reaching a dangerous speed. (Refer to the above table for the maximum speed at a given stroke.) (Note 3) Refer to page 40 for the relationship of acceleration and load capacity. (Notes 4, 5, 6) The figures in brackets apply to the ISPA Series. Other specification values apply to both the ISA and ISPA Series. (Note 7) The maximum cable length is 30 m. Specify the desired length in meters (e.g., X08 = 8 m).

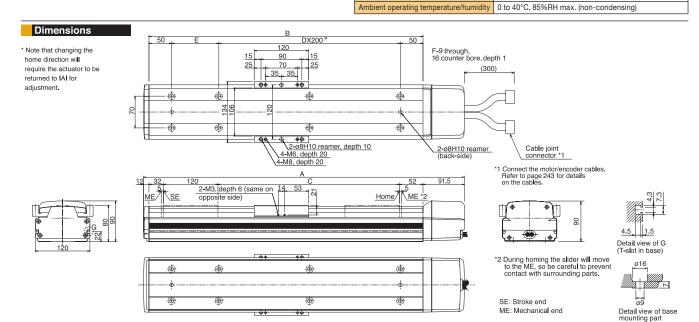
Refer to page 9 for other points to note.

ø9' Detail view of base mounting part

		Motor		Stroke (mm)	Speed	Acceleration (Note 3)				Load capacity (Note 3)				Doted thrust
Model	Encoder type	output	Lead (mm)	In increments of 50mm	(Note 2)	Horizontal (G)		Vertical (G)		Horizontal (kg)) Vertical (kg)		Rated thrust (N)
		(W)	()	(Note 1)	(mm/s)	Rated	Maximum	Rated	Maximum		Maximum acceleration		Maximum acceleration	
ISA [ISPA] -MXM-A-200-30- * * * -T1-△-□			30		1 ~ 1500	0.3	1.0	0.3	1.0	25	10	6	2	113
ISA [ISPA] -MXM-A-200-20- * * * -T1-△-□	Absolute	- 200	20	100 ~ 1000	1 ~ 1000	0.3	1.0	0.3	0.8	40	12	9	5	169.5
ISA [ISPA] -MXM-A-200-10- * * * -T1-△-□			10		1 ~ 500	0.3	0.6	0.3	0.5	80	40	19	15	340.1
ISA [ISPA] -MXM-I-200-30- * * * -T1-△-□			30		1 ~ 1500	0.3	1.0	0.3	1.0	25	10	6	2	113
ISA [ISPA] -MXM-I-200-20- * * * -T1-△-□	Incremental		20		1 ~ 1000	0.3	1.0	0.3	0.8	40	12	9	5	169.5
ISA [ISPA] -MXM-I-200-10- * * * -T1-△-□			10		1 ~ 500	0.3	0.6	0.3	0.5	80	40	19	15	340.1

0 Base

Cable length (Note 7)


' In the above model names, *** indicates the stroke, riangle the cable length and \Box the applicable options.

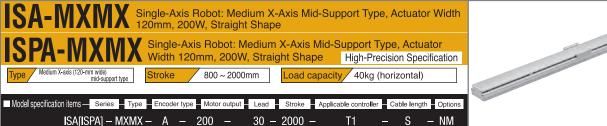
Options					
Name	Code	Page	Name	Code	Page
AQ seal	AQ	P13	Master-axis designation	LM	P14
Brake	В	P13	Master-axis designation (sensor on opposite side)	LLM	P14
Creep sensor	С	P13	Reverse homing specification	NM	P14
Creep sensor on opposite side	CL	P13	Guide with ball-retaining mechanism	RT	P14
Home limit switch	L	P14	Slave-axis designation	S	P14
Home limit switch on opposite side	LL	P14			

1.0G =9800mm/sec

Common Specifications	Refer to page 10 for the details of common specification items.
Positioning repeatability (Note 4)	±0.02mm [±0.01mm]
Drive system (Note 5)	Ball screw ø16mm, rolled C10 [equivalent to rolled C5]
Lost motion (Note 6)	0.05mm or less [0.02mm or less]
Guide	integrated with base
Allowable static moment	Refer to page 242
Allowable dynamic moment	Ma: 69.6N•m Mb: 99.0N•m Mc: 161.7N•m
Overhang load length	Ma direction: 600mm or less, Mb/Mc directions: 600mm or less

Material: Aluminum, with white alumite treatment N: None, S: 3m, M: 5m, XDD: Specified length

Dimensions, Weight and Maximum Speed by Stroke


_	Jinnen	intensions, weight and waximum opeed by Stroke																		
St	troke	100	(150)	200	(250)	300	(350)	400	(450)	500	(550)	600	(650)	700	(750)	800	(850)	900	(950)	1000
	А	407.5	457.5	507.5	557.5	607.5	657.5	707.5	757.5	807.5	857.5	907.5	957.5	1007.5	1057.5	1107.5	1157.5	1207.5	1257.5	1307.5
	В	304	354	404	454	504	554	604	654	704	754	804	854	904	954	1004	1054	1104	1154	1204
	С	100	150	200	250	300	350	400	450	500	550	600	650	700	750	800	850	900	950	1000
	D	0	0	1	1	1	1	2	2	2	2	3	3	3	3	4	4	4	4	5
	E	204	254	104	154	204	254	104	154	204	254	104	154	204	254	104	154	204	254	104
	F	4	4	6	6	6	6	8	8	8	8	10	10	10	10	12	12	12	12	14
Weig	ght (kg)	6.6	7.1	7.6	8.1	8.7	9.2	9.7	10.2	10.8	11.3	11.8	12.3	12.9	13.4	13.9	14.4	15.0	15.5	16.0
Maximum	Lead 30	1500										1500	11	90	96	65	8	10		
	Lead 20						10	00						1000	79	95	64	45	54	40
(mm/s)	Lead 10		500											480	38	30	3.	10	25	55

Applicable Controller Specifications

rippinoc										
Applicable controller	Maximum number of controlled axes		Program operation	Positioner operation	Pulse-train control	Supply voltage	Page			
X-SEL	4 axes	Absolute/incremental	0	Δ	×	AC100/200V				
E-Con	1 axis	Absolute/incremental	Х	0	×	AC100/200V				
P-Driver	1 axis	Incremental	×	X	0	AC100/200V				

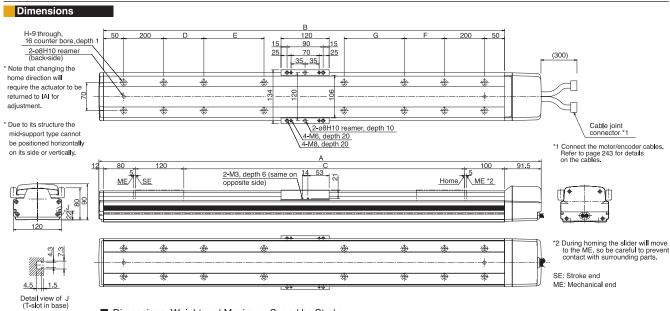
Aution	 (Note 1) The strokes that are set in increments of 50 mm are semi-standard settings. (Note 2) A longer stroke will result in a lower maximum speed to prevent the ball screw from reaching a dangerous speed. (Refer to the above table for the maximum speed at a given stroke.) (Note 3) Refer to page 40 for the relationship of acceleration and load capacity. (Note 5, 5, 6) The figures in brackets apply to the ISPA Series. Other specification values apply to both the ISA and ISPA Series. (Note 7) The maximum cable length is 30 m. Specify the desired length in meters (e.g., X08 = 8 m).
	* Befer to page 9 for other points to note

er to page 9 for other points

ISA[ISPA] - MXMX -А 200 * Refer to page 11 for the details of model specification items.

Models/Specifications

		Motor		Stroke (mm)	Speed	Acceleratio	on (Note 2)	Load capac	tity (Note 2)	
Model	Encoder type	output	Lead (mm)	In increments of	(Note 1)	Horizontal (G)	Vertical (G)	Horizontal (kg)	,	Rated thrust (N)
		(W)	()	10mm	(mm/s)	Rated Maximum	Rated Maximum	Rated Maximum acceleration acceleration	Rated Aaximum acceleration	
ISA [ISPA] -MXMX-A-200-30- * * * -T1-△-□	Al		30		1 ~ 1500	0.3	Llovinontol	25	Llovinentel	113
ISA [ISPA] -MXMX-A-200-20- * * * -T1-△-□	Absolute	200	20	800 ~ 2000	1 ~ 1000	0.3	Horizontal	40	Horizontal	169.5
ISA [ISPA] -MXMX-I-200-30- * * * -T1-△-□		200	30	000~2000	1 ~ 1500	0.3	application	25	application	113
ISA [ISPA] -MXMX-I-200-20- * * * -T1-△-□	Incremental		20		1 ~ 1000	0.3	only	40	only	169.5


* In the above model names, *** indicates the stroke, riangle the cable length and \Box the applicable options.

Options					
Name	Code	Page	Name	Code	Page
AQ seal	AQ	P13	Master-axis designation	LM	P14
Brake	В	P13	Master-axis designation (sensor on opposite side)	LLM	P14
Creep sensor	С	P13	Reverse homing specification	NM	P14
Creep sensor on opposite side	CL	P13	Guide with ball-retaining mechanism	RT	P14
Home limit switch	L	P14	Slave-axis designation	S	P14
Home limit switch on opposite side	LL	P14			

Common Specifications * Befer to page 10 for the det

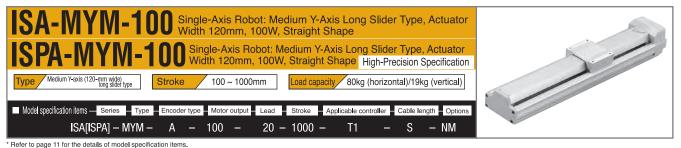
*1.0G =9800mm/sec

	There to page to for the details of common specification items.
Positioning repeatability (Note 3)	±0.02mm [±0.01mm]
Drive system (Note 4)	Ball screw ø16mm, rolled C10 [equivalent to rolled C5]
Lost motion (Note 5)	0.05mm or less [0.02mm or less]
Guide	integrated with base
Allowable static moment	Refer to page 242
Allowable dynamic moment	Ma: 69.6N•m Mb: 99.0N•m Mc: 161.7N•m
Overhang load length	Ma direction: 600mm or less, Mb/Mc directions: 600mm or less
Base	Material: Aluminum, with white alumite treatment
Cable length (Note 6)	N: None, S: 3m, M: 5m, XDD: Specified length
Ambient operating temperature/humidity	0 to 40°C, 85%RH max. (non-condensing)

016
ø9
Detail view of base mounting part

Dimen	sions, W	eight and	Maximur	n Speed I	by Stroke								
Stroke	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000
A	1203.5	1303.5	1403.5	1503.5	1603.5	1703.5	1803.5	1903.5	2003.5	2103.5	2203.5	2303.5	2403.5
В	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300
С	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000
D	0	0	200	250	300	350	400	450	500	550	200	200	200
E	0	0	0	0	0	0	0	0	0	0	400	450	500
F	200	200	200	250	300	350	400	450	500	550	200	200	200
G	0	0	0	0	0	0	0	0	0	0	400	450	500
Н	10	10	12	12	12	12	12	12	12	12	16	16	16
Weight (kg)	15.0	16.1	17.1	18.2	19.2	20.3	21.3	22.4	23.4	24.5	25.5	26.6	27.6
Maximum Lead 30			15	00			1425	1200	1050	900	825	750	675
(mm/s) Lead 20			10	00			950	800	700	600	550	500	450

Applicable Controller Specifications

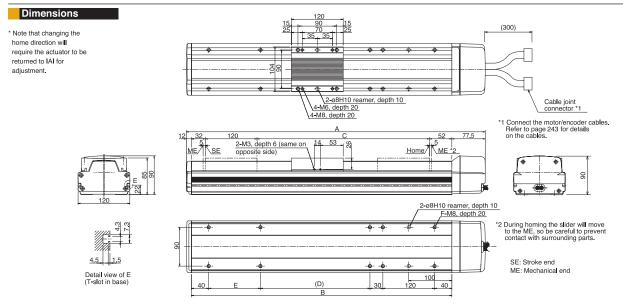

	Maximum number of controlled axes		Program operation	Positioner operation	Pulse-train control	Supply voltage	Page
X-SEL	4 axes	Absolute/incremental	0		×	AC100/200V	
E-Con	1 axis	Absolute/incremental	Х	0	X	AC100/200V	
P-Driver	1 axis	Incremental	×	×	0	AC100/200V	

(Note 1) The strokes that are set in increments of 50 mm are semi-standard (Note 2) Refer to page 40 for the relationship of acceleration and load

(Notes 3, 4, 5) The figures in brackets apply to the ISPA Series. Other specification values apply to both the ISPA series. (Note 6) The maximum cable length is 30 m. Specify the desired length in meters (e.g., X08 = 8 m).

Refer to page 9 for other points to note

Models/Specifications


		Motor	Motor Stroke (mm) Speed Acceleration (Note 3)				e 3)	Load capacity (Note 3)						
Model	Encoder type	output	Lead (mm)	Lead In increments of (mm) 50mm		Horizontal (G)		Vertical (G)		Horizontal (kg)		Vertical (kg)		Rated thrust (N)
		(W)	((((((((((((((((((((((((((((((((((((((((Note 1)	(mm/s)	Rated	Maximum	Rated	Maximum		Maximum acceleration		Maximum acceleration	(14)
ISA [ISPA] -MYM-A-100-20- * * * -T1-△-□			20		1 ~ 1000	0.3	1.0	0.3	0.8	20	6	3.5	2	84.3
ISA [ISPA] -MYM-A-100-10- * * * -T1-△-□	Absolute		10	100 ~ 1000	1 ~ 500	0.3	0.6	0.3	0.5	40	20	9	7	169.5
ISA [ISPA] -MYM-A-100-5- * * * -T1-△-□		100	5		1 ~ 250	0.15	0.5	0.15	0.3	80	45	19	15	340.1
ISA [ISPA] -MYM-I-100-20- * * * -T1-△-□		100	20	100~1000	1 ~ 1000	0.3	1.0	0.3	0.8	20	6	3.5	2	84.3
ISA [ISPA] -MYM-I-100-10- * * * -T1-△-□	Incremental		10		1 ~ 500	0.3	0.6	0.3	0.5	40	20	9	7	169.5
ISA [ISPA] -MYM-I-100-5- * * * -T1-△-□			5		1 ~ 250	0.15	0.5	0.15	0.3	80	45	19	15	340.1

* In the above model names, *** indicates the stroke, riangle the cable length and \Box the applicable options.

