C \in Rots

(1) The output torque decreases as the rotational speed increases. Check the Output Torque graph on the right to see whether the speed required for your desired motion is supported.
(2) The allowable moment of inertia of the rotated work piece varies with the rotational speed. Check the Allowable Moment of Inertia graph on the right to see if the moment of inertia required for your desired motion is within the allowable range.
(3) The rated acceleration while moving is 0.3 G .
(4) Please note that the PMEC/PSEP controllers cannot be used when performing infinite rotation with the multiple rotation type.

Speed vs. Load Capacity
Due to the characteristics of the pulse motor, the RCP2 series' load capacity decreases at high speeds. In the table below, check if your desired speed and load capacity are supported.

Actuator Specifications

- Leads and Payload

Model number		Deceleration Ratio	Max. Torque $(\mathrm{N} \cdot \mathrm{m})$	Allowable Movement of Inertia $\left(\mathrm{kg} \cdot \mathrm{m}^{2}\right)$	Oscillation Angle (deg)
RCP2-RTBB-I-35P-20-330-(1)-(2)-(3)	$1 / 20$	3.0	0.02	330	
RCP2-RTBB-I-35P-30-330-(1)-(2)-(3)	$1 / 30$	4.6	0.03		
RCP2-RTBBL-I-35P-20-360-(1)-(2)-(3)	$1 / 20$	3.0	0.02	360	
RCP2-RTBBL-I-35P-30-360-(1)-(2)-(3)	$1 / 30$	4.6	0.03		

Code explanation (1) Applicable Controller (2)Cable Length (3)Options

| Stroke |
| :---: | :---: | :---: |
| $\left.\begin{array}{\|c\|c\|}\hline \text { Type } & \begin{array}{c}\text { Oscillation Angle } \\ \text { (deg) }\end{array} \\ \hline \text { RTBB } & \mathbf{3 3 0} \\ \hline \text { Standard price } \\ \hline \text { RTBBL } & \mathbf{3 6 0}\end{array}\right]-$ |

(2) Cable Length

Type	Cable symbol	Standard Price
Standard	$\mathbf{P}(1 \mathrm{~m})$	-
	$\mathbf{S}(3 \mathrm{~m})$	-
	$\mathbf{M}(5 \mathrm{~m})$	-
Special length	$\mathbf{X 0 6}(6 \mathrm{~m}) \sim \mathbf{X 1 0}(10 \mathrm{~m})$	-
	$\mathbf{X 1 1}(1 \mathrm{~m}) \sim \mathbf{X 1 5}(15 \mathrm{~m})$	-
	$\mathbf{X 1 6}(16 \mathrm{~m}) \sim \mathbf{X 2 0}(20 \mathrm{~m})$	-
Robot Cable	$\mathbf{R 0 1}(1 \mathrm{~m}) \sim \mathbf{R 0 3}(3 \mathrm{~m})$	-
	$\mathbf{R 0 4}(4 \mathrm{~m}) \sim \mathbf{R 0 5}(5 \mathrm{~m})$	-
	$\mathbf{R 0 6}(6 \mathrm{~m}) \sim \mathbf{R 1 0}(10 \mathrm{~m})$	-
	$\mathbf{R 1 1}(11 \mathrm{~m}) \sim \mathbf{R 1 5}(15 \mathrm{~m})$	-
	$\mathbf{R 1 6}(16 \mathrm{~m}) \sim \mathbf{R 2 0}(20 \mathrm{~m})$	-

(3) Options

Name	Option code	See page	Standard price
Reversed-rotation	NM	\rightarrow A-52	-
Shaft adapter	SA	\rightarrow A-54	-
Table adapter	TA	\rightarrow A- 56	-

* See page A-59 for cables for maintenance.

Actuator Specifications	
Drive System	Hypoid gear \quad Description
Positioning repeatability	± 0.01 degrees
Homing accuracy	± 0.01 degrees (RTBB) / ± 0.03 (RTBBL)
Lost motion	± 0.1 degrees
Allowable thrust load	200 N
Allowable load moment	$17.7 \mathrm{~N} \cdot \mathrm{~m}$
Weight	2.3 kg
Ambient operating temperature, humidity	0 to $40^{\circ} \mathrm{C}, 85 \% \mathrm{RH}$ or less (Non-condensing)

2D
 CAD

(1) Applicable Controllers								
RCP2 series actuators can be operated with the controllers indicated below. Select the type according to your intended application.								
Name	External view	Model number	Features	Maximum number of positioning points	Input power	Power-supply capacity	Standard price	Reference page
Solenoid Valve Type	8	PMEC-C-35PI-(1)-2-(II)	Easy-to-use controller, even for beginners	3 points	AC100V AC200V	Refer to P541	-	\rightarrow P537
	1	PSEP-C-35PI-(1)-2-0	Simple controller operable with the same signal as a solenoid valve		DC24V	Refer to P555	-	\rightarrow P547
Solenoid valve multi-axis type PIO specification		MSEP-C-(III)-~-(1)-2-0	Positioner type based on PIO control, allowing up to 8 axes to be connected			Refer to P572	-	\rightarrow P563
Solenoid valve multi-axis type Network specification		MSEP-C-III-~-(IV)-0-0	Field network-ready positioner type, allowing up to 8 axes to be connected	256 points				
Positioner type High-output specification		PCON-CA-35PI-(1)-2-0	Equipped with a high-output driver Positioner type based on PIO control	512 points		Refer to P618	-	$\rightarrow \mathrm{P} 607$
Pulse-train type High-output specification		PCON-CA-35PI-PL \square-2-0	Equipped with a high-output driver Pulse-train input type	(-)			-	
Field network type High-output specification		PCON-CA-35PI-(V)-0-0	Equipped with a high-output driver Supporting 7 major field networks	768 points			-	
Pulse Train Input Type (Differential Line Driver)		PCON-PL-35PI-(1)-2-0	Pulse train input type with differential line driver support	(-)		Refer to P628	-	\rightarrow P623
Pulse Train Input Type (Open Collector)		PCON-PO-35PI-(1)-2-0	Pulse train input type with open collector support				-	
Serial Communication Type	6	PCON-SE-35PI-N-0-0	Dedicated Serial Communication	64 points			-	
Program Control Type	\%	PSEL-CS-1-35PI-(1)-2-0	Programmed operation is possible. Can operate up to 2 axes	1,500 points		Refer to P671	-	\rightarrow P665
${ }^{*}$ This is for the single-axis PSEL. $\quad{ }^{*}$ (1) indicates I/O type (NP/PN). \quad * (11 indicates power supply voltage (1: 100V / 2: 100~240V). * (III indicates number of axes (1 to 8). * (1) indicates field network specification symbol. * \square indicates N (NPN specification) or P (PNP specification) symbol.								