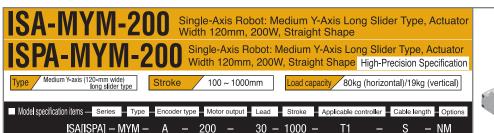
Options					
Name	Code	Page	Name	Code	Page
AQ seal	AQ	P13	Master-axis designation	LM	P14
Brake	В	P13	Master-axis designation (sensor on opposite side)	LLM	P14
Creep sensor	С	P13	Reverse homing specification	NM	P14
Creep sensor on opposite side	CL	P13	Guide with ball-retaining mechanism	RT	P14
Home limit switch	L	P14	Slave-axis designation	S	P14
Home limit switch on opposite side	LL	P14			

*1.0G=9800mm/sec

Common Specifications	Refer to page 10 for the details of common specification items.
Positioning repeatability (Note 4)	±0.02mm [±0.01mm]
Drive system (Note 5)	Ball screw ø16mm, rolled C10 [equivalent to rolled C5]
Lost motion (Note 6)	0.05mm or less [0.02mm or less]
Guide	integrated with base
Allowable static moment	Refer to page 242
Allowable dynamic moment	Ma: 69.6N•m Mb: 99.0N•m Mc: 81.3N•m
Overhang load length	Ma direction: 600mm or less, Mb/Mc directions: 600mm or less
Base	Material: Aluminum, with white alumite treatment
Cable length (Note 7)	N: None, S: 3m, M: 5m, X□□: Specified length
Ambient operating temperature/humidity	0 to 40°C, 85%RH max. (non-condensing)

Dimensions, Weight and Maximum Speed by Stroke

Stroke 100 (150) 200 (250) 300 (350) 400 (450) 500 (550) 600 (650) 700 (750) A 393.5 443.5 493.5 543.5 593.5 643.5 693.5 743.5 793.5 843.5 893.5 943.5 993.5 1043.5 B 304 354 404 454 504 554 604 654 704 754 804 854 904 954 C 100 150 200 250 300 350 400 455 500 550 660 660 700 754 804 854 904 954 C 100 150 200 250 300 350 400 455 500 550 660 700 750 D - - 54 104 154 204 254 304 354 404 454 504 <th>800 (85) 1093.5 1143 1004 105 800 850 654 700</th> <th>4 1193.5 4 1104 0 900</th> <th>(950) 1243.5 1154 950</th> <th>1000 1293.5 1204 1000</th>	800 (85) 1093.5 1143 1004 105 800 850 654 700	4 1193.5 4 1104 0 900	(950) 1243.5 1154 950	1000 1293.5 1204 1000
B 304 354 404 454 504 554 604 654 704 754 804 854 904 954 C 100 150 200 250 300 350 400 450 500 550 600 650 700 750	1004 105 800 85	4 1104 0 900	1154	1204
C 100 150 200 250 300 350 400 450 500 550 600 650 700 750	800 85	900	-	
C 100 150 200 250 300 350 400 450 500 550 600 650 700 750			950	1000
D – – 54 104 154 204 254 304 354 404 454 504 554 604	654 70			
	1 00. 1 /0.	4 754	804	854
E 120 – 120 120 120 120 120 120 120 120 120 120	120 12	0 120	120	120
F 10 8 10 <td>10 10</td> <td>10</td> <td>10</td> <td>10</td>	10 10	10	10	10
Weight (kg) 6.3 6.8 7.3 7.8 8.3 8.8 9.3 9.9 10.4 10.9 11.4 11.9 12.4 12.9	13.4 13.	9 14.4	14.9	15.4
Lead 20 1000 75	95	645	5	40
speed Lead 10 500 480 38	80	310	2	55
(mm/s) Lead 5 250 220 17	75	145	1	20


Cauti

Applicable Controller Specifications

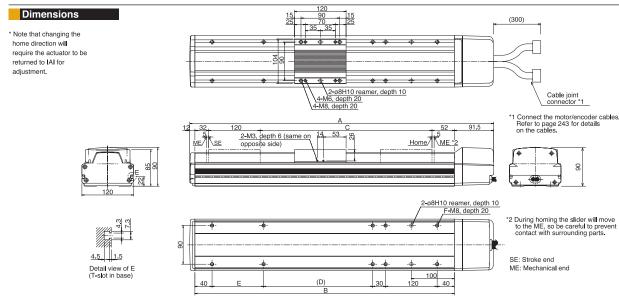
Applica		lier opecification	19				
	Maximum number of controlled axes		Program operation	Positioner operation	Pulse-train control	Supply voltage	Page
X-SEL	4 axes	Absolute/incremental	0	Δ	X	AC100/200V	
E-Con	1 axis	Absolute/incremental	Х	0	X	AC100/200V	
P-Driver	1 axis	Incremental	Х	Х	0	AC100/200V	

ISPA/ICSPA Catalog

* Refer to page 9 for other points to note.

Refer to page 11 for the details of model specification items. Models/Specifications

	Motor	Stroke (mm) Speed		Ac	Acceleration (Note 3)				d capac				
Encoder type	output	Lead (mm)		50mm (Note 2) H		orizontal (G) Vertical (G)		al (G)	Horizontal (kg)) Vertical (kg)		Rated thrust (N)
	(W)	()	(Note 1)	(mm/s)	Rated	Maximum	Rated	Maximum					
		30		1 ~ 1500	0.3	1.0	0.3	1.0	25	10	6	2	113
Absolute		20		1 ~ 1000	0.3	1.0	0.3	0.8	40	12	9	5	169.5
	200	10	100 1000	1 ~ 500	0.3	0.6	0.3	0.5	80	40	19	15	340.1
	200	30	100~1000	1 ~ 1500	0.3	1.0	0.3	1.0	25	10	6	2	113
Incremental		20		1 ~ 1000	0.3	1.0	0.3	0.8	40	12	9	5	169.5
		10		1 ~ 500	0.3	0.6	0.3	0.5	80	40	19	15	340.1
	Absolute	Absolute 200	Encoder type output (W) Lead (mm) Absolute 30 200 10 300 30 Incremental 20	Image: model with the second secon	Image: Motor output (W) Lead (mm) In increments of 50mm (Note 1) Speed (Note 2) (mm/s) Absolute 30 1 ~ 1500 1 ~ 1500 200 10 1 ~ 000 1 ~ 1500 Incremental 20 100 ~ 1000 1 ~ 1500	Motor output (W) Lead (mm) Inincrements of 50mm (Note 1) Speed (Note) Horizon Rated Absolute 30 1 ~ 1500 0.3 200 10 1 ~ 1000 0.3 10 ~ 1000 30 1 ~ 1500 0.3 Incremental 20 100 ~ 1000 1 ~ 1500 0.3	Motor output (W) Lead (mm) Inincrements of 50mm (Note 1) Speed (Note 2) Horizontal (G) Absolute 30 1 ~ 1500 0.3 1.0 200 10 1 ~ 1500 0.3 1.0 100 ~ 1000 1 ~ 1500 0.3 1.0 Incremental 20 100 ~ 1000 1 ~ 1500 0.3 1.0	Motor output (W) Lead (mm) In increments of 50mm (Note 1) Speed (Note 2) (mm/s) Horizontal (G) Vertic Vertic Rated Absolute 30 1~1500 0.3 1.0 0.3 200 10 1~1000 0.3 1.0 0.3 Incremental 200 100~1000 1~1500 0.3 1.0 0.3 Incremental 20 100~1000 1~1500 0.3 1.0 0.3	Motor output (W) Lead (mm) In increments of 50mm (Note 1) Speed (Note 2) (mm/s) Horizontal (G) Vertical (G) Absolute 30 1 0.3 1.0 0.3 1.0 0.3 1.0 200 10 1 1 0.3 0.6 0.3 0.5 1ncremental 20 10 1 0.3 1.0 0.3 0.5 1ncremental 20 10 1 1 0.3 1.0 0.3 0.5	Motor output (W) Lead (mm) In increments of 50mm (Note 1) Speed (Note 2) (mm/s) Horizontal (G) Vertical (G) Vertical (G) Horizontal (G) Vertical (G) Horizontal (G) Horizontal (G) Vertical (G) Horizontal (G) Horizontal (G) Vertical (G) Horizontal (G) Vertical (G) Horizontal (G) Vertical (G) Horizontal (G)	Motor output (W) Lead (mm) In increments of 50mm (Note 1) Speed (Note 2) (mm/s) Horizontal (G) Vertical (G) Horizontal (Kg) Rated Maximum Rated Maximum <td>Motor output (W) Lead (mm) In increments of 50mm (Note 1) Speed (Note 2) (mm/s) Horizontal (G) Vertical (G) Horizontal (kg) Vertic Vertical (kg) Vertical (kg) Vertic</td> <td>Motor output (W) Lead (mm) In increments of 50mm (Note 1) Speed (Note 2) (mm/s) Horizontal (G) Vertical (G) Horizontal (Kg) Vertical (Kg) Horizontal (G) Vertical (G) Horizontal (G) Vertical (G) Horizontal (Kg) Vertical (Kg) Absolute 30 1~100 0.3 1.0 0.3 1.0 25 10 6 2 10 100~100 1.0 0.3 1.0 0.3 0.6 0.3 0.5 80 40 19 15 10 20 10 1~1500 0.3 1.0 0.3 0.6 80 40 19 15 10 1~1000 0.3 1.0 0.3 0.6 0.3 0.6 2 10 6 2 10 100~1000 0.3 1.0 0.3 0.6 0.3 0.6 2 10 6 2 10 200 100~1000 0.3 1.0 0.3 0.8 40 12</td>	Motor output (W) Lead (mm) In increments of 50mm (Note 1) Speed (Note 2) (mm/s) Horizontal (G) Vertical (G) Horizontal (kg) Vertic Vertical (kg) Vertical (kg) Vertic	Motor output (W) Lead (mm) In increments of 50mm (Note 1) Speed (Note 2) (mm/s) Horizontal (G) Vertical (G) Horizontal (Kg) Vertical (Kg) Horizontal (G) Vertical (G) Horizontal (G) Vertical (G) Horizontal (Kg) Vertical (Kg) Absolute 30 1~100 0.3 1.0 0.3 1.0 25 10 6 2 10 100~100 1.0 0.3 1.0 0.3 0.6 0.3 0.5 80 40 19 15 10 20 10 1~1500 0.3 1.0 0.3 0.6 80 40 19 15 10 1~1000 0.3 1.0 0.3 0.6 0.3 0.6 2 10 6 2 10 100~1000 0.3 1.0 0.3 0.6 0.3 0.6 2 10 6 2 10 200 100~1000 0.3 1.0 0.3 0.8 40 12


In the above model names. le length and 🗆 the applicable options ates the stroke, \triangle the

Options

Name	Code	Page	Name	Code	Page
AQ seal	AQ	P13	Master-axis designation	LM	P14
Brake	В	P13	Master-axis designation (sensor on opposite side)	LLM	P14
Creep sensor	С	P13	Reverse homing specification	NM	P14
Creep sensor on opposite side	CL	P13	Guide with ball-retaining mechanism	RT	P14
Home limit switch	L	P14	Slave-axis designation	S	P14
Home limit switch on opposite side	LL	P14			

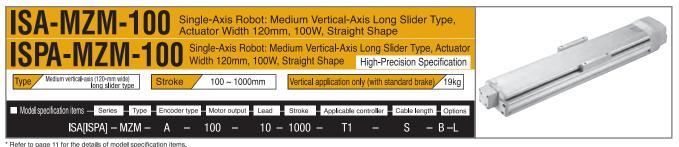
Common Specifications * Refer to page 10 for the details of common specification items.

Positioning repeatability (Note 4)	±0.02mm [±0.01mm]
Drive system (Note 5)	Ball screw ø16mm, rolled C10 [equivalent to rolled C5]
Lost motion (Note 6)	0.05mm or less [0.02mm or less]
Guide	integrated with base
Allowable static moment	Refer to page 242
Allowable dynamic moment	Ma: 69.6N•m Mb: 99.0N•m Mc: 81.3N•m
Overhang load length	Ma direction: 600mm or less, Mb/Mc directions: 600mm or less
Base	Material: Aluminum, with white alumite treatment
Cable length (Note 7)	N: None, S: 3m, M: 5m, XDD: Specified length
Ambient operating temperature/humidity	0 to 40°C, 85%RH max. (non-condensing)

Dimensions. Weight and Maximum Speed by Stroke

	Jinnon	30113,	weight	anu ma	Annunn .	sheen r	by Otion	C												
St	roke	100	(150)	200	(250)	300	(350)	400	(450)	500	(550)	600	(650)	700	(750)	800	(850)	900	(950)	1000
	А	407.5	457.5	507.5	557.5	607.5	657.5	707.5	757.5	807.5	857.5	907.5	957.5	1007.5	1057.5	1107.5	1157.5	1207.5	1257.5	1307.5
	В	304	354	404	454	504	554	604	654	704	754	804	854	904	954	1004	1054	1104	1154	1204
	С	100	150	200	250	300	350	400	450	500	550	600	650	700	750	800	850	900	950	1000
	D	-	-	54	104	154	204	254	304	354	404	454	504	554	604	654	704	754	804	854
	E	120	-	120	120	120	120	120	120	120	120	120	120	120	120	120	120	120	120	120
	F	10	8	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
Weig	ght (kg)	6.8	7.3	7.8	8.3	8.8	9.3	9.8	10.4	10.9	11.4	11.9	12.4	12.9	13.4	13.9	14.4	14.9	15.4	15.9
Maximum	Lead 30						15	00						1500	11	90	96	65	8	10
speed	Lead 20						10	00						1000	79	95	64	15	54	40
(inffivs)	Lead 10						50	00						480	38	30	3.	0	25	55

Applicable Controller Specifications


	Applicable controller	Maximum number of controlled axes		Program operation	Positioner operation	Pulse-train control	Supply voltage	Page
	X-SEL	4 axes	Absolute/incremental	0		×	AC100/200V	
	E-Con	1 axis	Absolute/incremental	×	0	×	AC100/200V	
1	P-Driver	1 axis	Incremental	×	×	0	AC100/200V	

(Note 1) The strokes that are set in increments of 50 mm are semi-standard settings. (Note 2) A longer stroke will result in a lower maximum speed to prevent the ball

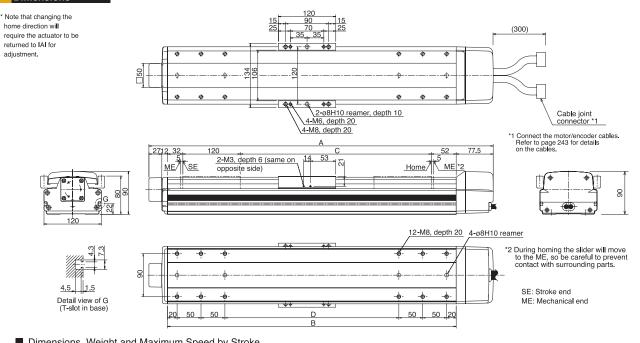
(Note 2) A longer stroke will result in a lower maximum speed to prevent the ball screw from reaching a dangerous speed. (Refer to the above table for the maximum speed at a given stroke.) (Notes 3) Refer to page 40 for the relationship of acceleration and load capacity. (Notes 4, 5, 6) The figures in brackets apply to the ISPA Series. Other specification values apply to both the ISA and ISPA Series. (Note 7) The maximum cable length is 30 m. Specify the desired length in meters (e.g., X08 = 8 m).

* Refer to page 9 for other points to note.

Models/Specifications

		Motor		Stroke (mm)	Speed	Acceleratio	on (Note	ə 3)	Load capac	ity (No	te 3)	
Model	Encoder type	output	Lead (mm)	In increments of 50mm	(Note 2)				Horizontal (kg)	Vertical (kg)		Rated thrust (N)
		(W)	((((((((((((((((((((((((((((((((((((((((Note 1)	(mm/s)	Rated Maximum	Rated	Maximum	Rated Maximum acceleration		Maximum acceleration	((*)
ISA [ISPA] -MZM-A-100-10- * * * -T1-△-B-□	Absolute		10		1 ~ 500	Vertical	0.3	0.5	Vertical	9	7	169.5
ISA [ISPA] -MZM-A-100-5- * * * -T1-△-B-□	Absolute	100	5	100 1000	1 ~ 250	Vertical	0.15	0.3		19	15	340.1
ISA [ISPA] -MZM-I-100-10- * * * -T1-△-B-□	Incremental	100	10	100 ~ 1000	1 ~ 500	application	0.3	0.5	application	9	7	169.5
ISA [ISPA] -MZM-I-100-5- * * * -T1-△-B-□	incremental		5 1 ~ 250 on		only	0.15 0.3		only	19	15	340.1	

* In the above model names, *** indicates the stroke, △ the cable length and □ the applicable options.


Options					
Name	Code	Page	Name	Code	Page
AQ seal	AQ	P13	Master-axis designation	LM	P14
Brake	В	P13	Master-axis designation (sensor on opposite side)	LLM	P14
Creep sensor	С	P13	Reverse homing specification	NM	P14
Creep sensor on opposite side	CL	P13	Guide with ball-retaining mechanism	RT	P14
Home limit switch	L	P14	Slave-axis designation	S	P14
Home limit switch on opposite side	LL	P14			
* The MZM type comes standard	with a br	rake (B).			

*1.0G =9800mm/sec

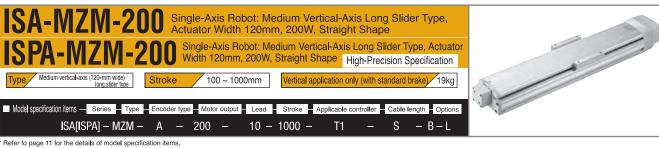
Common Specifications * Refer to page 10 for the details of common specification items.

Positioning repeatability (Note 4)	±0.02mm [±0.01mm]						
Drive system (Note 5)	Ball screw ø16mm, rolled C10 [equivalent to rolled C5]						
Lost motion (Note 6)	0.05mm or less [0.02mm or less]						
Guide	integrated with base						
Allowable static moment	Refer to page 242						
Allowable dynamic moment	Ma: 69.6N•m Mb: 99.0N•m Mc: 81.3N•m						
Brake	Comes standard with a dry, single-plate, non-excitation type electromagnetic brake						
Base	Material: Aluminum, with white alumite treatment						
Cable length (Note 7)	N: None, S: 3m, M: 5m, XDD: Specified length						
Ambient operating temperature/humidity	0 to 40°C, 85%RH max. (non-condensing)						

Dimensions

Dimensions, Weight and Maximum Speed by Stroke

5	Stroke	100	(150)	200	(250)	300	(350)	400	(450)	500	(550)	600	700	800	900	1000
	А	420.5	470.5	520.5	570.5	620.5	670.5	720.5	770.5	820.5	870.5	920.5				
	В	304	354	404	454	504	554	604	654	704	754	804			for 700 and long	
	С	100	150	200	250	300	350	400	450	500	550	600		drawing on p	bage 18 for th	e mounting
	D	64	114	164	214	264	314	364	414	464	514	564	dimensions.			
We	ight (kg)	7.1	7.6	8.1	8.6	9.1	9.6	10.1	10.7	11.2	11.7	12.2	13.2	14.2	15.2	16.2
Maximu spee	m Lead 10						500						480	380	310	255
(mm/s							250						220	175	145	120


<u></u> Caut

Applica	ble Contro	lier Specification	าร				
	Maximum number of controlled axes		Program operation	Positioner operation	Pulse-train control	Supply voltage	Page
X-SEL	4 axes	Absolute/incremental	0	Δ	Х	AC100/200V	
E-Con	1 axis	Absolute/incremental	×	0	Х	AC100/200V	
P-Driver	1 axis	Incremental	×	×	0	AC100/200V	

tion	 (Note 1) The strokes that are set in increments of 50 mm are semi-standard settings. (Note 2) Alonger stroke will result in a lower maximum speed to prevent the ball screw from reaching a dangerous speed, (Refer to the above table for the maximum speed at a given stroke.) (Note 3) Refer to page 40 for the relationship of acceleration and load capacity. (Notes 4, 5, 6) The figures in brackets apply to the ISPA Series. Other specification values apply to both the ISA and ISPA Series. (Note 7) The maximum cable length is 30 m. Specify the desired length in meters (e.g., X08 = 8 m).
	* Refer to page 9 for other points to note.

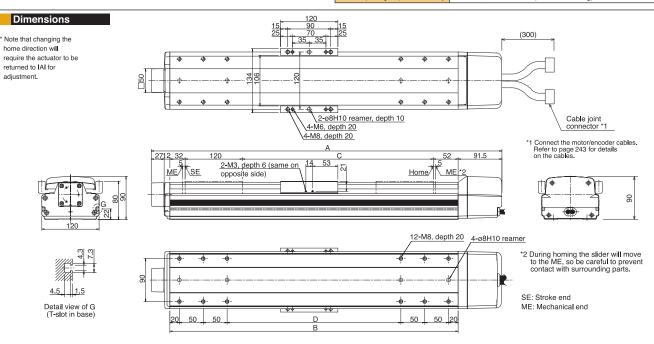
* The MZM type comes standard with a brake, so use a controller of brake specification.

ISPA/ICSPA Catalog

Models/Specifications

		Motor	Lead (mm)	Stroke (mm) In increments of 50mm (Note 1)	Speed	Acceleratio	on (Note	e 3)	Load capac	e 3)		
Model	Encoder type	output			(Note 2)	Horizontal (G)	Vertical (G)		Horizontal (kg)	Vertical (kg)		Rated thrust (N)
		(W)	()		(mm/s)	Rated Maximum	Rated	Maximum	Rated Acceleration	Rated acceleration	Maximum acceleration	
ISA [ISPA] -MZM-A-200-10- * * * -T1-△-B-□	Absolute	200	10	100 ~ 1000	1 ~ 500	Vertical application	0.3	0.5	Vertical application	19	15	340.1
ISA [ISPA] -MZM-I-200-10- * * * -T1-△-B-□	Incremental	200	10	100 ~ 1000	1 ~ 500	only	0.3	0.5	only	19	15	340.1
* In the above model names, *** indicates the	*1.0G=9800mm/s	ec ²										

* In the above model names, *** indicates the stroke, riangle the cable length and \Box the applicable options.


Options

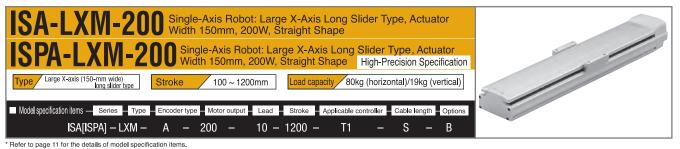
Name	Code	Page	Name	Code	Page
AQ seal	AQ	P13	Master-axis designation	LM	P14
Brake	В	P13	Master-axis designation (sensor on opposite side)	LLM	P14
Creep sensor	С	P13	Reverse homing specification	NM	P14
Creep sensor on opposite side	CL	P13	Guide with ball-retaining mechanism	RT	P14
Home limit switch	L	P14	Slave-axis designation	S	P14
Home limit switch on opposite side	LL	P14			

Common Specifications * Refer to page 10 for the details of common specification items.

Positioning repeatability (Note 4)	±0.02mm [±0.01mm]							
Drive system (Note 5)	Ball screw ø16mm, rolled C10 [equivalent to rolled C5]							
Lost motion (Note 6)	0.05mm or less [0.02mm or less]							
Guide	integrated with base							
Allowable static moment	Refer to page 242							
Allowable dynamic moment	Ma: 69.6N•m Mb: 99.0N•m Mc: 81.3N•m							
Brake	Comes standard with a dry, single-plate, non-excitation type electromagnetic brake							
Base	Material: Aluminum, with white alumite treatment							
Cable length (Note 7)	N: None, S: 3m, M: 5m, X□□: Specified length							
Ambient operating temperature/humidity	0 to 40°C, 85%RH max. (non-condensing)							

 * The MZM type comes standard with a brake (B).

Dimensions, Weight and Maximum Speed by Stroke


Stroke	100	(150)	200	(250)	300	(350)	400	(450)	500	(550)	600	700	800	900	1000	
А	434.5	484.5	534.5	584.5	634.5	684.5	734.5	784.5	834.5	884.5	934.5	Use the base o	f the MVM type	for 700 and long	aar etrokoe	
В	304	354	404	454	504	554	604	654	704	754	804		drawing on p		-	
С	100	150	200	250	300	350	400	450	500	550	600	dimensions.	aye is ioi u	ie mounting		
D	64	114	164	214	264	314	364	414	464	514	564	aimensions.				
Weight (kg)	7.1	7.6	8.1	8.6	9.1	9.6	10.1	10.7	11.2	11.7	12.2	13.2	14.2	15.2	16.2	
Maximum speed (mm/s)						500						480	380	310	255	

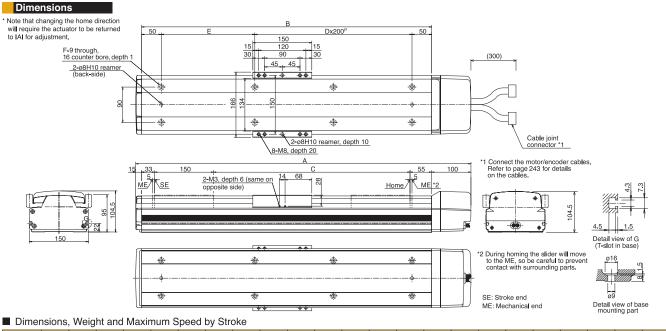
	Applica	ble Contro	Iler Specification	ns					_		(Note (Note
		Maximum number of controlled axes	Compatible encoder type	Program operation	Positioner operation	Pulse-train control	Supply voltage	Page			(Note
Ī	X-SEL	4 axes	Absolute/incremental	0	Δ	×	AC100/200V		1	Caution	(Note
	E-Con	1 axis	Absolute/incremental	Х	0	×	AC100/200V				(Note
Į	P-Driver	1 axis	Incremental	×	×	0	AC100/200V]		(1101

(Note 1) The strokes that are set in increments of 50 mm are semi-standard settings.	
(Note 1) The strokes that are set in increments or so min are semi-standard setungs. (Note 2) A longer stroke will result in a lower maximum speed to prevent the ball screw from reaching a dangerous speed. (Refer to the above table for the maximum speed at a given stroke.)	
(Note 3, 5, 6) The figures in brackets apply to both the ISPA Series. (Note 3, 5, 6) The figures in brackets apply to both the ISPA Series. (Note 7) The maximum calle length is 30 specify the desting length in meters (a.g., X0 = 5 n	

* The MZM type comes standard with a brake, so use a controller of brake specification.

* Refer to page 9 for other points to note.

Models/Specifications

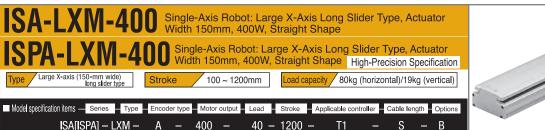

		Motor		Stroke (mm)	Speed	Aco	celeratio	on (Note	e 3)	Load capacity (Note 3)				
Model	Encoder type	output (W)	Lead (mm)	In increments of 50mm (Note 1)	(Note 2)	Horizor	Horizontal (G)		Vertical (G)		nta l (kg)	Vertical (kg)		Rated thrust (N)
			()		(mm/s)	Rated	Maximum	Rated	Maximum	Rated acceleration	Maximum acceleration	Rated acceleration	Maximum acceleration	
ISA [ISPA] -LXM-A-200-20- * * * -T1-△-□	Absolute		20	100 ~ 1200	1 ~ 1000	0.3	1.0	0.3	0.8	40	12	9	4	170.5
ISA [ISPA] -LXM-A-200-10- * * * -T1-△-□		200	10		1 ~ 500	0.3	0.6	0.3	0.5	80	40	19	14	340.1
ISA [ISPA] -LXM-I-200-20- * * * -T1-△-□	Incremental	200	20	100~1200	1 ~ 1000	0.3	1.0	0.3	0.8	40	12	9	4	170.5
ISA [ISPA] -LXM-I-200-10- * * * -T1-△-□	incremental		10		1 ~ 500	0.3	0.6	0.3	0.5	80	40	19	14	340.1
* In the above model names, *** indicates the	e options.	•	*1.0G=9	300mm/s	ec ²									

* In the above model names, *** indicates the stroke, riangle the cable length and \Box the applicable options.

Options					
Name	Code	Page	Name	Code	Page
AQ seal	AQ	P13	Master-axis designation	LM	P14
Brake	В	P13	Master-axis designation (sensor on opposite side)	LLM	P14
Creep sensor	С	P13	Reverse homing specification	NM	P14
Creep sensor on opposite side	CL	P13	Guide with ball-retaining mechanism	RT	P14
Home limit switch	L	P14	Slave-axis designation	S	P14
Home limit switch on opposite side	LL	P14			

Common Specifications * Refer to page 10 for the details of common specification items.

Positioning repeatability (Note 4)	±0.02mm [±0.01mm]								
Drive system (Note 5)	Ball screw ø20mm, rolled C10 [equivalent to rolled C5]								
Lost motion (Note 6)	0.05mm or less [0.02mm or less]								
Guide	integrated with base								
Allowable static moment	Refer to page 242								
Allowable dynamic moment	Ma: 104.9N•m Mb: 149.9N•m Mc: 248.9N•m								
Overhang load length	Ma direction: 750mm or less, Mb/Mc directions: 750mm or less								
Base	Material: Aluminum, with white alumite treatment								
Cable length (Note 7)	N: None, S: 3m, M: 5m, XDD: Specified length								
Ambient operating temperature/humidity	0 to 40°C, 85%RH max. (non-condensing)								



		,					.,																
Stroke	100	(150)	200	(250)	300	(350)	400	(450)	500	(550)	600	(650)	700	(750)	800	(850)	900	(950)	1000	(1050)	1100	(1150)	1200
A	453	503	553	603	653	703	753	803	853	903	953	1003	1053	1103	1153	1203	1253	1303	1353	1403	1453	1503	1553
В	338	388	438	488	538	588	638	688	738	788	838	888	938	988	1038	1088	1138	1188	1238	1288	1338	1388	1438
С	100	150	200	250	300	350	400	450	500	550	600	650	700	750	800	850	900	950	1000	1050	1100	1150	1200
D	0	0	1	1	1	1	2	2	2	2	3	3	3	3	4	4	4	4	5	5	5	5	6
E	238	288	138	188	238	288	138	188	238	288	138	188	238	288	138	188	238	288	138	188	238	288	138
F	4	4	6	6	6	6	8	8	8	8	10	10	10	10	12	12	12	12	14	14	14	14	16
Weight (kg)	11.0	11.8	12.5	13.3	14.0	14.8	15.5	16.3	17.0	17.8	18.5	19.3	20.0	20.8	21.5	22.3	23.0	23.8	24.5	25.3	26.0	26.8	27.5
Maximum Lead 20							10	00							1000	83	30	6	90	58	35	50	00
(mm/s) Lead 10							50	00							470	38	35	3:	20	2	70	23	35

	Applica	ble Contro	ller Specificatio	ns						(Note 1) The strokes that are set in increments of 50 mm are semi-standard settings. (Note 2) A longer stroke will result in a lower maximum speed to prevent the ball screw from reaching a dangerous speed. (Refer to the above table for the
		Maximum number of controlled axes	Compatible encoder type	Program operation	Positioner operation	Pulse-train control	Supply voltage	Page	Caution	maximum speed at a given stroke.) (Note 3) Refer to page 40 for the relationship of acceleration and load capacity. (Notes 4, 5, 6) The figures in brackets apply to the ISPA Series.
Х-	SEL	4 axes	Absolute/incremental	0	Δ	×	AC100/200V		- Cuanon	(Notes 4, 5, 6) The figures in brackets apply to the ISPA Series. Other specification values apply to both the ISA and ISPA Series.
E-	Con	1 axis	Absolute/incremental	×	0	×	AC100/200V			(Note 7) The maximum cable length is 30 m. Specify the desired length in meters (e.g., X08 = 8 m).
P-	Driver	1 axis	Incremental	×	×	0	AC100/200V			* Refer to page 9 for other points to note.

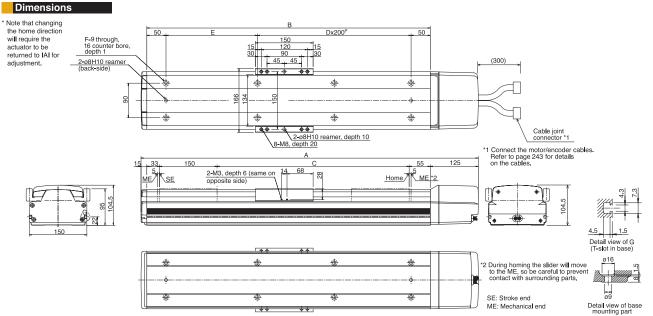
25 **ISPA/ICSPA** Catalog

1

Refer to page 11 for the details of model specification items.

Models/Specifications

		Motor		Stroke (mm)	Speed	Acceleration (Note 3)				Load capacity (Note 3)				
Model	Encoder type	output	Lead (mm)	In increments of 50mm (Note 1)	(Note 2)	Horizontal (G)		Vertical (G)		Horizontal (kg)		Vertical (kg)		Rated thrust (N)
		(VV)	(1111)		(mm/s)	Rated	Maximum	Rated	Maximum	Rated acceleration	Maximum acceleration	Rated acceleration	Maximum acceleration	
ISA [ISPA] -LXM-A-400-40- * * * -T1-△-□	Absolute		40	100 ~ 1200	1 ~ 2000	0.3	1.0	0.3	1.0	40	15	9	4	170.0
ISA [ISPA] -LXM-A-400-20- * * * -T1-△-□		400	20		1 ~ 1000	0.3	1.0	0.3	0.8	80	24	19	10	340.1
ISA [ISPA] -LXM-I-400-40- * * * -T1-△-□	Incremental	400	40		1 ~ 2000	0.3	1.0	0.3	1.0	40	15	9	4	170.0
ISA [ISPA] -LXM-I-400-20- * * * -T1-△-□	incremental		20		1 ~ 1000	0.3	1.0	0.3	0.8	80	24	19	10	340.1
* In the above model names. * * * indicates the stroke. 🛆 the cable length and 🗆 the applicable options. *1.0G=9800mm/sec ²														


* In the above model names, *** indicates the stroke, riangle the cable length and \Box the applicable options.

Options

Name	Code	Page	Name	Code	Page
AQ seal	AQ	P13	Master-axis designation	LM	P14
Brake	В	P13	Master-axis designation (sensor on opposite side)	LLM	P14
Creep sensor	С	P13	Reverse homing specification	NM	P14
Creep sensor on opposite side	CL	P13	Guide with ball-retaining mechanism	RT	P14
Home limit switch	L	P14	Slave-axis designation	S	P14
Home limit switch on opposite side	LL	P14			

Common Specifications * Refer to page 10 for the details of common specification items.

Positioning repeatability (Note 4)	±0.02mm [±0.01mm]						
Drive system (Note 5)	Ball screw ø20mm, rolled C10 [equivalent to rolled C5]						
Lost motion (Note 6)	0.05mm or less [0.02mm or less]						
Guide	integrated with base						
Allowable static moment	Refer to page 242						
Allowable dynamic moment	Ma: 104.9N•m Mb: 149.9N•m Mc: 248.9N•m						
Overhang load length	Ma direction: 750mm or less, Mb/Mc directions: 750mm or less						
Base	Material: Aluminum, with white alumite treatment						
Cable length (Note 7)	N: None, S: 3m, M: 5m, X□□: Specified length						
Ambient operating temperature/humidity	0 to 40°C, 85%RH max. (non-condensing)						

Dimensions. Weight and Maximum Speed by Stroke

Dinici	1010110	weig	in and	IVIANI	num c	pecu	by Our	JKC															
Stroke	100	(150)	200	(250)	300	(350)	400	(450)	500	(550)	600	(650)	700	(750)	800	(850)	900	(950)	1000	(1050)	1100	(1150)	1200
A	478	528	578	628	678	728	778	828	878	928	978	1028	1078	1128	1178	1228	1278	1328	1378	1428	1478	1528	1578
В	338	388	438	488	538	588	638	688	738	788	838	888	938	988	1038	1088	1138	1188	1238	1288	1338	1388	1438
С	100	150	200	250	300	350	400	450	500	550	600	650	700	750	800	850	900	950	1000	1050	1100	1150	1200
D	0	0	1	1	1	1	2	2	2	2	3	3	3	3	4	4	4	4	5	5	5	5	6
E	238	288	138	188	238	288	138	188	238	288	138	188	238	288	138	188	238	288	138	188	238	288	138
F	4	4	6	6	6	6	8	8	8	8	10	10	10	10	12	12	12	12	14	14	14	14	16
Weight (kg)	12.0	12.8	13.5	14.3	15.0	15.8	16.5	17.3	18.0	18.8	19.5	20.3	21.0	21.8	22.5	23.3	24.0	24.8	25.5	26.3	27.0	27.8	28.5
Maximum Lead 40								20	00								1660	13	80	11	70	10	00
(mm/s) Lead 20								10	00								830	69	90	58	35	50	00

Applicable Controller Specifications

	Maximum number of controlled axes		Program operation	Positioner operation	Pulse-train control	Supply voltage	Page
X-SEL	4 axes	Absolute/incremental	0		×	AC100/200V	
E-Con	1 axis	Absolute/incremental	Х	0	×	AC100/200V	
P-Driver	1 axis	Incremental	×	×	0	AC100/200V	

	(Note 1) The strokes that are set in increme
	(Note 2) A longer stroke will result in a low
	screw from reaching a dangerous
\mathbf{X}	maximum speed at a given strok
	(Note 3) Refer to page 40 for the relatio
tion	(Notes 4, 5, 6) The figures in brackets
	Other specification value

Caut

ents of 50 mm are semi-standard settings. ower maximum speed to prevent the ball us speed. (Refer to the above table for the

ke.) onship of acceleration and load capacity. s apply to the ISPA Series. Other specification values apply to both the ISA and ISPA Series. (Note 7) The maximum cable length is 30 m. Specify the desired length in meters (e.g., X08 = 8 m).

ISA-LXMX-200 Single-Axis Robot: Large X-Axis Mid-Support Type, Actuator Width 150mm, 200W, Straight Shape	
ISPA-LXMX-200 Single-Axis Robot: Large X-Axis Mid-Support Type, Actuator Width 150mm, 200W, Straight Shape High-Precision Specification	
Type Large X-axis (150-mm wide) mid-support type Stroke 1000 ~ 2500mm Load capacity 40kg (horizontal)	
Model specification items — Series – Type – Encoder type – Motor output – Lead – Stroke – Applicable controller – Cable length – Options	
ISA[ISPA] – LXMX – A – 200 – 20 – 2500 – T1 – S – NM	

* Refer to page 11 for the details of model specification items. Models/Specifications

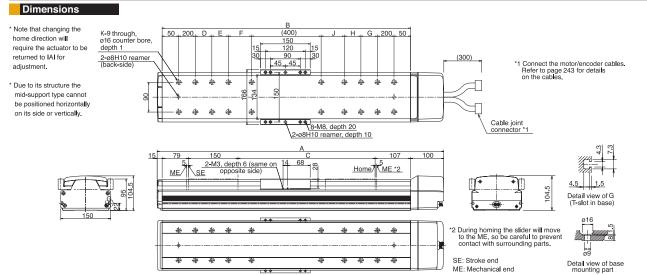
Brake

Home limit switch on opposite side

LL

P14

	Motor		Stroke (mm)	Speed	Acceleratio	on (Note 2)	Load capac		
Encoder type	output		In increments of	(Note 1)	Horizontal (G)	Vertical (G)	Horizontal (kg)	Vertical (kg)	Rated thrust (N)
	(W)	(((((((((((((((((((((((((((((((((((((((100mm	(mm/s)	Rated Maximum	Rated	Rated Maximum acceleration	Rated Maximum acceleration	((1))
Absolute	200	20	1000 0500	1 ~ 1000	0.3	Horizontal	40	Horizontal	170.5
Incremental	200	20	1000~2500	1 ~ 1000	0.3	only	40	only	170.5
	Absolute	Absolute 200	Encoder type output (W) Lead (mm) Absolute 200	Encoder type output (W) Lead (mm) In increments of 100mm Absolute 20 1000 ~ 2500	Encoder type output (W) Lead (mm) In increments of 100mm (Note 1) (mm/s) Absolute 20 1000 ~ 2500 1 ~ 1000	Encoder type Motor output (W) Lead (mm) Stroke (mm) In increments of 100mm Speed (Note 1) Horizontal (G) Rated Maximum Absolute 20 1000 ~ 2500 1 ~ 1000 0.3	Encoder type output (W) Lead (mm) In increments of 100mm (Note 1) (mm/s) Horizontal (G) Vertical (G) Absolute 20 20 1000 ~ 2500 1 ~ 1000 0.3 Horizontal application	Motor output (W) Lead (mm) Stroke (mm) In increments of 100mm Speed (Note 1) (mm/s) Horizontal (G) Vertical (G) Horizontal (kg) Absolute 200 20 1000 ~ 2500 1 ~ 1000 0.3 Horizontal application application 40	Encoder type Motor output (W) Lead (mm) Stroke (mm) In increments of 100mm Speed (Note 1) (mm/s) Horizontal (G) Vertical (G) Horizontal (kg) Vertical (kg) Absolute 200 20 1000 ~ 2500 1 ~ 1000 0.3 Horizontal Horizontal application 40 Horizontal application


In the above model names, *** indicates the stroke, beta the cable length and beta the applicable options.

1.0G=9800mm/sec

Options Name Code Page Name Code Page P13 AQ seal AΟ Master-axis designation LM P14 P13 В Master-axis designation (sensor on opposite side) LLM P14 Creep sensor С P13 Reverse homing specification NM P14 CL P13 Guide with ball-retaining mechanism RT P14 Creep sensor on opposite side P14 S P14 Home limit switch L Slave-axis designation

Common Specifications • Refer to page 10 for the details of common specification items.

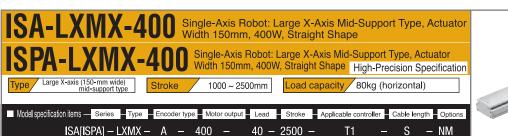
Positioning repeatability (Note 3)	±0.02mm [±0.01mm]						
Drive system (Note 4)	Ball screw ø20mm, rolled C10 [equivalent to rolled C5]						
Lost motion (Note 5)	0.05mm or less [0.02mm or less]						
Guide	integrated with base						
Allowable static moment	Refer to page 242						
Allowable dynamic moment	Ma: 104.9N•m Mb: 149.9N•m Mc: 248.9N•m						
Overhang load length	Ma direction: 750mm or less, Mb/Mc directions: 750mm or less						
Base	Material: Aluminum, with white alumite treatment						
Cable length (Note 6)	N: None, S: 3m, M: 5m, X□□: Specified length						
Ambient operating temperature/humidity	0 to 40°C, 85%RH max. (non-condensing)						

Dimensions, Weight and Maximum Speed by Stroke

		0		•	,											
Stroke	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	2400	2500
A	1465	1565	1665	1765	1865	1965	2065	2165	2265	2365	2465	2565	2665	2765	2865	2965
В	1350	1450	1550	1650	1750	1850	1950	2050	2150	2250	2350	2450	2550	2650	2750	2850
С	1014	1114	1214	1314	1414	1514	1614	1714	1814	1914	2014	2114	2214	2314	2414	2514
D	225	275	325	375	425	475	525	575	200	200	200	200	200	200	200	200
E	0	0	0	0	0	0	0	0	425	475	525	575	200	200	200	200
F	0	0	0	0	0	0	0	0	0	0	0	0	425	475	525	575
G	225	275	325	375	425	475	525	575	200	200	200	200	200	200	200	200
Н	0	0	0	0	0	0	0	0	425	475	525	575	200	200	200	200
J	0	0	0	0	0	0	0	0	0	0	0	0	425	475	525	575
К	12	12	12	12	12	12	12	12	16	16	16	16	20	20	20	20
Weight (kg)	27.5	29.0	30.5	32.0	33.5	35.0	36.5	38.0	39.5	41.0	42.5	44.0	45.5	47.0	48.5	50.0
Maximum speed (mm/s)			1000			950	830	740	650	590	540	490	440	410	370	340

Applicable Controller Specifications

Applice	Applicable controller opecifications													
Applicable controller	Maximum number of controlled axes	Compatible encoder type	Program operation	Positioner operation	Pulse-train control	Supply voltage	Page							
X-SEL	4 axes	Absolute/incremental	0	Δ	×	AC100/200V								
E-Con	1 axis	Absolute/incremental	Х	0	X	AC100/200V								
P-Driver	1 axis	Incremental	×	×	0	AC100/200V								



(Note 1) The strokes that are set in increments of 50 mm are semi-standard

(Note 2) Refer to page 40 for the relationship of acceleration and load

capacity. (Notes 3, 4, 5) The figures in brackets apply to the ISPA Series. Other specification values apply to both the ISA and ISPA Series. (Note 6) The maximum cable length is 30 m. Specify the desired length in meters (e.g., X08 = 8 m).

Refer to page 9 for other points to note.

Refer to page 10 for the details of common specification items.

Ball screw ø20mm, rolled C10 [equivalent to rolled C5]

Ma: 104.9N•m Mb: 149.9N•m Mc: 248.9N•m

Material: Aluminum, with white alumite treatment N: None, S: 3m, M: 5m, XDD: Specified length

0 to 40°C, 85%RH max. (non-condensing)

Ma direction: 750mm or less, Mb/Mc directions: 750mm or less

±0.02mm [±0.01mm]

integrated with base

Refer to page 242

0.05mm or less [0.02mm or less]

Refer to page 11 for the details of model specification items.

Models/Specifications

		Motor		Stroke (mm) In increments of	Speed	Acceleratio	on (Note 2)	Load capac		
Model	Encoder type	output	Lead (mm)		(Note 1)	Horizontal (G)	Vertical (G)	Horizontal (kg)	Vertical (kg)	Rated thrust (N)
		(W)	(((((((((((((((((((((((((((((((((((((((100mm	(mm/s)	Rated Maximum	Rated Maximum	Rated Maximum acceleration		(14)
ISA [ISPA] -LXMX-A-400-40- * * * -T1-△-□	Absolute		40		1 ~ 2000	0.3		40		170.0
ISA [ISPA] -LXMX-A-400-20- * * * -T1-△-□		400	20	7	1 ~ 1000	0.3	Horizontal	80	Horizontal	340.1
ISA [ISPA] -LXMX-I-400-40- * * * -T1-△-□	Incremental	400	40	1000 ~ 2500	1 ~ 2000	0.3	application only	40	application only	170.0
ISA [ISPA] -LXMX-I-400-20- * * * -T1-△-□	incremental		20		1 ~ 1000	0.3	-	80		340.1
* In the above model names, *** indicates the	stroke \wedge the cable	length and □ t	he annlicab	e ontions		*1.0G=9800mm/s	ec ²			

Common Specifications

Ambient operating temperature/humidity

Positioning repeatability (Note 3

Drive system (Note 4)

Allowable static moment

Overhang load length

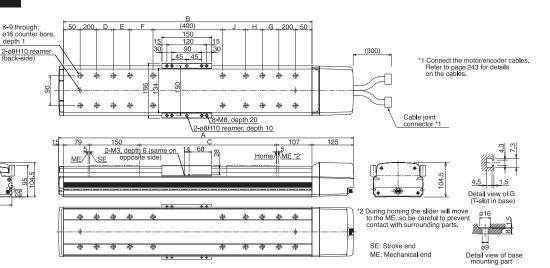
Cable length (Note 6)

Allowable dynamic moment

Lost motion (Note 5

Guide

Base


* In the above model names, *** indicates the stroke, riangle the cable length and \Box the applicable options.

Options					
Name	Code	Page	Name	Code	Page
AQ seal	AQ	P13	Master-axis designation	LM	P14
Brake	В	P13	Master-axis designation (sensor on opposite side)	LLM	P14
Creep sensor	С	P13	Reverse homing specification	NM	P14
Creep sensor on opposite side	CL	P13	Guide with ball-retaining mechanism	RT	P14
Home limit switch	L	P14	Slave-axis designation	S	P14
Home limit switch on opposite side	LL	P14			

Dimensions

* Note that changing the home direction will require the actuator to be returned to IAI for adjustment.

* Due to its structure the mid-support type cannot be positioned horizontally on its side or vertically.

Dimensions, Weight and Maximum Speed by Stroke

		- 3														
Stroke	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	2400	2500
A	1490	1590	1690	1790	1890	1990	2090	2190	2290	2390	2490	2590	2690	2790	2890	2990
В	1350	1450	1550	1650	1750	1850	1950	2050	2150	2250	2350	2450	2550	2650	2750	2850
С	1014	1114	1214	1314	1414	1514	1614	1714	1814	1914	2014	2114	2214	2314	2414	2514
D	225	275	325	375	425	475	525	575	200	200	200	200	200	200	200	200
E	0	0	0	0	0	0	0	0	425	475	525	575	200	200	200	200
F	0	0	0	0	0	0	0	0	0	0	0	0	425	475	525	575
G	225	275	325	375	425	475	525	575	200	200	200	200	200	200	200	200
Н	0	0	0	0	0	0	0	0	425	475	525	575	200	200	200	200
J	0	0	0	0	0	0	0	0	0	0	0	0	425	475	525	575
К	12	12	12	12	12	12	12	12	16	16	16	16	20	20	20	20
Weight (kg)	28.5	30.0	31.5	33.0	34.5	36.0	37.5	39.0	40.5	42.0	43.5	45.0	46.5	48.0	49.5	51.0
Maximum Lead 40			2000			1900	1660	1480	1300	1180	1080	980	880	820	740	680
(mm/s) Lead 20			1000			950	830	740	650	590	540	490	440	410	370	340

Applicable Controller Specifications

	Maximum number of controlled axes	Compatible encoder type	Program operation	Positioner operation	Pulse-train control	Supply voltage	Page
X-SEL	4 axes	Absolute/incremental	0		×	AC100/200V	
E-Con	1 axis	Absolute/incremental	Х	0	×	AC100/200V	
P-Driver	1 axis	Incremental	×	X	0	AC100/200V	

A Caution

(Note 1) The strokes that are set in increments of 50 mm are semi-standard
settings.
(Note 2) Poter to page 40 for the relationship of acceleration and load

(Note 2) Refer to page 40 for the relationship of acceleration and load

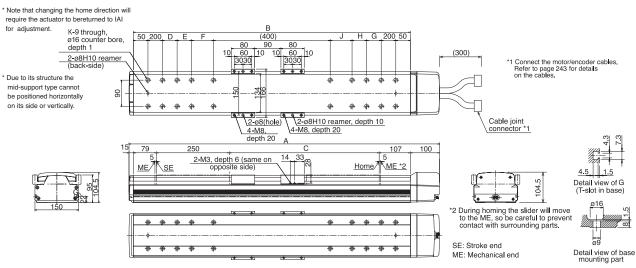
capacity. (Notes 3, 4, 5) The figures in brackets apply to the ISPA Series. Other specification values apply to both the ISA and ISPA Series. (Note 6) The maximum cable length is 30 m. Specify the desired length in meters (e.g., X08 = 8 m).

Refer to page 9 for other points to note.

ISA-LXUWX-200 Single-Axis Robot: Large X-Axis Mid-Support, Double Slider Type, Actuator Width 150mm, 200W, Straight Shape	
ISPA-LXUWX-200 Single-Axis Robot: Large X-Axis Mid-Support, Double Slider Type, Actuator Width 150mm, 200W, Straight Shape High-Precision Specification	
Type Large X-axis (150-mm wide) mid-support, double slider type Stroke 1000 ~ 2500mm Load capacity 40kg (horizontal)	
Model specification items — Series Type Encoder type Motor output Lead Stroke Applicable controller Cable length Options	
ISA[ISPA] – LXUMX – A – 200 – 20 – 2500 – T1 – S – NM	

* Refer to page 11 for the details of model specification items. Models/Specifications

		Motor	Lead (mm)	Stroke (mm) In increments of 100mm	Speed	Acceleration (Note 2)		Load capac		
Model	Encoder type	output			(Note 1)	Horizontal (G)	Vertical (G)	Horizontal (kg)	Vertical (kg)	Rated thrust (N)
		(W)			(mm/s)	Rated Maximum	Rated Maximum	Rated Maximum acceleration	Rated Maximum acceleration	
ISA [ISPA] -LXUWX-A-200-20- * * * -T1-△-□	Absolute	200	20	1000 ~ 2500	1 ~ 1000	0.3	Horizontal	40	Horizontal	170.5
ISA [ISPA] -LXUWX-I-200-20- * * * -T1-△-□	Incremental	200	20	1000 ~ 2000	1 ~ 1000	0.3	application only	40	application only	170.5
* In the above model names, *** indicates the stroke, △ the cable length and □ the applicable options. *1.0G=9800mm/sec ²										


* In the above model names, *** indicates the stroke, △ the cable length and □ the applicable options.

Common Specifications * Refer to page 10 for the details of common specification items.

Options					
Name	Code	Page	Name	Code	Page
AQ seal	AQ	P13	Master-axis designation	LM	P14
Brake	В	P13	Master-axis designation (sensor on opposite side)	LLM	P14
Creep sensor	С	P13	Reverse homing specification	NM	P14
Creep sensor on opposite side	CL	P13	Guide with ball-retaining mechanism	RT	P14
Home limit switch	L	P14	Slave-axis designation	S	P14
Home limit switch on opposite side	LL	P14			

Positioning repeatability (Note 3)	±0.02mm [±0.01mm]
Drive system (Note 4)	Ball screw ø20mm, rolled C10 [equivalent to rolled C5]
Lost motion (Note 5)	0.05mm or less [0.02mm or less]
Guide	integrated with base
Allowable static moment	Refer to page 242
Allowable dynamic moment	Ma: 179.3N•m Mb: 254.8N•m Mc: 247.0N•m
Overhang load length	Ma direction: 1250mm or less, Mb/Mc directions: 1250mm or less
Base	Material: Aluminum, with white alumite treatment
Cable length (Note 6)	N: None, S: 3m, M: 5m, X□□: Specified length
Ambient operating temperature/humidity	0 to 40°C, 85%RH max. (non-condensing)

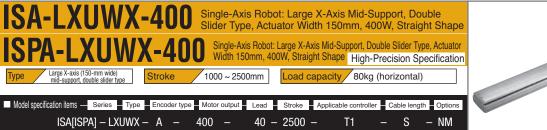
Dimensions

Dimensions, Weight and Maximum Speed by Stroke

Stroke	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	2400	2500
A	1565	1665	1765	1865	1965	2065	2165	2265	2365	2465	2565	2665	2765	2865	2965	3065
В	1450	1550	1650	1750	1850	1950	2050	2150	2250	2350	2450	2550	2650	2750	2850	2950
С	1014	1114	1214	1314	1414	1514	1614	1714	1814	1914	2014	2114	2214	2314	2414	2514
D	275	325	375	425	475	525	575	200	200	200	200	200	200	200	200	200
E	0	0	0	0	0	0	0	425	475	525	575	200	200	200	200	200
F	0	0	0	0	0	0	0	0	0	0	0	425	475	525	575	625
G	275	325	375	425	475	525	575	200	200	200	200	200	200	200	200	200
Н	0	0	0	0	0	0	0	425	475	525	575	200	200	200	200	200
J	0	0	0	0	0	0	0	0	0	0	0	425	475	525	575	625
К	12	12	12	12	12	12	12	16	16	16	16	20	20	20	20	20
Weight (kg)	29.0	30.5	32.0	33.5	35.0	36.5	38.0	39.5	41.0	42.5	44.0	45.5	47.0	48.5	50.0	51.5
Maximum speed (mm/s)			1000			950	830	740	650	590	540	490	440	410	370	340

Applicable Controller Specifications

Applice		ner opeemeanor	10				
Applicable controller	Maximum number of controlled axes	Compatible encoder type	Program operation	Positioner operation	Pulse-train control	Supply voltage	Page
X-SEL	4 axes	Absolute/incremental	0	Δ	×	AC100/200V	
E-Con	1 axis	Absolute/incremental	×	0	×	AC100/200V	
P-Driver	1 axis	Incremental	×	X	0	AC100/200V	



(Note 1) The strokes that are set in increments of 50 mm are semi-standard

settings.

(Note 2) Refer to page 40 for the relationship of acceleration and load capacity. (Notes 3, 4, 5) The figures in brackets apply to the ISPA Series. . Other specification values apply to the lort Settes. Other specification values apply to both the ISA and ISPA Series. (Note 6) The maximum cable length is 30 m. Specify the desired length in meters (e.g., X08 = 8 m).

* Refer to page 9 for other points to note.

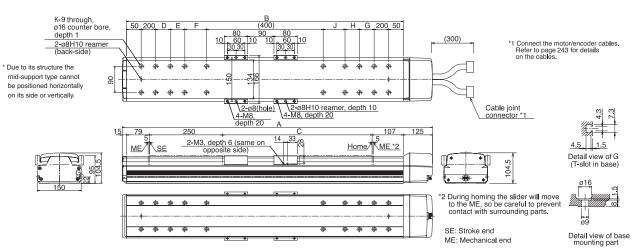
* Refer to page 11 for the details of model specification items

Models/Specifications

		Motor		Stroke (mm) In increments of	Speed	Acceleratio	on (Note 2)	Load capac	city (Note 2)	
Model	Encoder type	output	Lead (mm)		(Note 1)	Horizontal (G)	Vertical (G)	Horizontal (kg)	Vertical (kg)	Rated thrust (N)
		(W)	(((((((((((((((((((((((((((((((((((((((100mm	(mm/s)	Rated Maximum	Rated Maximum	Rated Maximum acceleration	Rated Acceleration	
ISA [ISPA] -LXUWX-A-400-40- * * * -T1-△-□	Absolute		40		1 ~ 2000	0.3		40		170.0
ISA [ISPA] -LXUWX-A-400-20- * * * -T1-△-□		100	20	1000 ~ 2500	1 ~ 1000	0.3	Horizontal application	80	Horizontal	340.1
ISA [ISPA] -LXUWX-I-400-40- * * * -T1-△-□		400	40		1 ~ 2000	0.3	only	40	application only	170.0
ISA [ISPA] -LXUWX-I-400-20- * * * -T1-△-□	Incremental		20		1 ~ 1000	0.3		80		340.1

* In the above model names, *** indicates the stroke, the cable length and the applicable options.

Options					
Name	Code	Page	Name	Code	Page
AQ seal	AQ	P13	Master-axis designation	LM	P14
Brake	В	P13	Master-axis designation (sensor on opposite side)	LLM	P14
Creep sensor	С	P13	Reverse homing specification	NM	P14
Creep sensor on opposite side	CL	P13	Guide with ball-retaining mechanism	RT	P14
Home limit switch	L	P14	Slave-axis designation	S	P14
Home limit switch on opposite side	LL	P14			


*1.0G =9800mm/sec

Common Specifications • Refer to page 10 for the details of common specification items.

Positioning repeatability (Note 3)	±0.02mm [±0.01mm]
Drive system (Note 4)	Ball screw ø20mm, rolled C10 [equivalent to rolled C5]
Lost motion (Note 5)	0.05mm or less [0.02mm or less]
Guide	integrated with base
Allowable static moment	Refer to page 242
Allowable dynamic moment	Ma: 179.3N•m Mb: 254.8N•m Mc: 247.0N•m
Overhang load length	Ma direction: 1250mm or less, Mb/Mc directions: 1250mm or less
Base	Material: Aluminum, with white alumite treatment
Cable length (Note 6)	N: None, S: 3m, M: 5m, X□□: Specified length
Ambient operating temperature/humidity	0 to 40°C, 85%RH max. (non-condensing)

Dimensions

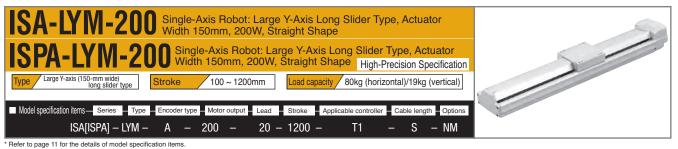
* Note that changing the home direction will require the actuator to bereturned to IAI for adjustment.

Dimensions, Weight and Maximum Speed by Stroke

	0.01.0, 11	0			,											
Stroke	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	2400	2500
A	1590	1690	1790	1890	1990	2090	2190	2290	2390	2490	2590	2690	2790	2890	2990	3090
В	1450	1550	1650	1750	1850	1950	2050	2150	2250	2350	2450	2550	2650	2750	2850	2950
С	1014	1114	1214	1314	1414	1514	1614	1714	1814	1914	2014	2114	2214	2314	2414	2514
D	275	325	375	425	475	525	575	200	200	200	200	200	200	200	200	200
E	0	0	0	0	0	0	0	425	475	525	575	200	200	200	200	200
F	0	0	0	0	0	0	0	0	0	0	0	425	475	525	575	625
G	275	325	375	425	475	525	575	200	200	200	200	200	200	200	200	200
н	0	0	0	0	0	0	0	425	475	525	575	200	200	200	200	200
J	0	0	0	0	0	0	0	0	0	0	0	425	475	525	575	625
К	12	12	12	12	12	12	12	16	16	16	16	20	20	20	20	20
Weight (kg)	30.0	31.5	33.0	34.5	36.0	37.5	39.0	40.5	42.0	43.5	45.0	46.5	48.0	49.5	51.0	52.5
Maximum Lead 40			2000			1900	1660	1480	1300	1180	1080	980	880	820	740	680
(mm/s) Lead 20			1000			950	830	740	650	590	540	490	440	410	370	340

Applicable Controller Specifications

Applicable controller	Maximum number of controlled axes		Program operation	Positioner operation	Pulse-train control	Supply voltage	Page
X-SEL	4 axes	Absolute/incremental	0	Δ	×	AC100/200V	
E-Con	1 axis	Absolute/incremental	×	0	×	AC100/200V	
P-Driver	1 axis	Incremental	×	X	0	AC100/200V	

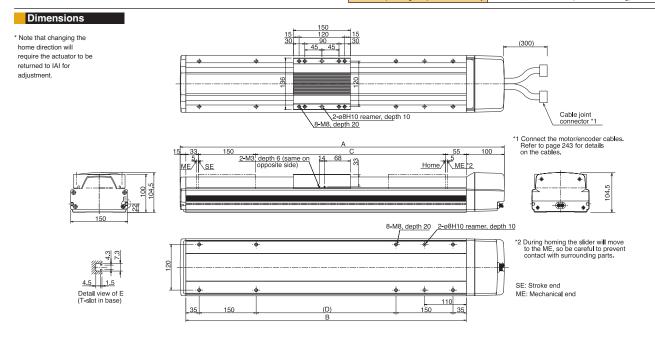


(Note 1) The strokes that are set in increments of 50 mm are semi-standard

settings. (Note 2) Refer to page 40 for the relationship of acceleration and load

capacity. (Notes 3, 4, 5) The figures in brackets apply to the ISPA Series. Other specification values apply to both the ISPA and ISPA Series. (Note 6) The maximum cable length is 30 m. Specify the desired length in meters (e.g., X08 = 8 m).

Refer to page 9 for other points to note


Models/Specifications

		Motor		Stroke (mm)	Speed	Aco	celeratio	n (Note	e 3)	Load capacity (Note 3)				
Model	Encoder type	output	Lead (mm)	In increments of 50mm	(Note 2)	Horizontal (G)		Vertical (G)		Horizontal (kg)) Vertical (kg)		Rated thrust (N)
		(W)	(''''')	(Note 1)	(mm/s)	Rated	Maximum	Rated	Maximum	Rated acceleration	Maximum acceleration	Rated acceleration	Maximum acceleration	
ISA [ISPA] -LYM-A-200-20- * * * -T1-∆-□	Absolute		20	100 ~ 1200	1 ~ 1000	0.3	1.0	0.3	0.8	40	12	9	4	170.5
ISA [ISPA] -LYM-A-200-10- * * * -T1-∆-□			10		1 ~ 500	0.3	0.6	0.3	0.5	80	40	19	14	340.1
ISA [ISPA] -LYM-I-200-20- * * * -T1-△-□	Incremental	200	20		1 ~ 1000	0.3	1.0	0.3	0.8	40	12	9	4	170.5
ISA [ISPA] -LYM-I-200-10- * * * -T1-△-□	incremental		10		1 ~ 500	0.3	0.6	0.3	0.5	80	40	19	14	340.1
* In the above model names, *** indicates the stroke, \triangle the cable length and \Box the applicable options. * 1.0G=9800mm/sec ²														

* In the above model names, *** indicates the stroke, riangle the cable length and \Box the applicable options.

Options					
Name	Code	Page	Name	Code	Page
AQ seal	AQ	P13	Master-axis designation	LM	P14
Brake	В	P13	Master-axis designation (sensor on opposite side)	LLM	P14
Creep sensor	С	P13	Reverse homing specification	NM	P14
Creep sensor on opposite side	CL	P13	Guide with ball-retaining mechanism	RT	P14
Home limit switch	L	P14	Slave-axis designation	S	P14
Home limit switch on opposite side	LL	P14			

Common Specifications	Refer to page 10 for the details of common specification items.					
Positioning repeatability (Note 4)	±0.02mm [±0.01mm]					
Drive system (Note 5)	Ball screw ø20mm, rolled C10 [equivalent to rolled C5]					
Lost motion (Note 6)	0.05mm or less [0.02mm or less]					
Guide	integrated with base					
Allowable static moment	Refer to page 242					
Allowable dynamic moment	Ma: 104.9N•m Mb: 149.9N•m Mc: 124.5N•m					
Overhang load length	Ma direction: 750mm or less, Mb/Mc directions: 750mm or less					
Base	Material: Aluminum, with white alumite treatment					
Cable length (Note 7)	N: None, S: 3m, M: 5m, XDD: Specified length					
Ambient operating temperature/humidity	0 to 40°C, 85%RH max. (non-condensing)					

Dimensions, Weight and Maximum Speed by Stroke

		,	- 5					,																
Stro	oke	100	(150)	200	(250)	300	(350)	400	(450)	500	(550)	600	(650)	700	(750)	800	(850)	900	(950)	1000	(1050)	1100	(1150)	1200
A	۱.	453	503	553	603	653	703	753	803	853	903	953	1003	1053	1103	1153	1203	1253	1303	1353	1403	1453	1503	1553
B	3	338	388	438	488	538	588	638	688	738	788	838	888	938	988	1038	1088	1138	1188	1238	1288	1338	1388	1438
C	;	100	150	200	250	300	350	400	450	500	550	600	650	700	750	800	850	900	950	1000	1050	1100	1150	1200
D)	0	0	1	1	1	1	2	2	2	2	3	3	3	3	4	4	4	4	5	5	5	5	6
Weigh	ıt (kg)	11.0	11.8	12.5	12.3	14.1	14.9	15.7	16.5	17.3	18.1	18.8	19.6	20.4	21.2	22.0	22.8	23.5	24.3	25.1	25.9	26.7	27.5	28.2
Maximum L	Lead 20							10	00							1000	8	30	6	90	58	35	50	00
(mm/s) L	Lead 10							50	00							470	3	35	3	20	27	70	23	35

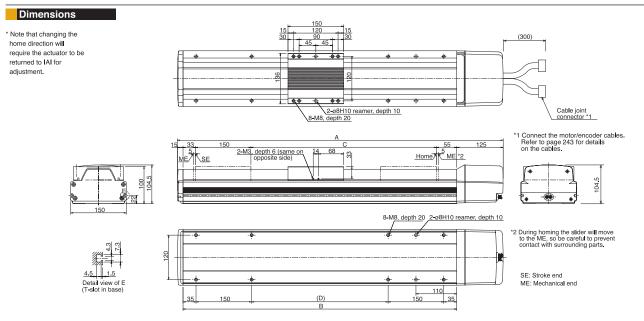
Applica	Applicable Controller Specifications												
	Maximum number of controlled axes	Compatible encoder type	Program operation	Positioner operation	Pulse-train control	Supply voltage	Page						
X-SEL	4 axes	Absolute/incremental	0	Δ	X	AC100/200V							
E-Con	1 axis	Absolute/incremental	Х	0	Х	AC100/200V							
P-Driver	1 axis	Incremental	Х	X	0	AC100/200V							

	(Note 1) The strokes that are set in increments of 50 mm are semi-standard settings.
	(Note 2) A longer stroke will result in a lower maximum speed to prevent the ball
	screw from reaching a dangerous speed. (Refer to the above table for the
	maximum speed at a given stroke.)
	(Note 3) Refer to page 40 for the relationship of acceleration and load capacity.
Caution	(Notes 4, 5, 6) The figures in brackets apply to the ISPA Series.
	Other specification values apply to both the ISA and ISPA Series.
	(Note 7) The maximum cable length is 30 m. Specify the desired length in meters (e.g., X08 = 8 m).

* Refer to page 9 for other points to note.

Refer to page 11 for the details of model specification items.

Models/Specifications


		Motor		Stroke (mm) In increments of 50mm	Speed	Ac	ce l eratio	on (Note	e 3)	Load capacity (Note 3)				
Model	Encoder type	output	Lead (mm)		(Note 2)	Horizontal (G)		Vertical (G)		Horizontal (kg)) Vertical (kg)		Rated thrust (N)
		(W)	(((((()))))))))))))))))))))))))))))))))	(Note 1)		Rated	Maximum	Rated	Maximum	Rated acceleration	Maximum acceleration	Rated acceleration	Maximum acceleration	
ISA [ISPA] -LYM-A-400-40- * * * -T1-△-□			40		1 ~ 2000	0.3	1.0	0.3	1.0	40	15	9	4	170.0
ISA [ISPA] -LYM-A-400-20- * * * -T1-△-□	Absolute		20		1 ~ 1000	0.3	1.0	0.3	0.8	80	24	19	10	340.1
ISA [ISPA] -LYM-I-400-40- * * * -T1-△-□		400	40	100 ~ 1200	1 ~ 2000	0.3	1.0	0.3	1.0	40	15	9	4	170.0
ISA [ISPA] -LYM-I-400-20- * * * -T1-△-□	Incremental		20		1 ~ 1000	0.3	1.0	0.3	0.8	80	24	19	10	340.1
* In the above model names. *** indicates the stroke. \triangle the cable length and \Box the applicable options. *1.0 G=9800mm/sec ²														

* In the above model names, *** indicates the stroke, riangle the cable length and \Box the applicable options.

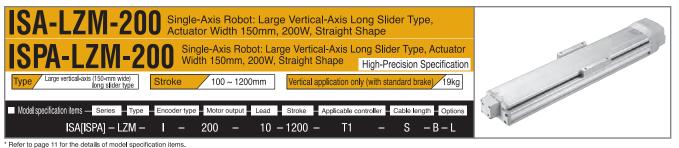
Options					
Name	Code	Page	Name	Code	Page
AQ seal	AQ	P13	Master-axis designation	LM	P14
Brake	В	P13	Master-axis designation (sensor on opposite side)	LLM	P14
Creep sensor	С	P13	Reverse homing specification	NM	P14
Creep sensor on opposite side	CL	P13	Guide with ball-retaining mechanism	RT	P14
Home limit switch	L	P14	Slave-axis designation	S	P14
Home limit switch on opposite side	LL	P14			

Common Specifications	* Refer to page 10 for the details of common specification items.
-----------------------	---

Positioning repeatability (Note 4)	±0.02mm [±0.01mm]
Drive system (Note 5)	Ball screw ø20mm, rolled C10 [equivalent to rolled C5]
Lost motion (Note 6)	0.05mm or less [0.02mm or less]
Guide	integrated with base
Allowable static moment	Refer to page 242
Allowable dynamic moment	Ma: 104.9N•m Mb: 149.9N•m Mc: 124.5N•m
Overhang load length	Ma direction: 750mm or less, Mb/Mc directions: 750mm or less
Base	Material: Aluminum, with white alumite treatment
Cable length (Note 7)	N: None, S: 3m, M: 5m, X□□: Specified length
Ambient operating temperature/humidity	0 to 40°C, 85%RH max. (non-condensing)

Dimensions, Weight and Maximum Speed by Stroke

			, U					,																
	Stroke	100	(150)	200	(250)	300	(350)	400	(450)	500	(550)	600	(650)	700	(750)	800	(850)	900	(950)	1000	(1050)	1100	(1150)	1200
	А	478	528	578	628	678	728	778	828	878	928	978	1028	1078	1128	1178	1228	1278	1328	1378	1428	1478	1528	1578
	В	338	388	438	488	538	588	638	688	738	788	838	888	938	988	1038	1088	1138	1188	1238	1288	1338	1388	1438
	С	100	150	200	250	300	350	400	450	500	550	600	650	700	750	800	850	900	950	1000	1050	1100	1150	1200
	D	0	0	1	1	1	1	2	2	2	2	3	3	3	3	4	4	4	4	5	5	5	5	6
We	eight (kg)	12.0	12.8	13.5	14.3	15.1	15.9	16.7	17.5	18.3	19.1	19.8	20.6	21.4	22.2	23.0	23.8	24.5	23.3	26.1	26.9	27.7	28.5	29.2
Maxim spe	Lead 40								20	00								1660	13	80	11	70	10	00
(mm	/s) Lead 20								10	00								830	6	90	58	35	50	0


Applicable Controller Specifications

/ ppnou		ner epeenneaner	10				
	Maximum number of controlled axes		Program operation	Positioner operation	Pulse-train control	Supply voltage	Page
X-SEL	4 axes	Absolute/incremental	0	Δ	×	AC100/200V	
E-Con	1 axis	Absolute/incremental	Х	0	×	AC100/200V	
P-Driver	1 axis	Incremental	Х	×	0	AC100/200V	

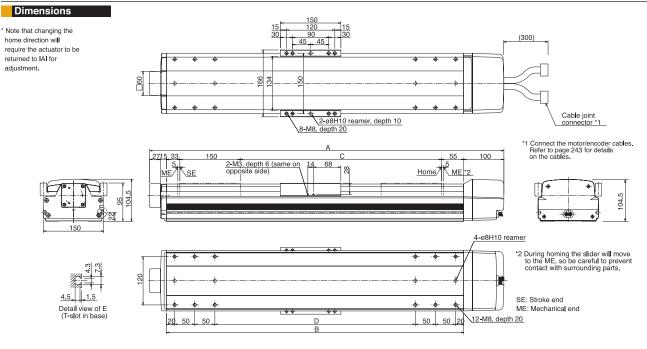
	(Note 1) The strokes that are set in increments of 50 mm are semi-standard settings.
	(Note 2) A longer stroke will result in a lower maximum speed to prevent the ball
	screw from reaching a dangerous speed. (Refer to the above table for the
	maximum speed at a given stroke.)
Caution	(Note 3) Refer to page 40 for the relationship of acceleration and load capacity.
Caution	(Notes 4, 5, 6) The figures in brackets apply to the ISPA Series.
	Other specification values apply to both the ISA and ISPA Series.
	(Note 7) The maximum cable length is 30 m. Specify the desired length in meters (e.g., X08 = 8 m).

Single-Axis Robots

Refer to page 9 for other points to note.

Models/Specifications

		Motor		Stroke (mm)	Speed	Acceleratio	on (Note	3)	Load capacity (Note 3)			
Model	Encoder type	output	Lead (mm)	In increments of 50mm	(Note 2)	Horizontal (G)	Vertic	al (G)	Horizontal (kg)	Vertic	al (kg)	Rated thrust (N)
		(W)	()	(Note 1)	(mm/s)	Rated Maximum	Rated	Maximum	Rated Maximum acceleration	Rated acceleration	Maximum acceleration	(-7
ISA [ISPA] -LZM-A-200-10- * * * -T1-△-B-□	Absolute	200	10	100 ~ 1200	1 ~ 500	Vertical application	0.3	0.5	Vertical application	19	14	340.1
ISA [ISPA] -LZM-I-200-10- * * * -T1-△-B-□	Incremental	200	10	100~1200	1 ~ 500	only	0.3	0.5	only	19	14	340.1


* In the above model names, *** indicates the stroke, riangle the cable length and \Box the applicable options.

*1.0G=9800mm/sec

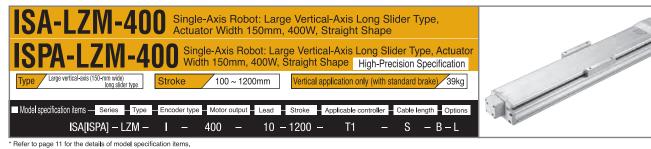
Options Name Code Page Name Code Page AQ seal AQ P13 Master-axis designation LM P14 В P13 P14 Brake Master-axis designation (sensor on opposite side) LLM Creep sensor С P13 P14 Reverse homing specification NM Creep sensor on opposite side CL P13 Guide with ball-retaining mechanism RT P14 Home limit switch L P14 Slave-axis designation S P14 Home limit switch on opposite side LL P14 * The MZM type comes standard with a brake (B).

Common Specifications * Refer to page 10 for the details of common specification items.

Positioning repeatability (Note 4)	±0.02mm [±0.01mm]						
Drive system (Note 5)	Ball screw ø16mm, rolled C10 [equivalent to rolled C5]						
Lost motion (Note 6)	0.05mm or less [0.02mm or less]						
Guide	integrated with base						
Allowable static moment	Refer to page 242						
Allowable dynamic moment	Ma: 104.9N•m Mb: 149.9N•m Mc: 124.5N•m						
Brake	Comes standard with a dry, single-plate, non-excitation type electromagnetic brake						
Base	Material: Aluminum, with white alumite treatment						
Cable length (Note 7)	N: None, S: 3m, M: 5m, XDD: Specified length						
Ambient operating temperature/humidity	0 to 40°C, 85%RH max. (non-condensing)						

Dimensions, Weight and Maximum Speed by Stroke

Stroke	100	(150)	200	(250)	300	(350)	400	(450)	500	(550)	600	700	800	900	1000	1100	1200
А	480	530	580	630	680	730	780	830	880	930	980						
В	338	388	438	488	538	588	638	688	738	788	838	Use the base	of the LXM type	e for 700 and l o	nger strokes.		
С	100	150	200	250	300	350	400	450	500	550	600	Refer to the d	rawing on page	25 for the mou	inting dimensio	ns.	
D	98	148	198	248	298	348	398	448	498	548	598	7					
Weight (kg)	12.4	13.2	13.9	14.7	15.5	16.3	17.1	17.9	18.7	19.5	20.2	21.8	23.4	24.9	26.5	28.1	29.6
taximum speed (mm/s)						500						500	470	385	320	270	235


Applicable Controller Specifications

Applica		ner opecification	15				
	Maximum number of controlled axes		Program operation	Positioner operation	Pulse-train control	Supply voltage	Page
X-SEL	4 axes	Absolute/incremental	0	Δ	×	AC100/200V	
E-Con	1 axis	Absolute/incremental	Х	0	×	AC100/200V	
P-Driver	1 axis	Incremental	×	×	0	AC100/200V	

* The LZM type comes standard with a brake, so use a controller of brake specification.

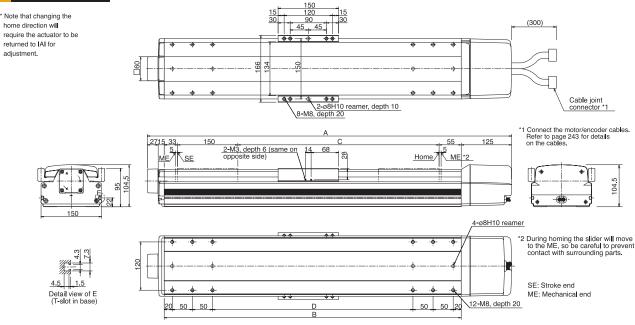
	 (Note 1) The strokes that are set in increments of 50 mm are semi-standard settings. (Note 2) A longer stroke will result in a lower maximum speed to prevent the ball screw from reaching a dangerous speed. (Refer to the above table for the maximum speed at a given stroke.) (Note 3) Refer to page 40 for the relationship of acceleration and load capacity. (Notes 4, 5, 6) The figures in brackets apply to the ISPA Series. (Note 7) The maximum able load in its 30. Saceful the desired learly in meters (e.g., 008 = 8 m).
	(Note 7) The maximum cable length is 30 m. Specify the desired length in meters (e.g., X08 = 8 m).

* Refer to page 9 for other points to note.

Models/Specifications

		Motor		Stroke (mm)	Speed	Acceleratio	on (Note	e 3)	Load capacity (Note 3)			Rated thrust (N)
Model	Encoder type	output	Lead (mm)	In increments of 50mm (Note 1)	(Note 2)	Horizontal (G)	G) Vertical (G)		Horizontal (kg)	Vertical (kg)		
		(W)				Rated Maximum	Rated	Maximum	Rated Maximum acceleration	Rated acceleration	Maximum acceleration	((*)
ISA [ISPA] -LZM-A-400-10- * * * -T1-△-B-□	Absolute	400	10	100 1000	1 ~ 500	Vertical	0.3	0.5	Vertical	39	28	680.2
ISA [ISPA] -LZM-I-400-10- * * * -T1-△-B-□	Incremental	400	10	100 ~ 1200	1 ~ 500	application only	0.3	0.5	application only	39	28	680.2
* In the above model names *** indicates the stroke. \land the cable length and \Box the applicable options. *1.0G =9800mm/sec ²												

* In the above model names, *** indicates the stroke, \triangle the cable length and \Box the applicable options.


Options

Name	Code	Page	Name	Code	Page
AQ seal	AQ	P13	Master-axis designation	LM	P14
Brake	В	P13	Master-axis designation (sensor on opposite side)	LLM	P14
Creep sensor	С	P13	Reverse homing specification	NM	P14
Creep sensor on opposite side	CL	P13	Guide with ball-retaining mechanism	RT	P14
Home limit switch	L	P14	Slave-axis designation	S	P14
Home limit switch on opposite side	LL	P14			

Common Specifications * Refer to page 10 for the details of common specification items.

±0.02mm [±0.01mm]
Ball screw ø20mm, rolled C10 [equivalent to rolled C5]
0.05mm or less [0.02mm or less]
integrated with base
Refer to page 242
Ma: 104.9N•m Mb: 149.9N•m Mc: 124.5N•m
Comes standard with a dry, single-plate, non-excitation type electromagnetic brake
Material: Aluminum, with white alumite treatment
N: None, S: 3m, M: 5m, XDD: Specified length
0 to 40°C, 85%RH max. (non-condensing)

Dimensions

Dimensions, Weight and Maximum Speed by Stroke

Stroke	100	(150)	200	(250)	300	(350)	400	(450)	500	(550)	600	700	800	900	1000	1100	1200
А	505	555	605	655	705	755	805	855	905	955	1005						
В	338	388	438	488	538	588	638	688	738	788	838	Use the base of the LXM type for 700 and longer strokes.					
С	100	150	200	250	300	350	400	450	500	550	600	Refer to the drawing on page 26 for the mounting dimensions.					
D	98	148	198	248	298	348	398	448	498	548	598	1					
Weight (kg)	12.4	13.2	13.9	14.7	15.5	16.3	17.1	17.9	18.7	19.5	20.2	21.8	23.4	24.9	26.5	28.1	29.6
Maximum speed (mm/s)						500						500 470 385 320 270 235					235

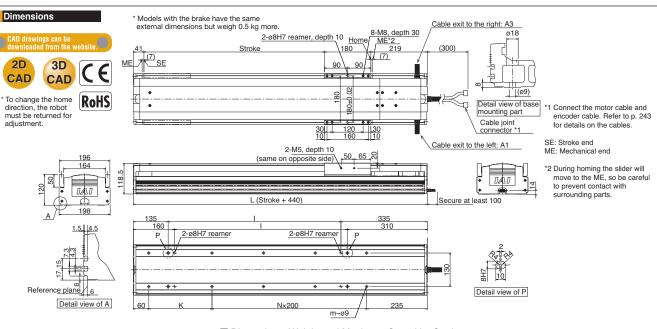
Applica	Applicable Controller Specifications												
Applicable controller	Maximum number of controlled axes	Compatible encoder type	Program operation	Positioner operation	Pulse-train control	Supply voltage	Page						
X-SEL	4 axes	Absolute/incremental	0		×	AC100/200V							
E-Con	1 axis	Absolute/incremental	Х	0	×	AC100/200V							
P-Driver	1 axis	Incremental	×	×	0	AC100/200V							

(Note 1) The strokes that are set in increments of 50 mm are semi-standard settings, (Note 2) A longer stroke will result in a lower maximum speed to prevent the ball screw from reaching a dangerous speed. (Refer to the above table for the ⚠ (Note 3) Refer to page 40 for the relationship of acceleration and load capacity. (Note 3), Refer to page 40 for the relationship of acceleration and load capacity. (Notes 4, 5, 6) The figures in brackets apply to the ISPA Series. Other specification values apply to both the ISA and ISPA Series. Caution (Note 7) The maximum cable length is 30 m. Specify the desired length in meters (e.g., X08 = 8 m).

* Refer to page 9 for other points to note.

ISA-WXIN-600 Single-Axis Robot: Super-Large X-Axis Type, Actuator Width 198mm, 600W. Straight Shape	
ISPA-WXM-6000 Single-Axis Robot: Super-Large X-Axis Type, Actuator Width 198mm, 600W. Straight Shape High-Precision Specification	
■ Model specification → WXM → → 600 → → → → → → → → → → → → → → → →	
ISA: Standard A:Absolute 600:600W 40:40mm 100:100mm T1:XSEL-J/K N:None Refer to Specification I :Incremental 20:20mm ≥ T2:SCON S:3 m the option ISPA: High-Precision Specification (every 100mm) XSEL M:5 m list below. Specification	
* Refer to page 11 for the details of model specification items.	

Models/Specifications * 1.0G=9800mm/sec ²														
						Acceleration (Note 2)				Load capacity (Note 2)				
	Encoder type	Motor output (W)	Lead	Stroke(mm)	Speed	Horizontal (G)		Vertical (G)		Horizontal (G)		Vertical (G)		Rated
Model			(mm)	In increments of 100mm	1	Rated	Maximum	Rated	Maximum	Rated acceleration	Maximum acceleration	Rated acceleration	Maximum acceleration	thrust (N)
ISA[ISPA]-WXM-①-600-40-②-③-④-L-⑤			40		1 ~ 2400	0.3	1.0	0.3	1.0	60	18	14	5	255
ISA[ISPA]-WXM-①-600-20-②-③-④-L-⑤	Absolute Incremental	600	20	100 ~ 1300	1 ~ 1200	0.3	1.0	0.3	0.8	120	36	29	15	510
ISA[ISPA]-WXM-①-600-10-②-③-④-L-⑤			10		1 ~ 600	0.3	0.6	0.3	05	150	75	60	40	1020


* In the above model names, 1) indicates the encoder type, 2 stroke, 3 applicable controller, 4 cable length and 5 options.

Options					
Name	Code	Page	Name	Code	Page
AQ seal	AQ	→P13	Master-axis designation	LM	→P14
Brake	В	→P13	Reverse homing specification	NM	→P14
Creep sensor	С	→P13	Slave-axis designation	S	→P14
Home limit switch	L	→P14	Optional cable exit direction	A1/A3	Refer to the figure below

Common Specifications

Positioning repeatability (Note 3)	± 0.02 mm [± 0.01 mm]
Drive system (Note 4)	Ball screw ø20 mm, rolled C10 [equivalent to C5]
Lost motion (Note 5)	0.05 mm or less [0.02 mm or less]
Allowable static moment	Refer to page 242
Allowable dynamic moment (Note 6)	Ma: 139.2 N • m Mb: 199.9 N • m Mc: 391 N • m
Overhang load length	Ma direction: 900 mm or less, Mb/Mc directions: 900 mm or less
Base	Material: Aluminum with white alumite treatment
Applicable controller	T1: XSEL-J/K T2: XSEL-P/Q, SSEL, SCON
Cable length (Note 7)	N: No cable, S: 3 m, M: 5 m, X□□: Length specification
Ambient operating temperature •	0 to 40°C, 85% RH or less (Non-condensing)

 * With the WXM type, the home limit switch (L) is a standard equipment.

Dimensions, Weight and Maximum Speed by Stroke

	Stroke	100	200	300	400	500	600	700	800	900	1000	1100	1200	1300
	L	540	640	740	840	940	1040	1140	1240	1340	1440	1540	1640	1740
	I	70	170	270	370	470	570	670	770	870	970	1070	1170	1270
	K	245	145	245	145	245	145	245	145	245	145	245	145	245
	N	-	1	1	2	2	3	3	4	4	5	5	6	6
	m	4	6	6	8	8	10	10	12	12	14	14	16	16
	Weight (kg)	18.1	20.1	22.1	24.1	26.1	28.0	30.0	32.0	34.0	35.9	37.9	39.9	41.9
Maximum speed (mm/s)	Lead 40		2400						1840	1530	1290	1100	950	
* Varies depending on		12	00				920	765	645	550	475			
the stroke.	Lead 10				60	00				460	380	320	270	235

Applicable Controller Specifications

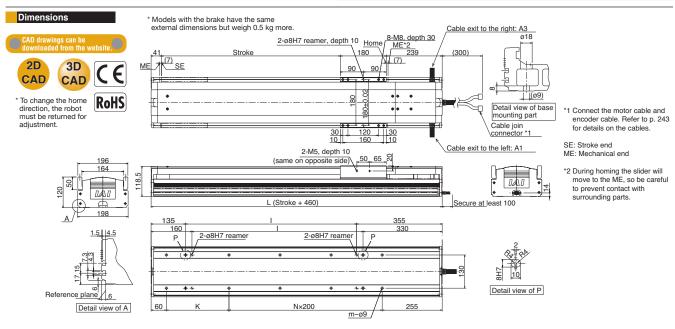
Applicable controller	Maximum number of controlled axes		Operating method	Supply voltage	Page		(Note 1)	A longer stroke will result in a lower maximum speed to prevent the ball screw from reaching a dangerous speed. (Refer to the
X-SEL-P/Q	6 axes			Single phase/ Three-phase 200VAC			(Note 2)	above table for the maximum speed at a given stroke.) Refer to page 40 for the relationship of acceleration and payload.
X-SEL-K	4 axes]	Program	Single phase AC 100/200V			(Note 3,4,5	5) The figures in brackets apply to the ISPA Series. Other
X-SEL-J (Note 8)	4 axes	Absolute/ Incremental				Caution	(Note 6)	specification values apply to both the ISA and ISPA Series Traveling life of 10.000 km is assumed.
SSEL	2 axes			Single phase AC 200V		Caution	(Note 7)	The maximum cable length is 30 m. Specify the desired length in
SCON	1 axis		Positioner pulse train control				(Note 8)	meters (e.g. X08 = 8 m) If the WXM type is to be used vertically, use a controller other than the XECT L time
* The WXM type comes wit	th the home limit switch	as a standard equ	inment so use a cor	atroller of limit switch specification	for this type			the XSEL-J type.

35 ISPA/ICSPA Catalog

ISA-WXM-750	Single-Axis Robot: Super-Large X-Axis Type, Actuator Width 198mm, 750W. Straight Shape
ISPA-WXM-75	Single-Axis Robot: Super-Large X-Axis Type, Actuator Width198mm, 750W. Straight ShapeHigh-Precision Specification
■ Model specification WXM items Series Type Encoder to ISA: Standard A:Absolut Specification I:Increme ISPA: High-Precision Specification	

* Refer to page 11 for the details of model specification items.

	Models/Specifications						,	1.0G=980	00mm/s	ec ²					
			Motor output (W)				Acceleration (Note 2)								
	Model	Encoder		Lead	Stroke(mm)	Speed	Horizontal (G)		Vertical (G)		Horizontal (G)		Vertical (G)		Rated
		type		(mm)	In increments of 100mm	(Note1) (mm/s)	Rated	Maximum	Rated	Maximum	Rated acceleration	Maximum acceleration	Rated acceleration	Maximum acceleration	(N)
	ISA[ISPA]-WXM-①-750-50-②-③-④-L-⑤	Absolute	750	50	50 100 ~ 1300	1 ~ 2000	0.3	1.0	0.3	1.0	60	18	14	5	255
	ISA[ISPA]-WXM-①-750-25-②-③-④-L-⑤	Incremental 750	25	100.3 1000	1 ~ 1250	0.3	1.0	0.3	0.8	120	36	29	15	510	


* In the above model names, ① indicates the encoder type, ② stroke, ③ applicable controller, ④ cable length and ⑤ options.

Options					
Name	Code	Page	Name	Code	Page
AQ seal	AQ	→P13	Master-axis designation	LM	→P14
Brake	В	→P13	Reverse homing specification	NM	→P14
Creep sensor	С	→P13	Slave-axis designation	S	→P14
Home limit switch	L	→P14	Optional cable exit direction	A1/A3	Refer to the figure below

* With the WXM type, the home limit switch (L) is a standard equipment.

Common Specifications

Positioning repeatability (Note 3)	± 0.02 mm [± 0.01 mm]
Drive system (Note 4)	Ball screw ø25 mm, rolled C10 [equivalent to C5]
Lost motion (Note 5)	0.05 mm or less [0.02 mm or less]
Allowable static moment	Refer to page 242
Allowable dynamic moment (Note 6)	Ma: 139.2 N • m Mb: 199.9 N • m Mc: 391 N • m
Overhang load length	Ma direction: 900 mm or less, Mb/Mc directions: 900 mm or less
Base	Material: Aluminum with white alumite treatment
Applicable controller	T1: XSEL-J/K T2: XSEL-P/Q, SSEL, SCON
Cable length (Note 7)	N: No cable, S: 3 m, M: 5 m, X□□: Length specification
Ambient operating temperature • humidity	0 to 40°C, 85% RH or less (Non-condensing)

Dimensions, Weight and Maximum Spe	eed by Stroke
------------------------------------	---------------

	Stroke	100	200	300	400	500	600	700	800	900	1000	1100	1200	1300
	L	560	660	760	860	960	1060	1160	1260	1360	1460	1560	1660	1760
	I	70	170	270	370	470	570	670	770	870	970	1070	1170	1270
	K	245	145	245	145	245	145	245	145	245	145	245	145	245
	N	-	1	1	2	2	3	3	4	4	5	5	6	6
	m	4	6	6	8	8	10	10	12	12	14	14	16	16
	Weight (kg)	20.9	22.9	24.9	26.9	28.9	30.8	32.8	34.8	36.8	38.7	40.7	42.7	44.7
Maximum speed (mm/s)	Lead 50	2000										1840	1570	1360
* Varies depending on the stroke.	Lead 25	1250 109								1090	920	785	680	

Applicable Controller Specifications

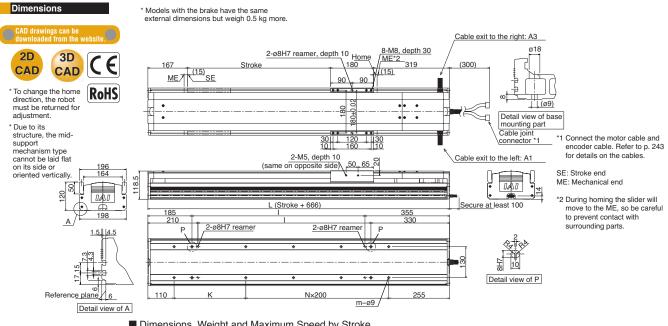
	Maximum number of controlled axes		Operating method	Supply voltage	Page		(Note 1) A longer stroke will result in a lower maximum speed to prevent the ball screw from reaching a dangerous speed. (Refer to the
X-SEL-P/Q	6 axes		Program	Single phase/ Three-phase 200VAC			above table for the maximum speed at a given stroke.) (Note 2) Refer to page 40 for the relationship of acceleration and payload.
X-SEL-K	4 axes]		Single phase AC 100/200V			(Note 3,4,5) The figures in brackets apply to the ISPA Series. Other
X-SEL-J (Note 8)	4 axes	Absolute/ Incremental				Caution	(Note 6) Specification values apply to both the ISA and ISPA Series (Note 6) Traveling life of 10,000 km is assumed.
SSEL	2 axes			Single phase AC 200V		Gaution	(Note 7) The maximum cable length is 30 m. Specify the desired length in
SCON	1 axis		Positioner pulse train control				meters (e.g. X08 = 8 m) (Note 8) If the WXM type is to be used vertically, use a controller other than the XSEL-J type.

* The WXM type comes with the home limit switch as a standard equipment, so use a controller of limit switch specification for this type.

ISA-WXIX-600 Single-Axis Robot: Super-Large X-Axis Mid-suppor Actuator Width 198mm, 600W. Straight Shape	rt Mechanism Type,
ISPA-WXIX-600 Single-Axis Robot: Super-Large X-Axis Mid-suppor Actuator Width 198mm, 600W. Straight Shape High-Pre	rt Mechanism Type, ecision Specification
ISA: Standard A:Absolute 600:600W 40:40mm 900:900mm T1:XSEL-J/K	Cable length Options N:None Refer to
ISPA: High-Precision 2500:2500mm SSEL Specification (every 100mm) XSEL-P/Q	S:3 m the option M:5 m list below. X□: Length specification

* Refer to page 11 for the details of model specification items.

Models/Specifications *1.0G=9800mm/sec ²												
						Acceleratio	on (Note 2)	Load capac				
	Encoder	Motor output (W)	Lead (mm)	Stroke(mm) In increments of 100mm	2	Horizontal (G)	Vertical (G)	Horizontal (G)	Vertical (G)	Rated		
Model	type					Rated Maximum	Rated Maximum	Rated Maximum acceleration	Rated Maximum acceleration	thrust (N)		
ISA[ISPA]-WXMX-①-600-40-②-③-④-L-⑤	Absolute	Absolute	Absolute	600	40	900 ~ 2500	1 ~ 2400	0.3	Used only	60	Used only	255
ISA[ISPA]-WXMX-①-600-20-②-③-④-L-⑤	Incremental	1 000	20	300~2300	1 ~ 1200	0.3	horizontally	120	horizontally	510		


* In the above model names, 🗊 indicates the encoder type, 🗵 stroke, 🗟 applicable controller, 🗟 cable length and 🗟 options.

Options					
Name	Code	Page	Name	Code	Page
AQ seal	AQ	→P13	Master-axis designation	LM	→P14
Brake	В	→P13	Reverse homing specification	NM	→P14
Creep sensor	С	→P13	Slave-axis designation	S	→P14
Home limit switch	L	→P14	Optional cable exit direction	A1/A3	Refer to the figure below

* With the WXMX type, the home limit switch (L) is a standard equipment.

Common Specifications

Positioning repeatability (Note 3)	± 0.02 mm [± 0.01 mm]
Drive system (Note 4)	Ball screw ø20 mm, rolled C10 [equivalent to C5]
Lost motion (Note 5)	0.05 mm or less [0.02 mm or less]
Allowable static moment	Refer to page 242
Allowable dynamic moment (Note 6)	Ma: 139.2 N • m Mb: 199.9 N • m Mc: 391 N • m
Overhang load length	Ma direction: 900 mm or less, Mb/Mc directions: 900 mm or less
Base	Material: Aluminum with white alumite treatment
Applicable controller	T1: XSEL-J/K T2: XSEL-P/Q, SSEL, SCON
Cable length (Note 7)	N: No cable, S: 3 m, M: 5 m, XDD: Length specification
Ambient operating temperature • humidity	0 to 40°C, 85% RH or less (Non-condensing)

	Stroke	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	2400	2500
	L	1566	1666	1766	1866	1966	2066	2166	2266	2366	2466	2566	2666	2766	2866	2966	3066	3166
	I	1026	1126	1226	1326	1426	1526	1626	1726	1826	1926	2026	2126	2226	2326	2426	2526	2626
	K	201	301	201	301	201	301	201	301	201	301	201	301	201	301	201	301	201
	N	5	5	6	6	7	7	8	8	9	9	10	10	11	11	12	12	13
	m	14	14	16	16	18	18	20	20	22	22	24	24	26	26	28	28	30
	Weight (kg)	38.6	40.6	42.6	44.6	46.6	48.5	50.5	52.5	54.5	56.5	58.4	60.4	62.4	64.4	66.3	68.3	70.3
mum speed (mm/s)	Lead 40		24	00		2200	1965	1725	1530	1365	1225	1110	1005	915	840	770	710	655
ies depending on the stroke.	Lead 20		12	00		1100	980	860	765	680	610	555	500	455	420	385	355	325

Applicable Controller Specifications

Applicable controller	Maximum number of controlled axes	Compatible encoder type	Operating method	Supply voltage	Page		(Note 1) A longer stroke will result in a lower maximum speed to prevent the ball screw from reaching a dangerous speed. (Refer to the
X-SEL-P/Q	6 axes			Single phase/ Three-phase 200VAC			above table for the maximum speed at a given stroke.) (Note 2) The maximum acceleration is 0.3 G. (Note 3,4,5) The figures in brackets apply to the ISPA Series. Other
X-SEL-K	4 axes		Program	ogram Single phase AC 100/200V		Caution	specification values apply to both the ISA and ISPA Series
X-SEL-J	4 axes	Absolute/ Incremental				Gaution	(Note 6) Traveling life of 10,000 km is assumed.
SSEL	2 axes			Single phase AC 200V			(Note 7) The maximum cable length is 30 m. Specify the desired length in meters (e.g. X08 = 8 m)
SCON	1 axis		Positioner pulse train control	- <u>3</u> - p			

* The WXMX type comes with the home limit switch as a standard equipment, so use a controller of limit switch specification for this type.

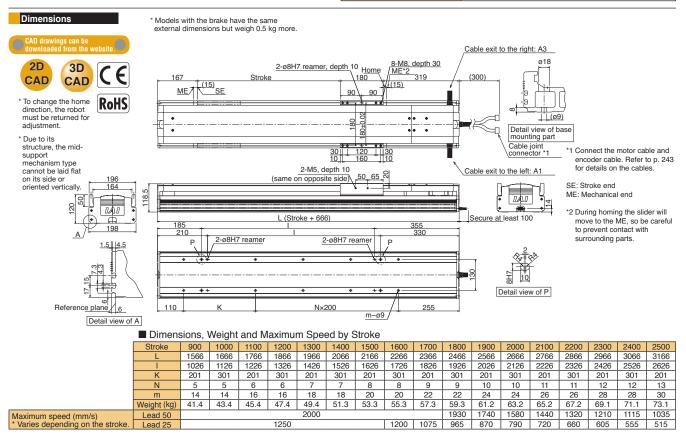
Maxim * Varie

ISA-WXMX-7	750 Single-Axis Robot: Actuator Width 198	Super-Large X-Axis Mid-suppo mm, 750W. Straight Shape	ort Mechanism Type,
ISPA-WXMX ·	-750 Single-Axis Robot Actuator Width 198m	: Super-Large X-Axis Mid-suppo m, 750W. Straight Shape High-Pr	ort Mechanism Type, recision Specification
ISA: Standard A	- 750 - Constant - 750 - Constant - 750 - Constant - 750.750W Solute 750.750W 50:50mm Sincremental 25:25mm	Stroke Applicable controller 900:900mm T1:XSEL-J/K ∠ T2:SCON 2500:2500mm SSEL (every 100mm) XSEL-P/Q	Cable length Options N:None Refer to S:3 m the option M:5 m list below. X□□: Length specification

* Refer to page 11 for the details of model specification items.

Models/Specifications

Models/Specifications						* 1.0G=980	00mm/sec ²			
						Acceleratio	on (Note 2)	Load capac	city (Note 2)	
	Encoder	Motor	Lead	Stroke(mm)	Speed	Horizontal (G)	Vertical (G)	Horizontal (G)	Vertical (G)	Rated
Model	type	output (W)	(mm)	In increments of 100mm		Rated	Rated Maximum	Rated Maximum acceleration	Rated Maximum acceleration	thrust (N)
ISA[ISPA]-WXMX-①-750-50-②-③-④-L-⑤	Absolute	750	50	900 ~ 2500	1 ~ 2000	0.3	Used only	60	Used only	255
ISA[ISPA]-WXMX-①-750-25-②-③-④-L-⑤	Incremental	750	25	900~2300	1 ~ 1250	0.3	horizontally	120	horizontally	510


* In the above model names, 🗊 indicates the encoder type, 😰 stroke, 🗟 applicable controller, 🗟 cable length and 🗟 options.

Options					
Name	Code	Page	Name	Code	Page
AQ seal	AQ	→P13	Master-axis designation	LM	→P14
Brake	В	→P13	Reverse homing specification	NM	→P14
Creep sensor	С	→P13	Slave-axis designation	S	→P14
Home limit switch	L	→P14	Optional cable exit direction	A1/A3	Refer to the figure below

* With the WXMX type, the home limit switch (L) is a standard equipment.

Common Specifications

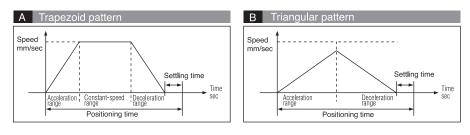
ooninion opeemeations	
Positioning repeatability (Note 3)	± 0.02 mm [± 0.01 mm]
Drive system (Note 4)	Ball screw ø25 mm, rolled C10 [equivalent to C5]
Lost motion (Note 5)	0.05 mm or less [0.02 mm or less]
Allowable static moment	Refer to page 242
Allowable dynamic moment (Note 6)	Ma: 139.2 N • m Mb: 199.9 N • m Mc: 391 N • m
Overhang load length	Ma direction: 900 mm or less, Mb/Mc directions: 900 mm or less
Base	Material: Aluminum with white alumite treatment
Applicable controller	T1: XSEL-J/K T2: XSEL-P/Q, SSEL, SCON
Cable length (Note 7)	N: No cable, S: 3 m, M: 5 m, X C: Length specification
Ambient operating temperature • humidity	0 to 40°C, 85% RH or less (Non-condensing)

Applicable Controller Specifications

Applicable controller	Maximum number of controlled axes	Compatible encoder type	Operating method	Supply voltage	Page	
X-SEL-P/Q	6 axes			Single phase/ Three-phase 200VAC		
X-SEL-K	4 axes]	Program	Single phase AC 100/200V		Caution
X-SEL-J	4 axes	Absolute/ Incremental				Caution
SSEL	2 axes			Single phase AC 200V		
SCON	1 axis		Positioner pulse train control	g p		

(Note 1) A longer stroke will result in a lower maximum speed to prevent the ball screw from reaching a dangerous speed. (Refer to the above table for the maximum speed at a given stroke.)	
(Note 2) The maximum acceleration is 0.3 G. (Note 3,4,5) The figures in brackets apply to the ISPA Series. Other	
and if a the university of the bath the IOA and IODA Option	

(Note 6) specification values apply to both the ISA and ISPA Series (Note 6) Traveling life of 10,000 km is assumed. (Note 7) The maximum cable length is 30 m. Specify the desired length in meters (e.g. X08 = 8 m)


* The WXMX type comes with the home limit switch as a standard equipment, so use a controller of limit switch specification for this type.

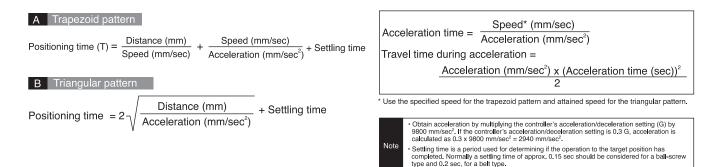
Technical Information

How to Calculate Positioning Time

Positioning time of the actuator can be calculated.

The following two operation patterns are applicable depending on the travel distance and acceleration/deceleration condition.

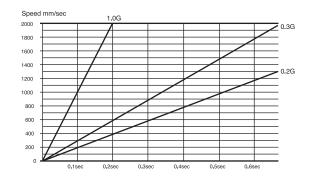
First, check whether the operation in question conforms to the trapezoid pattern or triangular pattern and then calculate positioning time using the applicable equation.


How to Determine Operation Pattern

How to Calculate Positioning Time

Whether an operation conforms to the trapezoid pattern or triangular pattern can be determined by identifying if the attained speed is higher or lower than the specified speed when the actuator is operated over the target travel distance at the specified acceleration.

Attained speed (Vmax)	=	$\sqrt{\text{Travel distance (Smm) x Specified acceleration}}$
(VIIIdA)	=	$\sqrt{\text{Smm x 9,800mm/sec}^2 \text{ x Acceleration setting (G)}}$


One of the following two results will be obtained: Specified speed (V) < Attained speed (Vmax) ----- Trapezoid pattern Specified speed (V) > Attained speed (Vmax) ----- Triangular pattern

Positioning Time

Specified										Tra	vel di	stance	e (mm	I)						
accele- ration	Specified speed	10	20	30	40	50	100	150	200	250	300	350	400	450	500	600	1000	1100	1300	1400
	100	0,13	0,23	0,33	0,43	0,53	1,03	1,53	2,03	2,53	3,03	3,53	4.03	4,53	5,03	6.03	10,03	11.03	13.03	14.03
	200	0.12	0.17	0,22	0.27	0,32	0.57	0.82	1.07	1.32	1.57	1.82	2.07	2,32	2.57	3.07	5.07	5.57	6.57	7.07
	300	0.12	0.16	0.2	0.24	0.27	0.44	0.6	0.77	0.94	1.1	1.27	1.44	1.6	1.77	2.1	3.44	3.77	4.44	4.77
	400	0.12	0.16	0.2	0.23	0.26	0.39	0.51	0.64	0.76	0.89	1.01	1.14	1.26	1.39	1.64	2.64	2.89	3.39	3.64
	500	0.12	0.16	0.2	0.23	0.26	0.37	0.47	0.57	0.67	0.77	0.87	0.97	1.07	1.17	1.37	2.17	2.37	2.77	2.97
0.3G	600	0.12	0.16	0.2	0.23	0.26	0.37	0.45	0.54	0.62	0.7	0.79	0.87	0.95	1.04	1.2	1.87	2.04	2.37	2.54
0.50	700	0,12	0,16	0.2	0,23	0,26	0,37	0.45	0,52	0.6	0,67	0,74	0.81	0,88	0.95	1,1	1,67	1,81	2,1	2,24
	800	0.12	0.16	0.2	0.23	0.26	0.37	0.45	0.52	0.58	0.65	0.71	0.77	0.83	0.9	1.02	1.52	1.65	1.9	2.02
	900	0.12	0.16	0.2	0.23	0.26	0.37	0.45	0.52	0.58	0.64	0.7	0.75	0.81	0.86	0.97	1.42	1.53	1.75	1.86
	1000	0.12	0.16	0.2	0.23	0.26	0.37	0.45	0.52	0.58	0.64	0.69	0.74	0.79	0.84	0.94	1.34	1.44	1.64	1.74
	1750	0.12	0.16	0.2	0.23	0.26	0.37	0.45	0.52	0.58	0.64	0.69	0.74	0.78	0.82	0.9	1.17	1.37	1.56	1.65
	2000	0.12	0.16	0.2	0.23	0.26	0.37	0.45	0.52	0.58	0.64	0.69	0.74	0.78	0.82	0.9	1.17	1.22	1.33	1.48

Acceleration Time

ISA/ISPA Series Table of Load Capacity by Acceleration Condition

Caution 1. The load capacity values shown below are provided for reference purposes only. They are not guaranteed and must therefore be used only as guidelines.

2. Even when the acceleration is below the rated acceleration, the load capacity will not increase beyond the load capacity at the rated acceleration.

3. Use models other than those in the ISA/ISPA Series at accelerations below their rated acceleration

me	Motor	Lead	Maximum	Rated	Load ca		Maximum			Loa	ad capacity at	each accelerat	tion (kg)		
Гуре	output (W)	(mm)	speed (mm/sec)	acceleration (G)	at rated ad (k		acceleration (G)	0.3G	0.4G	0.5G	0.6G	0.7G	0.8G	0.9G	1.0G
					Horizontal	12	1.0	12	9	7	6	5	4.5	4	3.5
		16	800	0.3	Vertical	3	0.7	3	2.5	2.3	2.1	2			-
SXM		0	400		Horizontal	25	0.6	25	18.5	15	12	-	-	-	-
SYM	60	8	400	0.3	Vertical	6	0.5	6	5.5	5				-	-
SXM SYM SZM MXM MYM MZM MXMX MXMX LXM LXM LXM LXM LXM LXM	60	4	200	0.15	Horizontal	50	0.5	50	37.5	30			-	_	-
		4	200	0.10	Vertical	14	0.3	12	-	-	-	-	-	-	_
57M		8	400	0.3	Vertical	6	0.3	6	5.5	5	-	-	-	-	_
52141		4	200	0.15	Vertical	14	0.3	12	-	_	-	-	-	-	-
		20	1000	0.3	Horizontal	20	1.0	20	15	12	10	8.5	7.5	6.5	6
					Vertical	3.5	0.8	3.5	3.2	2.9	2.7	2.4	2	-	-
1XM		10	500	0.3	Horizontal	40	0.6	40	30	24	20	-			
1YM	100				Vertical	9	0.5	9	7.6	7	-	-	-	-	-
		5	250	0.15	Horizontal	80	0.5	80	60	45	-	-			
	4				Vertical	19	0.3	15	-	-	-	-	-	-	-
1ZM		10	500	0.3	Vertical	9	0.5	9	7.6	7	-	-	-	-	-
		5	250	0.15	Vertical	19	0.3	15	-	-		-	-	-	-
		30	1500	0.3	Horizontal	25	1.0	25	20	17	15	13.5	12		10
хм				——	Vertical	6	1.0	6	4.7	4.3	3.9	3.6	3.4		2
		20	1000	0.3	Horizontal	40 9	1.0	40 9	30	24	20	17 6	15		12
IYM	200			<u> </u>	Vertical Horizontal	80	0.8 0.6	9 80	7.6 60	48.5	6.5 40	6	5		_
	200	10	500	0.3	Vertical	19	0.6	19	16.3	40.5 		+			
1714	-	10	500	0.3	Vertical	19	0.5	19	16.3	15	_	_	_		_
	-	30	1500	0.3	Horizontal	25	0.3	25	-	-	_	_	_		_
ХМХ		20	1000	0.3	Horizontal	40	0.3	40	_	_	_	_	_		_
					Horizontal	40	1.0	40	30	24	20	17	15		12
ХМ		20	1000	0.3	Vertical	9	0.8	9	6.6	6	5.5	5	4		
	200				Horizontal	80	0.6	80	60	48.5	40	-	_	_	_
_ 1 IVI		10	500	0.3	Vertical	19	0.5	19	15.3	14	1				
.ZM		10	500	0.3	Vertical	19	0.5	19	15.3	14	-	-	-	-	-
					Horizontal	40	1.0	40	30	25	22	20	18	16.5	15
XM		40	2000	0.3	Vertical	9	1.0	9	6.6	6	5.5	5	4.6	4.3	4
_YM	400	00	1000		Horizontal	80	1.0	80	60.5	48.5	40.5	34.5	30	27	24
		20	1000	0.3	Vertical	19	0.8	19	15.3	14.1	13.1	12.2	10	-	_
.ZM		10	500	0.3	Vertical	39	0.5	39	32.6	28	-	-	-	-	-
	200	20	1000	0.3	Horizontal	40	0.3	40	-	-	-	-	-	-	-
XMX	400	40	2000	0.3	Horizontal	40	0.3	40	-	-	-	-	-	-	-
	+00	20	1000	0.3	Horizontal	80	0.3	80	-	_	-	-	-		_
	200	20	1000	0.3	Horizontal	40	0.3	40	-	-	-	-	-	-	-
UWX	400	40	2000	0.3	Horizontal	40	0.3	40	-	_	-	-	-	-	-
		20	1000	0.3	Horizontal	80	0.3	80	-	-	-	-	-		-
		40	2000	0.3	Horizontal	60	1.0	60	45	36	30	26	22		18
					Vertical	14	1.0	14	9	8.1	7.4	6.7	6.1		5
	600	20	1000	0.3	Horizontal	120	1.0	120	91	72	60	52	45	40	36
		-			Vertical	29	0.8	29	22	20.3	18.8	17.4	15		-
/XM		10	500	0.3	Horizontal	150	0.6	150	112	90	75	-	-		
		-			Vertical	60	0.5	60	48	40	-	-	-		_
		40	2000	0.3	Horizontal	75	1.0	75	56	45	37	32	28		22
	750		-		Vertical	18	1.0	18	12.3	11.2	10.2	9.4	8.6		7
		20	1000	0.3	Horizontal	150	1.0	150	113	91	75	65	56		45
					Vertical	37	0.8	37	28.5	26.3	24.4	22.8	20	-	_
	600	40	2000	0.3	Horizontal	60	0.3	60	-	_	-	-	_		-
кмх		20	1000	0.3	Horizontal	120	0.3	120	-	-	-	-	-		
	750	40	2000	0.3	Horizontal	75	0.3	75	-	_	-	-	-		-
	/ 30	20	1000	0.3	Horizontal	150	0.3	150	- 1	- 1	- 1	- 1	- 1	1	-